aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/staging/rdma/ipath/ipath_eeprom.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/staging/rdma/ipath/ipath_eeprom.c')
-rw-r--r--drivers/staging/rdma/ipath/ipath_eeprom.c1183
1 files changed, 0 insertions, 1183 deletions
diff --git a/drivers/staging/rdma/ipath/ipath_eeprom.c b/drivers/staging/rdma/ipath/ipath_eeprom.c
deleted file mode 100644
index ef84107c7ce0..000000000000
--- a/drivers/staging/rdma/ipath/ipath_eeprom.c
+++ /dev/null
@@ -1,1183 +0,0 @@
-/*
- * Copyright (c) 2006, 2007, 2008 QLogic Corporation. All rights reserved.
- * Copyright (c) 2003, 2004, 2005, 2006 PathScale, Inc. All rights reserved.
- *
- * This software is available to you under a choice of one of two
- * licenses. You may choose to be licensed under the terms of the GNU
- * General Public License (GPL) Version 2, available from the file
- * COPYING in the main directory of this source tree, or the
- * OpenIB.org BSD license below:
- *
- * Redistribution and use in source and binary forms, with or
- * without modification, are permitted provided that the following
- * conditions are met:
- *
- * - Redistributions of source code must retain the above
- * copyright notice, this list of conditions and the following
- * disclaimer.
- *
- * - Redistributions in binary form must reproduce the above
- * copyright notice, this list of conditions and the following
- * disclaimer in the documentation and/or other materials
- * provided with the distribution.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
- * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
- * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
- * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
- * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
- * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
- * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
-
-#include <linux/delay.h>
-#include <linux/pci.h>
-#include <linux/vmalloc.h>
-
-#include "ipath_kernel.h"
-
-/*
- * InfiniPath I2C driver for a serial eeprom. This is not a generic
- * I2C interface. For a start, the device we're using (Atmel AT24C11)
- * doesn't work like a regular I2C device. It looks like one
- * electrically, but not logically. Normal I2C devices have a single
- * 7-bit or 10-bit I2C address that they respond to. Valid 7-bit
- * addresses range from 0x03 to 0x77. Addresses 0x00 to 0x02 and 0x78
- * to 0x7F are special reserved addresses (e.g. 0x00 is the "general
- * call" address.) The Atmel device, on the other hand, responds to ALL
- * 7-bit addresses. It's designed to be the only device on a given I2C
- * bus. A 7-bit address corresponds to the memory address within the
- * Atmel device itself.
- *
- * Also, the timing requirements mean more than simple software
- * bitbanging, with readbacks from chip to ensure timing (simple udelay
- * is not enough).
- *
- * This all means that accessing the device is specialized enough
- * that using the standard kernel I2C bitbanging interface would be
- * impossible. For example, the core I2C eeprom driver expects to find
- * a device at one or more of a limited set of addresses only. It doesn't
- * allow writing to an eeprom. It also doesn't provide any means of
- * accessing eeprom contents from within the kernel, only via sysfs.
- */
-
-/* Added functionality for IBA7220-based cards */
-#define IPATH_EEPROM_DEV_V1 0xA0
-#define IPATH_EEPROM_DEV_V2 0xA2
-#define IPATH_TEMP_DEV 0x98
-#define IPATH_BAD_DEV (IPATH_EEPROM_DEV_V2+2)
-#define IPATH_NO_DEV (0xFF)
-
-/*
- * The number of I2C chains is proliferating. Table below brings
- * some order to the madness. The basic principle is that the
- * table is scanned from the top, and a "probe" is made to the
- * device probe_dev. If that succeeds, the chain is considered
- * to be of that type, and dd->i2c_chain_type is set to the index+1
- * of the entry.
- * The +1 is so static initialization can mean "unknown, do probe."
- */
-static struct i2c_chain_desc {
- u8 probe_dev; /* If seen at probe, chain is this type */
- u8 eeprom_dev; /* Dev addr (if any) for EEPROM */
- u8 temp_dev; /* Dev Addr (if any) for Temp-sense */
-} i2c_chains[] = {
- { IPATH_BAD_DEV, IPATH_NO_DEV, IPATH_NO_DEV }, /* pre-iba7220 bds */
- { IPATH_EEPROM_DEV_V1, IPATH_EEPROM_DEV_V1, IPATH_TEMP_DEV}, /* V1 */
- { IPATH_EEPROM_DEV_V2, IPATH_EEPROM_DEV_V2, IPATH_TEMP_DEV}, /* V2 */
- { IPATH_NO_DEV }
-};
-
-enum i2c_type {
- i2c_line_scl = 0,
- i2c_line_sda
-};
-
-enum i2c_state {
- i2c_line_low = 0,
- i2c_line_high
-};
-
-#define READ_CMD 1
-#define WRITE_CMD 0
-
-/**
- * i2c_gpio_set - set a GPIO line
- * @dd: the infinipath device
- * @line: the line to set
- * @new_line_state: the state to set
- *
- * Returns 0 if the line was set to the new state successfully, non-zero
- * on error.
