aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/staging/spectra/lld_nand.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/staging/spectra/lld_nand.c')
-rw-r--r--drivers/staging/spectra/lld_nand.c2601
1 files changed, 2601 insertions, 0 deletions
diff --git a/drivers/staging/spectra/lld_nand.c b/drivers/staging/spectra/lld_nand.c
new file mode 100644
index 000000000000..13c3ad2db394
--- /dev/null
+++ b/drivers/staging/spectra/lld_nand.c
@@ -0,0 +1,2601 @@
+/*
+ * NAND Flash Controller Device Driver
+ * Copyright (c) 2009, Intel Corporation and its suppliers.
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms and conditions of the GNU General Public License,
+ * version 2, as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
+ * more details.
+ *
+ * You should have received a copy of the GNU General Public License along with
+ * this program; if not, write to the Free Software Foundation, Inc.,
+ * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ */
+
+#include "lld.h"
+#include "lld_nand.h"
+#include "lld_cdma.h"
+
+#include "spectraswconfig.h"
+#include "flash.h"
+#include "ffsdefs.h"
+
+#include <linux/interrupt.h>
+#include <linux/delay.h>
+#include <linux/wait.h>
+#include <linux/mutex.h>
+
+#include "nand_regs.h"
+
+#define SPECTRA_NAND_NAME "nd"
+
+#define CEIL_DIV(X, Y) (((X)%(Y)) ? ((X)/(Y)+1) : ((X)/(Y)))
+#define MAX_PAGES_PER_RW 128
+
+#define INT_IDLE_STATE 0
+#define INT_READ_PAGE_MAIN 0x01
+#define INT_WRITE_PAGE_MAIN 0x02
+#define INT_PIPELINE_READ_AHEAD 0x04
+#define INT_PIPELINE_WRITE_AHEAD 0x08
+#define INT_MULTI_PLANE_READ 0x10
+#define INT_MULTI_PLANE_WRITE 0x11
+
+static u32 enable_ecc;
+
+struct mrst_nand_info info;
+
+int totalUsedBanks;
+u32 GLOB_valid_banks[LLD_MAX_FLASH_BANKS];
+
+void __iomem *FlashReg;
+void __iomem *FlashMem;
+
+u16 conf_parameters[] = {
+ 0x0000,
+ 0x0000,
+ 0x01F4,
+ 0x01F4,
+ 0x01F4,
+ 0x01F4,
+ 0x0000,
+ 0x0000,
+ 0x0001,
+ 0x0000,
+ 0x0000,
+ 0x0000,
+ 0x0000,
+ 0x0040,
+ 0x0001,
+ 0x000A,
+ 0x000A,
+ 0x000A,
+ 0x0000,
+ 0x0000,
+ 0x0005,
+ 0x0012,
+ 0x000C
+};
+
+u16 NAND_Get_Bad_Block(u32 block)
+{
+ u32 status = PASS;
+ u32 flag_bytes = 0;
+ u32 skip_bytes = DeviceInfo.wSpareSkipBytes;
+ u32 page, i;
+ u8 *pReadSpareBuf = buf_get_bad_block;
+
+ if (enable_ecc)
+ flag_bytes = DeviceInfo.wNumPageSpareFlag;
+
+ for (page = 0; page < 2; page++) {
+ status = NAND_Read_Page_Spare(pReadSpareBuf, block, page, 1);
+ if (status != PASS)
+ return READ_ERROR;
+ for (i = flag_bytes; i < (flag_bytes + skip_bytes); i++)
+ if (pReadSpareBuf[i] != 0xff)
+ return DEFECTIVE_BLOCK;
+ }
+
+ for (page = 1; page < 3; page++) {
+ status = NAND_Read_Page_Spare(pReadSpareBuf, block,
+ DeviceInfo.wPagesPerBlock - page , 1);
+ if (status != PASS)
+ return READ_ERROR;
+ for (i = flag_bytes; i < (flag_bytes + skip_bytes); i++)
+ if (pReadSpareBuf[i] != 0xff)
+ return DEFECTIVE_BLOCK;
+ }
+
+ return GOOD_BLOCK;
+}
+
+
+u16 NAND_Flash_Reset(void)
+{
+ u32 i;
+ u32 intr_status_rst_comp[4] = {INTR_STATUS0__RST_COMP,
+ INTR_STATUS1__RST_COMP,
+ INTR_STATUS2__RST_COMP,
+ INTR_STATUS3__RST_COMP};
+ u32 intr_status_time_out[4] = {INTR_STATUS0__TIME_OUT,
+ INTR_STATUS1__TIME_OUT,
+ INTR_STATUS2__TIME_OUT,