- */
-static int i2c_gpio_set(struct ipath_devdata *dd,
- enum i2c_type line,
- enum i2c_state new_line_state)
-{
- u64 out_mask, dir_mask, *gpioval;
- unsigned long flags = 0;
-
- gpioval = &dd->ipath_gpio_out;
-
- if (line == i2c_line_scl) {
- dir_mask = dd->ipath_gpio_scl;
- out_mask = (1UL << dd->ipath_gpio_scl_num);
- } else {
- dir_mask = dd->ipath_gpio_sda;
- out_mask = (1UL << dd->ipath_gpio_sda_num);
- }
-
- spin_lock_irqsave(&dd->ipath_gpio_lock, flags);
- if (new_line_state == i2c_line_high) {
- /* tri-state the output rather than force high */
- dd->ipath_extctrl &= ~dir_mask;
- } else {
- /* config line to be an output */
- dd->ipath_extctrl |= dir_mask;
- }
- ipath_write_kreg(dd, dd->ipath_kregs->kr_extctrl, dd->ipath_extctrl);
-
- /* set output as well (no real verify) */
- if (new_line_state == i2c_line_high)
- *gpioval |= out_mask;
- else
- *gpioval &= ~out_mask;
-
- ipath_write_kreg(dd, dd->ipath_kregs->kr_gpio_out, *gpioval);
- spin_unlock_irqrestore(&dd->ipath_gpio_lock, flags);
-
- return 0;
-}
-
-/**
- * i2c_gpio_get - get a GPIO line state
- * @dd: the infinipath device
- * @line: the line to get
- * @curr_statep: where to put the line state
- *
- * Returns 0 if the line was set to the new state successfully, non-zero
- * on error. curr_state is not set on error.
- */
-static int i2c_gpio_get(struct ipath_devdata *dd,
- enum i2c_type line,
- enum i2c_state *curr_statep)
-{
- u64 read_val, mask;
- int ret;
- unsigned long flags = 0;
-
- /* check args */
- if (curr_statep == NULL) {
- ret = 1;
- goto bail;
- }
-
- /* config line to be an input */
- if (line == i2c_line_scl)
- mask = dd->ipath_gpio_scl;
- else
- mask = dd->ipath_gpio_sda;
-
- spin_lock_irqsave(&dd->ipath_gpio_lock, flags);
- dd->ipath_extctrl &= ~mask;
- ipath_write_kreg(dd, dd->ipath_kregs->kr_extctrl, dd->ipath_extctrl);
- /*
- * Below is very unlikely to reflect true input state if Output
- * Enable actually changed.
- */
- read_val = ipath_read_kreg64(dd, dd->ipath_kregs->kr_extstatus);
- spin_unlock_irqrestore(&dd->ipath_gpio_lock, flags);
-
- if (read_val & mask)
- *curr_statep = i2c_line_high;
- else
- *curr_statep = i2c_line_low;
-
- ret = 0;
-
-bail:
- return ret;
-}
-
-/**
- * i2c_wait_for_writes - wait for a write
- * @dd: the infinipath device
- *
- * We use this instead of udelay directly, so we can make sure
- * that previous register writes have been flushed all the way
- * to the chip. Since we are delaying anyway, the cost doesn't
- * hurt, and makes the bit twiddling more regular
- */
-static void i2c_wait_for_writes(struct ipath_devdata *dd)
-{
- (void)ipath_read_kreg32(dd, dd->ipath_kregs->kr_scratch);
- rmb();
-}
-
-static void scl_out(struct ipath_devdata *dd, u8 bit)
-{
- udelay(1);
- i2c_gpio_set(dd, i2c_line_scl, bit ? i2c_line_high : i2c_line_low);
-
- i2c_wait_for_writes(dd);
-}
-
-static void sda_out(struct ipath_devdata *dd, u8 bit)
-{
- i2c_gpio_set(dd, i2c_line_sda, bit ? i2c_line_high : i2c_line_low);
-
- i2c_wait_for_writes(dd);
-}
-
-static u8 sda_in(struct ipath_devdata *dd, int wait)
-{
- enum i2c_state bit;
-
- if (i2c_gpio_get(dd, i2c_line_sda, &bit))
- ipath_dbg("get bit failed!\n");
-
- if (wait)
- i2c_wait_for_writes(dd);
-
- return bit == i2c_line_high ? 1U : 0;
-}
-
-/**
- * i2c_ackrcv - see if ack following write is true
- * @dd: the infinipath device
- */
-static int i2c_ackrcv(struct ipath_devdata *dd)
-{
- u8 ack_received;
-
- /* AT ENTRY SCL = LOW */
- /* change direction, ignore data */
- ack_received = sda_in(dd, 1);
- scl_out(dd, i2c_line_high);
- ack_received = sda_in(dd, 1) == 0;
- scl_out(dd, i2c_line_low);
- return ack_received;
-}
-
-/**
- * rd_byte - read a byte, leaving ACK, STOP, etc up to caller
- * @dd: the infinipath device
- *
- * Returns byte shifted out of device
- */
-static int rd_byte(struct ipath_devdata *dd)
-{
- int bit_cntr, data;
-
- data = 0;
-
- for (bit_cntr = 7; bit_cntr >= 0; --bit_cntr) {
- data <<= 1;
- scl_out(dd, i2c_line_high);
- data |= sda_in(dd, 0);
- scl_out(dd, i2c_line_low);
- }
- return data;
-}
-
-/**
- * wr_byte - write a byte, one bit at a time
- * @dd: the infinipath device
- * @data: the byte to write
- *
- * Returns 0 if we got the following ack, otherwise 1
- */
-static int wr_byte(struct ipath_devdata *dd, u8 data)
-{
- int bit_cntr;
- u8 bit;
-
- for (bit_cntr = 7; bit_cntr >= 0; bit_cntr--) {
- bit = (data >> bit_cntr) & 1;
- sda_out(dd, bit);
- scl_out(dd, i2c_line_high);
- scl_out(dd, i2c_line_low);
- }
- return (!i2c_ackrcv(dd)) ? 1 : 0;
-}
-
-static void send_ack(struct ipath_devdata *dd)
-{
- sda_out(dd, i2c_line_low);
- scl_out(dd, i2c_line_high);
- scl_out(dd, i2c_line_low);
- sda_out(dd, i2c_line_high);
-}
-
-/**
- * i2c_startcmd - transmit the start condition, followed by address/cmd
- * @dd: the infinipath device
- * @offset_dir: direction byte
- *
- * (both clock/data high, clock high, data low while clock is high)
- */
-static int i2c_startcmd(struct ipath_devdata *dd, u8 offset_dir)
-{
- int res;
-
- /* issue start sequence */
- sda_out(dd, i2c_line_high);
- scl_out(dd, i2c_line_high);
- sda_out(dd, i2c_line_low);
- scl_out(dd, i2c_line_low);
-
- /* issue length and direction byte */
- res = wr_byte(dd, offset_dir);
-
- if (res)
- ipath_cdbg(VERBOSE, "No ack to complete start\n");
-
- return res;
-}
-
-/**
- * stop_cmd - transmit the stop condition
- * @dd: the infinipath device
- *
- * (both clock/data low, clock high, data high while clock is high)
- */
-static void stop_cmd(struct ipath_devdata *dd)
-{
- scl_out(dd, i2c_line_low);
- sda_out(dd, i2c_line_low);
- scl_out(dd, i2c_line_high);
- sda_out(dd, i2c_line_high);
- udelay(2);
-}
-
-/**
- * eeprom_reset - reset I2C communication
- * @dd: the infinipath device
- */
-
-static int eeprom_reset(struct ipath_devdata *dd)
-{
- int clock_cycles_left = 9;
- u64 *gpioval = &dd->ipath_gpio_out;
- int ret;
- unsigned long flags;
-
- spin_lock_irqsave(&dd->ipath_gpio_lock, flags);
- /* Make sure shadows are consistent */
- dd->ipath_extctrl = ipath_read_kreg64(dd, dd->ipath_kregs->kr_extctrl);
- *gpioval = ipath_read_kreg64(dd, dd->ipath_kregs->kr_gpio_out);
- spin_unlock_irqrestore(&dd->ipath_gpio_lock, flags);
-
- ipath_cdbg(VERBOSE, "Resetting i2c eeprom; initial gpioout reg "
- "is %llx\n", (unsigned long long) *gpioval);
-
- /*
- * This is to get the i2c into a known state, by first going low,
- * then tristate sda (and then tristate scl as first thing
- * in loop)
- */
- scl_out(dd, i2c_line_low);
- sda_out(dd, i2c_line_high);
-
- /* Clock up to 9 cycles looking for SDA hi, then issue START and STOP */
- while (clock_cycles_left--) {
- scl_out(dd, i2c_line_high);
-
- /* SDA seen high, issue START by dropping it while SCL high */
- if (sda_in(dd, 0)) {
- sda_out(dd, i2c_line_low);
- scl_out(dd, i2c_line_low);
- /* ATMEL spec says must be followed by STOP. */
- scl_out(dd, i2c_line_high);
- sda_out(dd, i2c_line_high);
- ret = 0;
- goto bail;
- }
-
- scl_out(dd, i2c_line_low);
- }
-
- ret = 1;
-
-bail:
- return ret;
-}
-
-/*
- * Probe for I2C device at specified address. Returns 0 for "success"
- * to match rest of this file.
- * Leave bus in "reasonable" state for further commands.
- */
-static int i2c_probe(struct ipath_devdata *dd, int devaddr)
-{
- int ret;
-
- ret = eeprom_reset(dd);
- if (ret) {
- ipath_dev_err(dd, "Failed reset probing device 0x%02X\n",
- devaddr);
- return ret;
- }
- /*
- * Reset no longer leaves bus in start condition, so normal
- * i2c_startcmd() will do.
- */
- ret = i2c_startcmd(dd, devaddr | READ_CMD);
- if (ret)
- ipath_cdbg(VERBOSE, "Failed startcmd for device 0x%02X\n",
- devaddr);
- else {
- /*
- * Device did respond. Complete a single-byte read, because some
- * devices apparently cannot handle STOP immediately after they
- * ACK the start-cmd.