+ INTR_STATUS3__TIME_OUT};
+ u32 intr_status[4] = {INTR_STATUS0, INTR_STATUS1,
+ INTR_STATUS2, INTR_STATUS3};
+ u32 device_reset_banks[4] = {DEVICE_RESET__BANK0,
+ DEVICE_RESET__BANK1,
+ DEVICE_RESET__BANK2,
+ DEVICE_RESET__BANK3};
+
+ nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
+ __FILE__, __LINE__, __func__);
+
+ for (i = 0 ; i < LLD_MAX_FLASH_BANKS; i++)
+ iowrite32(intr_status_rst_comp[i] | intr_status_time_out[i],
+ FlashReg + intr_status[i]);
+
+ for (i = 0 ; i < LLD_MAX_FLASH_BANKS; i++) {
+ iowrite32(device_reset_banks[i], FlashReg + DEVICE_RESET);
+ while (!(ioread32(FlashReg + intr_status[i]) &
+ (intr_status_rst_comp[i] | intr_status_time_out[i])))
+ ;
+ if (ioread32(FlashReg + intr_status[i]) &
+ intr_status_time_out[i])
+ nand_dbg_print(NAND_DBG_WARN,
+ "NAND Reset operation timed out on bank %d\n", i);
+ }
+
+ for (i = 0; i < LLD_MAX_FLASH_BANKS; i++)
+ iowrite32(intr_status_rst_comp[i] | intr_status_time_out[i],
+ FlashReg + intr_status[i]);
+
+ return PASS;
+}
+
+static void NAND_ONFi_Timing_Mode(u16 mode)
+{
+ u16 Trea[6] = {40, 30, 25, 20, 20, 16};
+ u16 Trp[6] = {50, 25, 17, 15, 12, 10};
+ u16 Treh[6] = {30, 15, 15, 10, 10, 7};
+ u16 Trc[6] = {100, 50, 35, 30, 25, 20};
+ u16 Trhoh[6] = {0, 15, 15, 15, 15, 15};
+ u16 Trloh[6] = {0, 0, 0, 0, 5, 5};
+ u16 Tcea[6] = {100, 45, 30, 25, 25, 25};
+ u16 Tadl[6] = {200, 100, 100, 100, 70, 70};
+ u16 Trhw[6] = {200, 100, 100, 100, 100, 100};
+ u16 Trhz[6] = {200, 100, 100, 100, 100, 100};
+ u16 Twhr[6] = {120, 80, 80, 60, 60, 60};
+ u16 Tcs[6] = {70, 35, 25, 25, 20, 15};
+
+ u16 TclsRising = 1;
+ u16 data_invalid_rhoh, data_invalid_rloh, data_invalid;
+ u16 dv_window = 0;
+ u16 en_lo, en_hi;
+ u16 acc_clks;
+ u16 addr_2_data, re_2_we, re_2_re, we_2_re, cs_cnt;
+
+ nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
+ __FILE__, __LINE__, __func__);
+
+ en_lo = CEIL_DIV(Trp[mode], CLK_X);
+ en_hi = CEIL_DIV(Treh[mode], CLK_X);
+
+#if ONFI_BLOOM_TIME
+ if ((en_hi * CLK_X) < (Treh[mode] + 2))
+ en_hi++;
+#endif
+
+ if ((en_lo + en_hi) * CLK_X < Trc[mode])
+ en_lo += CEIL_DIV((Trc[mode] - (en_lo + en_hi) * CLK_X), CLK_X);
+
+ if ((en_lo + en_hi) < CLK_MULTI)
+ en_lo += CLK_MULTI - en_lo - en_hi;
+
+ while (dv_window < 8) {
+ data_invalid_rhoh = en_lo * CLK_X + Trhoh[mode];
+
+ data_invalid_rloh = (en_lo + en_hi) * CLK_X + Trloh[mode];
+
+ data_invalid =
+ data_invalid_rhoh <
+ data_invalid_rloh ? data_invalid_rhoh : data_invalid_rloh;
+
+ dv_window = data_invalid - Trea[mode];
+
+ if (dv_window < 8)
+ en_lo++;
+ }
+
+ acc_clks = CEIL_DIV(Trea[mode], CLK_X);
+
+ while (((acc_clks * CLK_X) - Trea[mode]) < 3)
+ acc_clks++;
+
+ if ((data_invalid - acc_clks * CLK_X) < 2)
+ nand_dbg_print(NAND_DBG_WARN, "%s, Line %d: Warning!\n",
+ __FILE__, __LINE__);
+
+ addr_2_data = CEIL_DIV(Tadl[mode], CLK_X);
+ re_2_we = CEIL_DIV(Trhw[mode], CLK_X);
+ re_2_re = CEIL_DIV(Trhz[mode], CLK_X);
+ we_2_re = CEIL_DIV(Twhr[mode], CLK_X);
+ cs_cnt = CEIL_DIV((Tcs[mode] - Trp[mode]), CLK_X);
+ if (!TclsRising)
+ cs_cnt = CEIL_DIV(Tcs[mode], CLK_X);
+ if (cs_cnt == 0)
+ cs_cnt = 1;
+
+ if (Tcea[mode]) {
+ while (((cs_cnt * CLK_X) + Trea[mode]) < Tcea[mode])
+ cs_cnt++;
+ }
+
+#if MODE5_WORKAROUND
+ if (mode == 5)
+ acc_clks = 5;