- */
- int data;
- data = rd_byte(dd);
- stop_cmd(dd);
- ipath_cdbg(VERBOSE, "Response from device 0x%02X\n", devaddr);
- }
- return ret;
-}
-
-/*
- * Returns the "i2c type". This is a pointer to a struct that describes
- * the I2C chain on this board. To minimize impact on struct ipath_devdata,
- * the (small integer) index into the table is actually memoized, rather
- * then the pointer.
- * Memoization is because the type is determined on the first call per chip.
- * An alternative would be to move type determination to early
- * init code.
- */
-static struct i2c_chain_desc *ipath_i2c_type(struct ipath_devdata *dd)
-{
- int idx;
-
- /* Get memoized index, from previous successful probes */
- idx = dd->ipath_i2c_chain_type - 1;
- if (idx >= 0 && idx < (ARRAY_SIZE(i2c_chains) - 1))
- goto done;
-
- idx = 0;
- while (i2c_chains[idx].probe_dev != IPATH_NO_DEV) {
- /* if probe succeeds, this is type */
- if (!i2c_probe(dd, i2c_chains[idx].probe_dev))
- break;
- ++idx;
- }
-
- /*
- * Old EEPROM (first entry) may require a reset after probe,
- * rather than being able to "start" after "stop"
- */
- if (idx == 0)
- eeprom_reset(dd);
-
- if (i2c_chains[idx].probe_dev == IPATH_NO_DEV)
- idx = -1;
- else
- dd->ipath_i2c_chain_type = idx + 1;
-done:
- return (idx >= 0) ? i2c_chains + idx : NULL;
-}
-
-static int ipath_eeprom_internal_read(struct ipath_devdata *dd,
- u8 eeprom_offset, void *buffer, int len)
-{
- int ret;
- struct i2c_chain_desc *icd;
- u8 *bp = buffer;
-
- ret = 1;
- icd = ipath_i2c_type(dd);
- if (!icd)
- goto bail;
-
- if (icd->eeprom_dev == IPATH_NO_DEV) {
- /* legacy not-really-I2C */
- ipath_cdbg(VERBOSE, "Start command only address\n");
- eeprom_offset = (eeprom_offset << 1) | READ_CMD;
- ret = i2c_startcmd(dd, eeprom_offset);
- } else {
- /* Actual I2C */
- ipath_cdbg(VERBOSE, "Start command uses devaddr\n");
- if (i2c_startcmd(dd, icd->eeprom_dev | WRITE_CMD)) {
- ipath_dbg("Failed EEPROM startcmd\n");
- stop_cmd(dd);
- ret = 1;
- goto bail;
- }
- ret = wr_byte(dd, eeprom_offset);
- stop_cmd(dd);
- if (ret) {
- ipath_dev_err(dd, "Failed to write EEPROM address\n");
- ret = 1;
- goto bail;
- }
- ret = i2c_startcmd(dd, icd->eeprom_dev | READ_CMD);
- }
- if (ret) {
- ipath_dbg("Failed startcmd for dev %02X\n", icd->eeprom_dev);
- stop_cmd(dd);
- ret = 1;
- goto bail;
- }
-
- /*
- * eeprom keeps clocking data out as long as we ack, automatically
- * incrementing the address.
- */
- while (len-- > 0) {
- /* get and store data */
- *bp++ = rd_byte(dd);
- /* send ack if not the last byte */
- if (len)
- send_ack(dd);
- }
-
- stop_cmd(dd);
-
- ret = 0;
-
-bail:
- return ret;
-}
-
-static int ipath_eeprom_internal_write(struct ipath_devdata *dd, u8 eeprom_offset,
- const void *buffer, int len)
-{
- int sub_len;
- const u8 *bp = buffer;
- int max_wait_time, i;
- int ret;
- struct i2c_chain_desc *icd;
-
- ret = 1;
- icd = ipath_i2c_type(dd);
- if (!icd)
- goto bail;
-
- while (len > 0) {
- if (icd->eeprom_dev == IPATH_NO_DEV) {
- if (i2c_startcmd(dd,
- (eeprom_offset << 1) | WRITE_CMD)) {
- ipath_dbg("Failed to start cmd offset %u\n",
- eeprom_offset);
- goto failed_write;
- }
- } else {
- /* Real I2C */
- if (i2c_startcmd(dd, icd->eeprom_dev | WRITE_CMD)) {
- ipath_dbg("Failed EEPROM startcmd\n");
- goto failed_write;
- }
- ret = wr_byte(dd, eeprom_offset);
- if (ret) {
- ipath_dev_err(dd, "Failed to write EEPROM "
- "address\n");
- goto failed_write;
- }
- }
-
- sub_len = min(len, 4);
- eeprom_offset += sub_len;
- len -= sub_len;
-
- for (i = 0; i < sub_len; i++) {
- if (wr_byte(dd, *bp++)) {
- ipath_dbg("no ack after byte %u/%u (%u "
- "total remain)\n", i, sub_len,
- len + sub_len - i);
- goto failed_write;
- }
- }
-
- stop_cmd(dd);
-
- /*
- * wait for write complete by waiting for a successful
- * read (the chip replies with a zero after the write
- * cmd completes, and before it writes to the eeprom.
- * The startcmd for the read will fail the ack until
- * the writes have completed. We do this inline to avoid
- * the debug prints that are in the real read routine
- * if the startcmd fails.
- * We also use the proper device address, so it doesn't matter
- * whether we have real eeprom_dev. legacy likes any address.
- */
- max_wait_time = 100;
- while (i2c_startcmd(dd, icd->eeprom_dev | READ_CMD)) {
- stop_cmd(dd);
- if (!--max_wait_time) {
- ipath_dbg("Did not get successful read to "
- "complete write\n");
- goto failed_write;
- }
- }
- /* now read (and ignore) the resulting byte */
- rd_byte(dd);
- stop_cmd(dd);
- }
-
- ret = 0;
- goto bail;
-
-failed_write:
- stop_cmd(dd);
- ret = 1;
-
-bail:
- return ret;
-}
-
-/**
- * ipath_eeprom_read - receives bytes from the eeprom via I2C
- * @dd: the infinipath device
- * @eeprom_offset: address to read from
- * @buffer: where to store result
- * @len: number of bytes to receive
- */
-int ipath_eeprom_read(struct ipath_devdata *dd, u8 eeprom_offset,
- void *buff, int len)
-{
- int ret;
-
- ret = mutex_lock_interruptible(&dd->ipath_eep_lock);
- if (!ret) {
- ret = ipath_eeprom_internal_read(dd, eeprom_offset, buff, len);
- mutex_unlock(&dd->ipath_eep_lock);
- }
-
- return ret;
-}
-
-/**
- * ipath_eeprom_write - writes data to the eeprom via I2C
- * @dd: the infinipath device
- * @eeprom_offset: where to place data
- * @buffer: data to write
- * @len: number of bytes to write
- */
-int ipath_eeprom_write(struct ipath_devdata *dd, u8 eeprom_offset,
- const void *buff, int len)
-{
- int ret;
-
- ret = mutex_lock_interruptible(&dd->ipath_eep_lock);
- if (!ret) {
- ret = ipath_eeprom_internal_write(dd, eeprom_offset, buff, len);
- mutex_unlock(&dd->ipath_eep_lock);
- }
-
- return ret;
-}
-
-static u8 flash_csum(struct ipath_flash *ifp, int adjust)
-{
- u8 *ip = (u8 *) ifp;
- u8 csum = 0, len;
-
- /*
- * Limit length checksummed to max length of actual data.
- * Checksum of erased eeprom will still be bad, but we avoid
- * reading past the end of the buffer we were passed.
- */
- len = ifp->if_length;
- if (len > sizeof(struct ipath_flash))
- len = sizeof(struct ipath_flash);
- while (len--)
- csum += *ip++;
- csum -= ifp->if_csum;
- csum = ~csum;
- if (adjust)
- ifp->if_csum = csum;
-
- return csum;
-}
-
-/**
- * ipath_get_guid - get the GUID from the i2c device
- * @dd: the infinipath device
- *
- * We have the capability to use the ipath_nguid field, and get
- * the guid from the first chip's flash, to use for all of them.
- */
-void ipath_get_eeprom_info(struct ipath_devdata *dd)
-{
- void *buf;
- struct ipath_flash *ifp;
- __be64 guid;
- int len, eep_stat;
- u8 csum, *bguid;
- int t = dd->ipath_unit;
- struct ipath_devdata *dd0 = ipath_lookup(0);
-
- if (t && dd0->ipath_nguid > 1 && t <= dd0->ipath_nguid) {
- u8 oguid;
- dd->ipath_guid = dd0->ipath_guid;
- bguid = (u8 *) & dd->ipath_guid;
-
- oguid = bguid[7];
- bguid[7] += t;
- if (oguid > bguid[7]) {
- if (bguid[6] == 0xff) {
- if (bguid[5] == 0xff) {
- ipath_dev_err(
- dd,
- "Can't set %s GUID from "
- "base, wraps to OUI!\n",
- ipath_get_unit_name(t));
- dd->ipath_guid = 0;
- goto bail;
- }
- bguid[5]++;
- }
- bguid[6]++;
- }
- dd->ipath_nguid = 1;
-
- ipath_dbg("nguid %u, so adding %u to device 0 guid, "
- "for %llx\n",
- dd0->ipath_nguid, t,
- (unsigned long long) be64_to_cpu(dd->ipath_guid));
- goto bail;
- }
-
- /*
- * read full flash, not just currently used part, since it may have
- * been written with a newer definition
- * */
- len = sizeof(struct ipath_flash);
- buf = vmalloc(len);
- if (!buf) {
- ipath_dev_err(dd, "Couldn't allocate memory to read %u "
- "bytes from eeprom for GUID\n", len);
- goto bail;
- }
-
- mutex_lock(&dd->ipath_eep_lock);
- eep_stat = ipath_eeprom_internal_read(dd, 0, buf, len);
- mutex_unlock(&dd->ipath_eep_lock);
-
- if (eep_stat) {
- ipath_dev_err(dd, "Failed reading GUID from eeprom\n");