+#endif
+
+ /* Sighting 3462430: Temporary hack for MT29F128G08CJABAWP:B */
+ if ((ioread32(FlashReg + MANUFACTURER_ID) == 0) &&
+ (ioread32(FlashReg + DEVICE_ID) == 0x88))
+ acc_clks = 6;
+
+ iowrite32(acc_clks, FlashReg + ACC_CLKS);
+ iowrite32(re_2_we, FlashReg + RE_2_WE);
+ iowrite32(re_2_re, FlashReg + RE_2_RE);
+ iowrite32(we_2_re, FlashReg + WE_2_RE);
+ iowrite32(addr_2_data, FlashReg + ADDR_2_DATA);
+ iowrite32(en_lo, FlashReg + RDWR_EN_LO_CNT);
+ iowrite32(en_hi, FlashReg + RDWR_EN_HI_CNT);
+ iowrite32(cs_cnt, FlashReg + CS_SETUP_CNT);
+}
+
+static void index_addr(u32 address, u32 data)
+{
+ iowrite32(address, FlashMem);
+ iowrite32(data, FlashMem + 0x10);
+}
+
+static void index_addr_read_data(u32 address, u32 *pdata)
+{
+ iowrite32(address, FlashMem);
+ *pdata = ioread32(FlashMem + 0x10);
+}
+
+static void set_ecc_config(void)
+{
+#if SUPPORT_8BITECC
+ if ((ioread32(FlashReg + DEVICE_MAIN_AREA_SIZE) < 4096) ||
+ (ioread32(FlashReg + DEVICE_SPARE_AREA_SIZE) <= 128))
+ iowrite32(8, FlashReg + ECC_CORRECTION);
+#endif
+
+ if ((ioread32(FlashReg + ECC_CORRECTION) & ECC_CORRECTION__VALUE)
+ == 1) {
+ DeviceInfo.wECCBytesPerSector = 4;
+ DeviceInfo.wECCBytesPerSector *= DeviceInfo.wDevicesConnected;
+ DeviceInfo.wNumPageSpareFlag =
+ DeviceInfo.wPageSpareSize -
+ DeviceInfo.wPageDataSize /
+ (ECC_SECTOR_SIZE * DeviceInfo.wDevicesConnected) *
+ DeviceInfo.wECCBytesPerSector
+ - DeviceInfo.wSpareSkipBytes;
+ } else {
+ DeviceInfo.wECCBytesPerSector =
+ (ioread32(FlashReg + ECC_CORRECTION) &
+ ECC_CORRECTION__VALUE) * 13 / 8;
+ if ((DeviceInfo.wECCBytesPerSector) % 2 == 0)
+ DeviceInfo.wECCBytesPerSector += 2;
+ else
+ DeviceInfo.wECCBytesPerSector += 1;
+
+ DeviceInfo.wECCBytesPerSector *= DeviceInfo.wDevicesConnected;
+ DeviceInfo.wNumPageSpareFlag = DeviceInfo.wPageSpareSize -
+ DeviceInfo.wPageDataSize /
+ (ECC_SECTOR_SIZE * DeviceInfo.wDevicesConnected) *
+ DeviceInfo.wECCBytesPerSector
+ - DeviceInfo.wSpareSkipBytes;
+ }
+}
+
+static u16 get_onfi_nand_para(void)
+{
+ int i;
+ u16 blks_lun_l, blks_lun_h, n_of_luns;
+ u32 blockperlun, id;
+
+ iowrite32(DEVICE_RESET__BANK0, FlashReg + DEVICE_RESET);
+
+ while (!((ioread32(FlashReg + INTR_STATUS0) &
+ INTR_STATUS0__RST_COMP) |
+ (ioread32(FlashReg + INTR_STATUS0) &
+ INTR_STATUS0__TIME_OUT)))
+ ;
+
+ if (ioread32(FlashReg + INTR_STATUS0) & INTR_STATUS0__RST_COMP) {
+ iowrite32(DEVICE_RESET__BANK1, FlashReg + DEVICE_RESET);
+ while (!((ioread32(FlashReg + INTR_STATUS1) &
+ INTR_STATUS1__RST_COMP) |
+ (ioread32(FlashReg + INTR_STATUS1) &
+ INTR_STATUS1__TIME_OUT)))
+ ;
+
+ if (ioread32(FlashReg + INTR_STATUS1) &
+ INTR_STATUS1__RST_COMP) {
+ iowrite32(DEVICE_RESET__BANK2,
+ FlashReg + DEVICE_RESET);
+ while (!((ioread32(FlashReg + INTR_STATUS2) &
+ INTR_STATUS2__RST_COMP) |
+ (ioread32(FlashReg + INTR_STATUS2) &
+ INTR_STATUS2__TIME_OUT)))
+ ;
+
+ if (ioread32(FlashReg + INTR_STATUS2) &
+ INTR_STATUS2__RST_COMP) {
+ iowrite32(DEVICE_RESET__BANK3,
+ FlashReg + DEVICE_RESET);
+ while (!((ioread32(FlashReg + INTR_STATUS3) &
+ INTR_STATUS3__RST_COMP) |
+ (ioread32(FlashReg + INTR_STATUS3) &
+ INTR_STATUS3__TIME_OUT)))
+ ;
+ } else {
+ printk(KERN_ERR "Getting a time out for bank 2!\n");
+ }
+ } else {
+ printk(KERN_ERR "Getting a time out for bank 1!\n");
+ }
+ }
+
+ iowrite32(INTR_STATUS0__TIME_OUT, FlashReg + INTR_STATUS0);
+ iowrite32(INTR_STATUS1__TIME_OUT, FlashReg + INTR_STATUS1);
+ iowrite32(INTR_STATUS2__TIME_OUT, FlashReg + INTR_STATUS2);
+ iowrite32(INTR_STATUS3__TIME_OUT, FlashReg + INTR_STATUS3);
+
+ DeviceInfo.wONFIDevFeatures =
+ ioread32(FlashReg + ONFI_DEVICE_FEATURES);
+ DeviceInfo.wONFIOptCommands =
+ ioread32(FlashReg + ONFI_OPTIONAL_COMMANDS);
+ DeviceInfo.wONFITimingMode =
+ ioread32(FlashReg + ONFI_TIMING_MODE);
+ DeviceInfo.wONFIPgmCacheTimingMode =
+ ioread32(FlashReg + ONFI_PGM_CACHE_TIMING_MODE);
+
+ n_of_luns = ioread32(FlashReg + ONFI_DEVICE_NO_OF_LUNS) &
+ ONFI_DEVICE_NO_OF_LUNS__NO_OF_LUNS;
+ blks_lun_l = ioread32(FlashReg + ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_L);
+ blks_lun_h = ioread32(FlashReg + ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_U);
+
+ blockperlun = (blks_lun_h << 16) | blks_lun_l;
+
+ DeviceInfo.wTotalBlocks = n_of_luns * blockperlun;
+
+ if (!(ioread32(FlashReg + ONFI_TIMING_MODE) &
+ ONFI_TIMING_MODE__VALUE))
+ return FAIL;
+
+ for (i = 5; i > 0; i--) {
+ if (ioread32(FlashReg + ONFI_TIMING_MODE) & (0x01 << i))
+ break;
+ }
+
+ NAND_ONFi_Timing_Mode(i);
+
+ index_addr(MODE_11 | 0, 0x90);
+ index_addr(MODE_11 | 1, 0);
+
+ for (i = 0; i < 3; i++)
+ index_addr_read_data(MODE_11 | 2, &id);
+
+ nand_dbg_print(NAND_DBG_DEBUG, "3rd ID: 0x%x\n", id);
+
+ DeviceInfo.MLCDevice = id & 0x0C;
+
+ /* By now, all the ONFI devices we know support the page cache */
+ /* rw feature. So here we enable the pipeline_rw_ahead feature */
+ /* iowrite32(1, FlashReg + CACHE_WRITE_ENABLE); */
+ /* iowrite32(1, FlashReg + CACHE_READ_ENABLE); */
+
+ return PASS;
+}
+
+static void get_samsung_nand_para(void)
+{
+ u8 no_of_planes;
+ u32 blk_size;
+ u64 plane_size, capacity;
+ u32 id_bytes[5];
+ int i;
+
+ index_addr((u32)(MODE_11 | 0), 0x90);
+ index_addr((u32)(MODE_11 | 1), 0);
+ for (i = 0; i < 5; i++)
+ index_addr_read_data((u32)(MODE_11 | 2), &id_bytes[i]);
+
+ nand_dbg_print(NAND_DBG_DEBUG,
+ "ID bytes: 0x%x, 0x%x, 0x%x, 0x%x, 0x%x\n",
+ id_bytes[0], id_bytes[1], id_bytes[2],
+ id_bytes[3], id_bytes[4]);
+
+ if ((id_bytes[1] & 0xff) == 0xd3) { /* Samsung K9WAG08U1A */
+ /* Set timing register values according to datasheet */
+ iowrite32(5, FlashReg + ACC_CLKS);
+ iowrite32(20, FlashReg + RE_2_WE);
+ iowrite32(12, FlashReg + WE_2_RE);
+ iowrite32(14, FlashReg + ADDR_2_DATA);
+ iowrite32(3, FlashReg + RDWR_EN_LO_CNT);
+ iowrite32(2, FlashReg + RDWR_EN_HI_CNT);
+ iowrite32(2, FlashReg + CS_SETUP_CNT);
+ }
+
+ no_of_planes = 1 << ((id_bytes[4] & 0x0c) >> 2);
+ plane_size = (u64)64 << ((id_bytes[4] & 0x70) >> 4);
+ blk_size = 64 << ((ioread32(FlashReg + DEVICE_PARAM_1) & 0x30) >> 4);
+ capacity = (u64)128 * plane_size * no_of_planes;
+
+ DeviceInfo.wTotalBlocks = (u32)GLOB_u64_Div(capacity, blk_size);
+}
+
+static void get_toshiba_nand_para(void)
+{
+ void __iomem *scratch_reg;
+ u32 tmp;
+
+ /* Workaround to fix a controller bug which reports a wrong */
+ /* spare area size for some kind of Toshiba NAND device */
+ if ((ioread32(FlashReg + DEVICE_MAIN_AREA_SIZE) == 4096) &&
+ (ioread32(FlashReg + DEVICE_SPARE_AREA_SIZE) == 64)) {