- goto done;
- }
- ifp = (struct ipath_flash *)buf;
-
- csum = flash_csum(ifp, 0);
- if (csum != ifp->if_csum) {
- dev_info(&dd->pcidev->dev, "Bad I2C flash checksum: "
- "0x%x, not 0x%x\n", csum, ifp->if_csum);
- goto done;
- }
- if (*(__be64 *) ifp->if_guid == cpu_to_be64(0) ||
- *(__be64 *) ifp->if_guid == ~cpu_to_be64(0)) {
- ipath_dev_err(dd, "Invalid GUID %llx from flash; "
- "ignoring\n",
- *(unsigned long long *) ifp->if_guid);
- /* don't allow GUID if all 0 or all 1's */
- goto done;
- }
-
- /* complain, but allow it */
- if (*(u64 *) ifp->if_guid == 0x100007511000000ULL)
- dev_info(&dd->pcidev->dev, "Warning, GUID %llx is "
- "default, probably not correct!\n",
- *(unsigned long long *) ifp->if_guid);
-
- bguid = ifp->if_guid;
- if (!bguid[0] && !bguid[1] && !bguid[2]) {
- /* original incorrect GUID format in flash; fix in
- * core copy, by shifting up 2 octets; don't need to
- * change top octet, since both it and shifted are
- * 0.. */
- bguid[1] = bguid[3];
- bguid[2] = bguid[4];
- bguid[3] = bguid[4] = 0;
- guid = *(__be64 *) ifp->if_guid;
- ipath_cdbg(VERBOSE, "Old GUID format in flash, top 3 zero, "
- "shifting 2 octets\n");
- } else
- guid = *(__be64 *) ifp->if_guid;
- dd->ipath_guid = guid;
- dd->ipath_nguid = ifp->if_numguid;
- /*
- * Things are slightly complicated by the desire to transparently
- * support both the Pathscale 10-digit serial number and the QLogic
- * 13-character version.
- */
- if ((ifp->if_fversion > 1) && ifp->if_sprefix[0]
- && ((u8 *)ifp->if_sprefix)[0] != 0xFF) {
- /* This board has a Serial-prefix, which is stored
- * elsewhere for backward-compatibility.
- */
- char *snp = dd->ipath_serial;
- memcpy(snp, ifp->if_sprefix, sizeof ifp->if_sprefix);
- snp[sizeof ifp->if_sprefix] = '\0';
- len = strlen(snp);
- snp += len;
- len = (sizeof dd->ipath_serial) - len;
- if (len > sizeof ifp->if_serial) {
- len = sizeof ifp->if_serial;
- }
- memcpy(snp, ifp->if_serial, len);
- } else
- memcpy(dd->ipath_serial, ifp->if_serial,
- sizeof ifp->if_serial);
- if (!strstr(ifp->if_comment, "Tested successfully"))
- ipath_dev_err(dd, "Board SN %s did not pass functional "
- "test: %s\n", dd->ipath_serial,
- ifp->if_comment);
-
- ipath_cdbg(VERBOSE, "Initted GUID to %llx from eeprom\n",
- (unsigned long long) be64_to_cpu(dd->ipath_guid));
-
- memcpy(&dd->ipath_eep_st_errs, &ifp->if_errcntp, IPATH_EEP_LOG_CNT);
- /*
- * Power-on (actually "active") hours are kept as little-endian value
- * in EEPROM, but as seconds in a (possibly as small as 24-bit)
- * atomic_t while running.
- */
- atomic_set(&dd->ipath_active_time, 0);
- dd->ipath_eep_hrs = ifp->if_powerhour[0] | (ifp->if_powerhour[1] << 8);
-
-done:
- vfree(buf);
-
-bail:;
-}
-
-/**
- * ipath_update_eeprom_log - copy active-time and error counters to eeprom
- * @dd: the infinipath device
- *
- * Although the time is kept as seconds in the ipath_devdata struct, it is
- * rounded to hours for re-write, as we have only 16 bits in EEPROM.
- * First-cut code reads whole (expected) struct ipath_flash, modifies,
- * re-writes. Future direction: read/write only what we need, assuming
- * that the EEPROM had to have been "good enough" for driver init, and
- * if not, we aren't making it worse.
- *
- */
-
-int ipath_update_eeprom_log(struct ipath_devdata *dd)
-{
- void *buf;
- struct ipath_flash *ifp;
- int len, hi_water;
- uint32_t new_time, new_hrs;
- u8 csum;
- int ret, idx;
- unsigned long flags;
-
- /* first, check if we actually need to do anything. */
- ret = 0;
- for (idx = 0; idx < IPATH_EEP_LOG_CNT; ++idx) {
- if (dd->ipath_eep_st_new_errs[idx]) {
- ret = 1;
- break;
- }
- }
- new_time = atomic_read(&dd->ipath_active_time);
-
- if (ret == 0 && new_time < 3600)
- return 0;
-
- /*
- * The quick-check above determined that there is something worthy
- * of logging, so get current contents and do a more detailed idea.