+ iowrite32(216, FlashReg + DEVICE_SPARE_AREA_SIZE);
+ tmp = ioread32(FlashReg + DEVICES_CONNECTED) *
+ ioread32(FlashReg + DEVICE_SPARE_AREA_SIZE);
+ iowrite32(tmp, FlashReg + LOGICAL_PAGE_SPARE_SIZE);
+#if SUPPORT_15BITECC
+ iowrite32(15, FlashReg + ECC_CORRECTION);
+#elif SUPPORT_8BITECC
+ iowrite32(8, FlashReg + ECC_CORRECTION);
+#endif
+ }
+
+ /* As Toshiba NAND can not provide it's block number, */
+ /* so here we need user to provide the correct block */
+ /* number in a scratch register before the Linux NAND */
+ /* driver is loaded. If no valid value found in the scratch */
+ /* register, then we use default block number value */
+ scratch_reg = ioremap_nocache(SCRATCH_REG_ADDR, SCRATCH_REG_SIZE);
+ if (!scratch_reg) {
+ printk(KERN_ERR "Spectra: ioremap failed in %s, Line %d",
+ __FILE__, __LINE__);
+ DeviceInfo.wTotalBlocks = GLOB_HWCTL_DEFAULT_BLKS;
+ } else {
+ nand_dbg_print(NAND_DBG_WARN,
+ "Spectra: ioremap reg address: 0x%p\n", scratch_reg);
+ DeviceInfo.wTotalBlocks = 1 << ioread8(scratch_reg);
+ if (DeviceInfo.wTotalBlocks < 512)
+ DeviceInfo.wTotalBlocks = GLOB_HWCTL_DEFAULT_BLKS;
+ iounmap(scratch_reg);
+ }
+}
+
+static void get_hynix_nand_para(void)
+{
+ void __iomem *scratch_reg;
+ u32 main_size, spare_size;
+
+ switch (DeviceInfo.wDeviceID) {
+ case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */
+ case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */
+ iowrite32(128, FlashReg + PAGES_PER_BLOCK);
+ iowrite32(4096, FlashReg + DEVICE_MAIN_AREA_SIZE);
+ iowrite32(224, FlashReg + DEVICE_SPARE_AREA_SIZE);
+ main_size = 4096 * ioread32(FlashReg + DEVICES_CONNECTED);
+ spare_size = 224 * ioread32(FlashReg + DEVICES_CONNECTED);
+ iowrite32(main_size, FlashReg + LOGICAL_PAGE_DATA_SIZE);
+ iowrite32(spare_size, FlashReg + LOGICAL_PAGE_SPARE_SIZE);
+ iowrite32(0, FlashReg + DEVICE_WIDTH);
+#if SUPPORT_15BITECC
+ iowrite32(15, FlashReg + ECC_CORRECTION);
+#elif SUPPORT_8BITECC
+ iowrite32(8, FlashReg + ECC_CORRECTION);
+#endif
+ DeviceInfo.MLCDevice = 1;
+ break;
+ default:
+ nand_dbg_print(NAND_DBG_WARN,
+ "Spectra: Unknown Hynix NAND (Device ID: 0x%x)."
+ "Will use default parameter values instead.\n",
+ DeviceInfo.wDeviceID);
+ }
+
+ scratch_reg = ioremap_nocache(SCRATCH_REG_ADDR, SCRATCH_REG_SIZE);
+ if (!scratch_reg) {
+ printk(KERN_ERR "Spectra: ioremap failed in %s, Line %d",
+ __FILE__, __LINE__);
+ DeviceInfo.wTotalBlocks = GLOB_HWCTL_DEFAULT_BLKS;
+ } else {
+ nand_dbg_print(NAND_DBG_WARN,
+ "Spectra: ioremap reg address: 0x%p\n", scratch_reg);
+ DeviceInfo.wTotalBlocks = 1 << ioread8(scratch_reg);
+ if (DeviceInfo.wTotalBlocks < 512)
+ DeviceInfo.wTotalBlocks = GLOB_HWCTL_DEFAULT_BLKS;
+ iounmap(scratch_reg);
+ }
+}
+
+static void find_valid_banks(void)
+{
+ u32 id[LLD_MAX_FLASH_BANKS];
+ int i;
+
+ totalUsedBanks = 0;
+ for (i = 0; i < LLD_MAX_FLASH_BANKS; i++) {
+ index_addr((u32)(MODE_11 | (i << 24) | 0), 0x90);
+ index_addr((u32)(MODE_11 | (i << 24) | 1), 0);
+ index_addr_read_data((u32)(MODE_11 | (i << 24) | 2), &id[i]);
+
+ nand_dbg_print(NAND_DBG_DEBUG,
+ "Return 1st ID for bank[%d]: %x\n", i, id[i]);
+
+ if (i == 0) {
+ if (id[i] & 0x0ff)
+ GLOB_valid_banks[i] = 1;
+ } else {
+ if ((id[i] & 0x0ff) == (id[0] & 0x0ff))
+ GLOB_valid_banks[i] = 1;
+ }
+
+ totalUsedBanks += GLOB_valid_banks[i];
+ }
+
+ nand_dbg_print(NAND_DBG_DEBUG,
+ "totalUsedBanks: %d\n", totalUsedBanks);
+}
+
+static void detect_partition_feature(void)
+{
+ if (ioread32(FlashReg + FEATURES) & FEATURES__PARTITION) {
+ if ((ioread32(FlashReg + PERM_SRC_ID_1) &
+ PERM_SRC_ID_1__SRCID) == SPECTRA_PARTITION_ID) {
+ DeviceInfo.wSpectraStartBlock =
+ ((ioread32(FlashReg + MIN_MAX_BANK_1) &
+ MIN_MAX_BANK_1__MIN_VALUE) *
+ DeviceInfo.wTotalBlocks)
+ +
+ (ioread32(FlashReg + MIN_BLK_ADDR_1) &
+ MIN_BLK_ADDR_1__VALUE);
+
+ DeviceInfo.wSpectraEndBlock =
+ (((ioread32(FlashReg + MIN_MAX_BANK_1) &
+ MIN_MAX_BANK_1__MAX_VALUE) >> 2) *
+ DeviceInfo.wTotalBlocks)
+ +
+ (ioread32(FlashReg + MAX_BLK_ADDR_1) &
+ MAX_BLK_ADDR_1__VALUE);
+
+ DeviceInfo.wTotalBlocks *= totalUsedBanks;
+
+ if (DeviceInfo.wSpectraEndBlock >=
+ DeviceInfo.wTotalBlocks) {
+ DeviceInfo.wSpectraEndBlock =
+ DeviceInfo.wTotalBlocks - 1;
+ }
+
+ DeviceInfo.wDataBlockNum =
+ DeviceInfo.wSpectraEndBlock -
+ DeviceInfo.wSpectraStartBlock + 1;
+ } else {
+ DeviceInfo.wTotalBlocks *= totalUsedBanks;
+ DeviceInfo.wSpectraStartBlock = SPECTRA_START_BLOCK;
+ DeviceInfo.wSpectraEndBlock =
+ DeviceInfo.wTotalBlocks - 1;
+ DeviceInfo.wDataBlockNum =
+ DeviceInfo.wSpectraEndBlock -
+ DeviceInfo.wSpectraStartBlock + 1;
+ }
+ } else {
+ DeviceInfo.wTotalBlocks *= totalUsedBanks;
+ DeviceInfo.wSpectraStartBlock = SPECTRA_START_BLOCK;
+ DeviceInfo.wSpectraEndBlock = DeviceInfo.wTotalBlocks - 1;
+ DeviceInfo.wDataBlockNum =
+ DeviceInfo.wSpectraEndBlock -
+ DeviceInfo.wSpectraStartBlock + 1;
+ }
+}
+
+static void dump_device_info(void)
+{
+ nand_dbg_print(NAND_DBG_DEBUG, "DeviceInfo:\n");
+ nand_dbg_print(NAND_DBG_DEBUG, "DeviceMaker: 0x%x\n",
+ DeviceInfo.wDeviceMaker);
+ nand_dbg_print(NAND_DBG_DEBUG, "DeviceID: 0x%x\n",
+ DeviceInfo.wDeviceID);
+ nand_dbg_print(NAND_DBG_DEBUG, "DeviceType: 0x%x\n",
+ DeviceInfo.wDeviceType);
+ nand_dbg_print(NAND_DBG_DEBUG, "SpectraStartBlock: %d\n",
+ DeviceInfo.wSpectraStartBlock);
+ nand_dbg_print(NAND_DBG_DEBUG, "SpectraEndBlock: %d\n",
+ DeviceInfo.wSpectraEndBlock);
+ nand_dbg_print(NAND_DBG_DEBUG, "TotalBlocks: %d\n",
+ DeviceInfo.wTotalBlocks);
+ nand_dbg_print(NAND_DBG_DEBUG, "PagesPerBlock: %d\n",
+ DeviceInfo.wPagesPerBlock);
+ nand_dbg_print(NAND_DBG_DEBUG, "PageSize: %d\n",
+ DeviceInfo.wPageSize);
+ nand_dbg_print(NAND_DBG_DEBUG, "PageDataSize: %d\n",
+ DeviceInfo.wPageDataSize);
+ nand_dbg_print(NAND_DBG_DEBUG, "PageSpareSize: %d\n",
+ DeviceInfo.wPageSpareSize);
+ nand_dbg_print(NAND_DBG_DEBUG, "NumPageSpareFlag: %d\n",
+ DeviceInfo.wNumPageSpareFlag);
+ nand_dbg_print(NAND_DBG_DEBUG, "ECCBytesPerSector: %d\n",
+ DeviceInfo.wECCBytesPerSector);
+ nand_dbg_print(NAND_DBG_DEBUG, "BlockSize: %d\n",
+ DeviceInfo.wBlockSize);
+ nand_dbg_print(NAND_DBG_DEBUG, "BlockDataSize: %d\n",
+ DeviceInfo.wBlockDataSize);
+ nand_dbg_print(NAND_DBG_DEBUG, "DataBlockNum: %d\n",
+ DeviceInfo.wDataBlockNum);
+ nand_dbg_print(NAND_DBG_DEBUG, "PlaneNum: %d\n",
+ DeviceInfo.bPlaneNum);
+ nand_dbg_print(NAND_DBG_DEBUG, "DeviceMainAreaSize: %d\n",
+ DeviceInfo.wDeviceMainAreaSize);
+ nand_dbg_print(NAND_DBG_DEBUG, "DeviceSpareAreaSize: %d\n",