- * read full flash, not just currently used part, since it may have
- * been written with a newer definition
- */
- len = sizeof(struct ipath_flash);
- buf = vmalloc(len);
- ret = 1;
- if (!buf) {
- ipath_dev_err(dd, "Couldn't allocate memory to read %u "
- "bytes from eeprom for logging\n", len);
- goto bail;
- }
-
- /* Grab semaphore and read current EEPROM. If we get an
- * error, let go, but if not, keep it until we finish write.
- */
- ret = mutex_lock_interruptible(&dd->ipath_eep_lock);
- if (ret) {
- ipath_dev_err(dd, "Unable to acquire EEPROM for logging\n");
- goto free_bail;
- }
- ret = ipath_eeprom_internal_read(dd, 0, buf, len);
- if (ret) {
- mutex_unlock(&dd->ipath_eep_lock);
- ipath_dev_err(dd, "Unable read EEPROM for logging\n");
- goto free_bail;
- }
- ifp = (struct ipath_flash *)buf;
-
- csum = flash_csum(ifp, 0);
- if (csum != ifp->if_csum) {
- mutex_unlock(&dd->ipath_eep_lock);
- ipath_dev_err(dd, "EEPROM cks err (0x%02X, S/B 0x%02X)\n",
- csum, ifp->if_csum);
- ret = 1;
- goto free_bail;
- }
- hi_water = 0;
- spin_lock_irqsave(&dd->ipath_eep_st_lock, flags);
- for (idx = 0; idx < IPATH_EEP_LOG_CNT; ++idx) {
- int new_val = dd->ipath_eep_st_new_errs[idx];
- if (new_val) {
- /*
- * If we have seen any errors, add to EEPROM values
- * We need to saturate at 0xFF (255) and we also
- * would need to adjust the checksum if we were
- * trying to minimize EEPROM traffic
- * Note that we add to actual current count in EEPROM,
- * in case it was altered while we were running.
- */
- new_val += ifp->if_errcntp[idx];
- if (new_val > 0xFF)
- new_val = 0xFF;
- if (ifp->if_errcntp[idx] != new_val) {
- ifp->if_errcntp[idx] = new_val;
- hi_water = offsetof(struct ipath_flash,
- if_errcntp) + idx;
- }
- /*
- * update our shadow (used to minimize EEPROM
- * traffic), to match what we are about to write.
- */
- dd->ipath_eep_st_errs[idx] = new_val;
- dd->ipath_eep_st_new_errs[idx] = 0;
- }
- }
- /*
- * now update active-time. We would like to round to the nearest hour
- * but unless atomic_t are sure to be proper signed ints we cannot,
- * because we need to account for what we "transfer" to EEPROM and
- * if we log an hour at 31 minutes, then we would need to set
- * active_time to -29 to accurately count the _next_ hour.
- */
- if (new_time >= 3600) {
- new_hrs = new_time / 3600;
- atomic_sub((new_hrs * 3600), &dd->ipath_active_time);
- new_hrs += dd->ipath_eep_hrs;
- if (new_hrs > 0xFFFF)
- new_hrs = 0xFFFF;
- dd->ipath_eep_hrs = new_hrs;
- if ((new_hrs & 0xFF) != ifp->if_powerhour[0]) {
- ifp->if_powerhour[0] = new_hrs & 0xFF;
- hi_water = offsetof(struct ipath_flash, if_powerhour);
- }
- if ((new_hrs >> 8) != ifp->if_powerhour[1]) {
- ifp->if_powerhour[1] = new_hrs >> 8;
- hi_water = offsetof(struct ipath_flash, if_powerhour)
- + 1;
- }
- }
- /*
- * There is a tiny possibility that we could somehow fail to write
- * the EEPROM after updating our shadows, but problems from holding
- * the spinlock too long are a much bigger issue.
- */
- spin_unlock_irqrestore(&dd->ipath_eep_st_lock, flags);
- if (hi_water) {
- /* we made some change to the data, uopdate cksum and write */
- csum = flash_csum(ifp, 1);
- ret = ipath_eeprom_internal_write(dd, 0, buf, hi_water + 1);
- }
- mutex_unlock(&dd->ipath_eep_lock);
- if (ret)
- ipath_dev_err(dd, "Failed updating EEPROM\n");
-
-free_bail:
- vfree(buf);
-bail:
- return ret;
-
-}
-
-/**
- * ipath_inc_eeprom_err - increment one of the four error counters
- * that are logged to EEPROM.
- * @dd: the infinipath device
- * @eidx: 0..3, the counter to increment
- * @incr: how much to add
- *
- * Each counter is 8-bits, and saturates at 255 (0xFF). They
- * are copied to the EEPROM (aka flash) whenever ipath_update_eeprom_log()
- * is called, but it can only be called in a context that allows sleep.
- * This function can be called even at interrupt level.