+ DeviceInfo.wDeviceSpareAreaSize);
+ nand_dbg_print(NAND_DBG_DEBUG, "DevicesConnected: %d\n",
+ DeviceInfo.wDevicesConnected);
+ nand_dbg_print(NAND_DBG_DEBUG, "DeviceWidth: %d\n",
+ DeviceInfo.wDeviceWidth);
+ nand_dbg_print(NAND_DBG_DEBUG, "HWRevision: 0x%x\n",
+ DeviceInfo.wHWRevision);
+ nand_dbg_print(NAND_DBG_DEBUG, "HWFeatures: 0x%x\n",
+ DeviceInfo.wHWFeatures);
+ nand_dbg_print(NAND_DBG_DEBUG, "ONFIDevFeatures: 0x%x\n",
+ DeviceInfo.wONFIDevFeatures);
+ nand_dbg_print(NAND_DBG_DEBUG, "ONFIOptCommands: 0x%x\n",
+ DeviceInfo.wONFIOptCommands);
+ nand_dbg_print(NAND_DBG_DEBUG, "ONFITimingMode: 0x%x\n",
+ DeviceInfo.wONFITimingMode);
+ nand_dbg_print(NAND_DBG_DEBUG, "ONFIPgmCacheTimingMode: 0x%x\n",
+ DeviceInfo.wONFIPgmCacheTimingMode);
+ nand_dbg_print(NAND_DBG_DEBUG, "MLCDevice: %s\n",
+ DeviceInfo.MLCDevice ? "Yes" : "No");
+ nand_dbg_print(NAND_DBG_DEBUG, "SpareSkipBytes: %d\n",
+ DeviceInfo.wSpareSkipBytes);
+ nand_dbg_print(NAND_DBG_DEBUG, "BitsInPageNumber: %d\n",
+ DeviceInfo.nBitsInPageNumber);
+ nand_dbg_print(NAND_DBG_DEBUG, "BitsInPageDataSize: %d\n",
+ DeviceInfo.nBitsInPageDataSize);
+ nand_dbg_print(NAND_DBG_DEBUG, "BitsInBlockDataSize: %d\n",
+ DeviceInfo.nBitsInBlockDataSize);
+}
+
+u16 NAND_Read_Device_ID(void)
+{
+ u16 status = PASS;
+ u8 no_of_planes;
+
+ nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
+ __FILE__, __LINE__, __func__);
+
+ iowrite32(0x02, FlashReg + SPARE_AREA_SKIP_BYTES);
+ iowrite32(0xffff, FlashReg + SPARE_AREA_MARKER);
+ DeviceInfo.wDeviceMaker = ioread32(FlashReg + MANUFACTURER_ID);
+ DeviceInfo.wDeviceID = ioread32(FlashReg + DEVICE_ID);
+ DeviceInfo.MLCDevice = ioread32(FlashReg + DEVICE_PARAM_0) & 0x0c;
+
+ if (ioread32(FlashReg + ONFI_DEVICE_NO_OF_LUNS) &
+ ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE) { /* ONFI 1.0 NAND */
+ if (FAIL == get_onfi_nand_para())
+ return FAIL;
+ } else if (DeviceInfo.wDeviceMaker == 0xEC) { /* Samsung NAND */
+ get_samsung_nand_para();
+ } else if (DeviceInfo.wDeviceMaker == 0x98) { /* Toshiba NAND */
+ get_toshiba_nand_para();
+ } else if (DeviceInfo.wDeviceMaker == 0xAD) { /* Hynix NAND */
+ get_hynix_nand_para();
+ } else {
+ DeviceInfo.wTotalBlocks = GLOB_HWCTL_DEFAULT_BLKS;
+ }
+
+ nand_dbg_print(NAND_DBG_DEBUG, "Dump timing register values:"
+ "acc_clks: %d, re_2_we: %d, we_2_re: %d,"
+ "addr_2_data: %d, rdwr_en_lo_cnt: %d, "
+ "rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n",
+ ioread32(FlashReg + ACC_CLKS),
+ ioread32(FlashReg + RE_2_WE),
+ ioread32(FlashReg + WE_2_RE),
+ ioread32(FlashReg + ADDR_2_DATA),
+ ioread32(FlashReg + RDWR_EN_LO_CNT),
+ ioread32(FlashReg + RDWR_EN_HI_CNT),
+ ioread32(FlashReg + CS_SETUP_CNT));
+
+ DeviceInfo.wHWRevision = ioread32(FlashReg + REVISION);
+ DeviceInfo.wHWFeatures = ioread32(FlashReg + FEATURES);
+
+ DeviceInfo.wDeviceMainAreaSize =
+ ioread32(FlashReg + DEVICE_MAIN_AREA_SIZE);
+ DeviceInfo.wDeviceSpareAreaSize =
+ ioread32(FlashReg + DEVICE_SPARE_AREA_SIZE);
+
+ DeviceInfo.wPageDataSize =
+ ioread32(FlashReg + LOGICAL_PAGE_DATA_SIZE);
+
+ /* Note: When using the Micon 4K NAND device, the controller will report
+ * Page Spare Size as 216 bytes. But Micron's Spec say it's 218 bytes.