- */
-
-void ipath_inc_eeprom_err(struct ipath_devdata *dd, u32 eidx, u32 incr)
-{
- uint new_val;
- unsigned long flags;
-
- spin_lock_irqsave(&dd->ipath_eep_st_lock, flags);
- new_val = dd->ipath_eep_st_new_errs[eidx] + incr;
- if (new_val > 255)
- new_val = 255;
- dd->ipath_eep_st_new_errs[eidx] = new_val;
- spin_unlock_irqrestore(&dd->ipath_eep_st_lock, flags);
- return;
-}
-
-static int ipath_tempsense_internal_read(struct ipath_devdata *dd, u8 regnum)
-{
- int ret;
- struct i2c_chain_desc *icd;
-
- ret = -ENOENT;
-
- icd = ipath_i2c_type(dd);
- if (!icd)
- goto bail;
-
- if (icd->temp_dev == IPATH_NO_DEV) {
- /* tempsense only exists on new, real-I2C boards */
- ret = -ENXIO;
- goto bail;
- }
-
- if (i2c_startcmd(dd, icd->temp_dev | WRITE_CMD)) {
- ipath_dbg("Failed tempsense startcmd\n");
- stop_cmd(dd);
- ret = -ENXIO;
- goto bail;
- }
- ret = wr_byte(dd, regnum);
- stop_cmd(dd);
- if (ret) {
- ipath_dev_err(dd, "Failed tempsense WR command %02X\n",
- regnum);
- ret = -ENXIO;
- goto bail;
- }
- if (i2c_startcmd(dd, icd->temp_dev | READ_CMD)) {
- ipath_dbg("Failed tempsense RD startcmd\n");
- stop_cmd(dd);
- ret = -ENXIO;
- goto bail;
- }
- /*
- * We can only clock out one byte per command, sensibly
- */
- ret = rd_byte(dd);
- stop_cmd(dd);
-
-bail:
- return ret;
-}
-
-#define VALID_TS_RD_REG_MASK 0xBF
-
-/**
- * ipath_tempsense_read - read register of temp sensor via I2C
- * @dd: the infinipath device
- * @regnum: register to read from
- *
- * returns reg contents (0..255) or < 0 for error
- */
-int ipath_tempsense_read(struct ipath_devdata *dd, u8 regnum)
-{
- int ret;
-
- if (regnum > 7)
- return -EINVAL;
-
- /* return a bogus value for (the one) register we do not have */
- if (!((1 << regnum) & VALID_TS_RD_REG_MASK))
- return 0;
-
- ret = mutex_lock_interruptible(&dd->ipath_eep_lock);
- if (!ret) {
- ret = ipath_tempsense_internal_read(dd, regnum);
- mutex_unlock(&dd->ipath_eep_lock);
- }
-
- /*
- * There are three possibilities here:
- * ret is actual value (0..255)
- * ret is -ENXIO or -EINVAL from code in this file
- * ret is -EINTR from mutex_lock_interruptible.
- */
- return ret;
-}
-
-static int ipath_tempsense_internal_write(struct ipath_devdata *dd,
- u8 regnum, u8 data)
-{
- int ret = -ENOENT;
- struct i2c_chain_desc *icd;
-
- icd = ipath_i2c_type(dd);
- if (!icd)
- goto bail;
-
- if (icd->temp_dev == IPATH_NO_DEV) {
- /* tempsense only exists on new, real-I2C boards */
- ret = -ENXIO;
- goto bail;
- }
- if (i2c_startcmd(dd, icd->temp_dev | WRITE_CMD)) {
- ipath_dbg("Failed tempsense startcmd\n");
- stop_cmd(dd);
- ret = -ENXIO;
- goto bail;
- }
- ret = wr_byte(dd, regnum);
- if (ret) {
- stop_cmd(dd);
- ipath_dev_err(dd, "Failed to write tempsense command %02X\n",
- regnum);
- ret = -ENXIO;
- goto bail;
- }
- ret = wr_byte(dd, data);
- stop_cmd(dd);
- ret = i2c_startcmd(dd, icd->temp_dev | READ_CMD);
- if (ret) {
- ipath_dev_err(dd, "Failed tempsense data wrt to %02X\n",
- regnum);
- ret = -ENXIO;
- }
-
-bail:
- return ret;
-}
-
-#define VALID_TS_WR_REG_MASK ((1 << 9) | (1 << 0xB) | (1 << 0xD))
-
-/**
- * ipath_tempsense_write - write register of temp sensor via I2C
- * @dd: the infinipath device
- * @regnum: register to write
- * @data: data to write
- *
- * returns 0 for success or < 0 for error
- */
-int ipath_tempsense_write(struct ipath_devdata *dd, u8 regnum, u8 data)
-{
- int ret;
-
- if (regnum > 15 || !((1 << regnum) & VALID_TS_WR_REG_MASK))
- return -EINVAL;
-
- ret = mutex_lock_interruptible(&dd->ipath_eep_lock);
- if (!ret) {
- ret = ipath_tempsense_internal_write(dd, regnum, data);
- mutex_unlock(&dd->ipath_eep_lock);
- }
-
- /*
- * There are three possibilities here:
- * ret is 0 for success
- * ret is -ENXIO or -EINVAL from code in this file
- * ret is -EINTR from mutex_lock_interruptible.
- */
- return ret;
-}