+ * And if force set it to 218 bytes, the controller can not work
+ * correctly. So just let it be. But keep in mind that this bug may
+ * cause
+ * other problems in future. - Yunpeng 2008-10-10
+ */
+ DeviceInfo.wPageSpareSize =
+ ioread32(FlashReg + LOGICAL_PAGE_SPARE_SIZE);
+
+ DeviceInfo.wPagesPerBlock = ioread32(FlashReg + PAGES_PER_BLOCK);
+
+ DeviceInfo.wPageSize =
+ DeviceInfo.wPageDataSize + DeviceInfo.wPageSpareSize;
+ DeviceInfo.wBlockSize =
+ DeviceInfo.wPageSize * DeviceInfo.wPagesPerBlock;
+ DeviceInfo.wBlockDataSize =
+ DeviceInfo.wPagesPerBlock * DeviceInfo.wPageDataSize;
+
+ DeviceInfo.wDeviceWidth = ioread32(FlashReg + DEVICE_WIDTH);
+ DeviceInfo.wDeviceType =
+ ((ioread32(FlashReg + DEVICE_WIDTH) > 0) ? 16 : 8);
+
+ DeviceInfo.wDevicesConnected = ioread32(FlashReg + DEVICES_CONNECTED);
+
+ DeviceInfo.wSpareSkipBytes =
+ ioread32(FlashReg + SPARE_AREA_SKIP_BYTES) *
+ DeviceInfo.wDevicesConnected;
+
+ DeviceInfo.nBitsInPageNumber =
+ (u8)GLOB_Calc_Used_Bits(DeviceInfo.wPagesPerBlock);
+ DeviceInfo.nBitsInPageDataSize =
+ (u8)GLOB_Calc_Used_Bits(DeviceInfo.wPageDataSize);
+ DeviceInfo.nBitsInBlockDataSize =
+ (u8)GLOB_Calc_Used_Bits(DeviceInfo.wBlockDataSize);
+
+ set_ecc_config();
+
+ no_of_planes = ioread32(FlashReg + NUMBER_OF_PLANES) &
+ NUMBER_OF_PLANES__VALUE;
+
+ switch (no_of_planes) {
+ case 0:
+ case 1:
+ case 3:
+ case 7:
+ DeviceInfo.bPlaneNum = no_of_planes + 1;
+ break;
+ default:
+ status = FAIL;
+ break;
+ }
+
+ find_valid_banks();
+
+ detect_partition_feature();
+
+ dump_device_info();
+
+ return status;
+}
+
+u16 NAND_UnlockArrayAll(void)
+{
+ u64 start_addr, end_addr;
+
+ nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
+ __FILE__, __LINE__, __func__);
+
+ start_addr = 0;
+ end_addr = ((u64)DeviceInfo.wBlockSize *
+ (DeviceInfo.wTotalBlocks - 1)) >>
+ DeviceInfo.nBitsInPageDataSize;
+
+ index_addr((u32)(MODE_10 | (u32)start_addr), 0x10);
+ index_addr((u32)(MODE_10 | (u32)end_addr), 0x11);
+
+ return PASS;
+}
+
+void NAND_LLD_Enable_Disable_Interrupts(u16 INT_ENABLE)
+{
+ nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
+ __FILE__, __LINE__, __func__);
+
+ if (INT_ENABLE)
+ iowrite32(1, FlashReg + GLOBAL_INT_ENABLE);
+ else
+ iowrite32(0, FlashReg + GLOBAL_INT_ENABLE);
+}
+
+u16 NAND_Erase_Block(u32 block)
+{
+ u16 status = PASS;
+ u64 flash_add;
+ u16 flash_bank;
+ u32 intr_status = 0;
+ u32 intr_status_addresses[4] = {INTR_STATUS0,
+ INTR_STATUS1, INTR_STATUS2, INTR_STATUS3};
+
+ nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
+ __FILE__, __LINE__, __func__);
+
+ flash_add = (u64)(block % (DeviceInfo.wTotalBlocks / totalUsedBanks))
+ * DeviceInfo.wBlockDataSize;
+
+ flash_bank = block / (DeviceInfo.wTotalBlocks / totalUsedBanks);
+
+ if (block >= DeviceInfo.wTotalBlocks)
+ status = FAIL;
+
+ if (status == PASS) {
+ intr_status = intr_status_addresses[flash_bank];
+
+ iowrite32(INTR_STATUS0__ERASE_COMP | INTR_STATUS0__ERASE_FAIL,
+ FlashReg + intr_status);
+
+ index_addr((u32)(MODE_10 | (flash_bank << 24) |
+ (flash_add >> DeviceInfo.nBitsInPageDataSize)), 1);
+
+ while (!(ioread32(FlashReg + intr_status) &
+ (INTR_STATUS0__ERASE_COMP | INTR_STATUS0__ERASE_FAIL)))
+ ;
+
+ if (ioread32(FlashReg + intr_status) &
+ INTR_STATUS0__ERASE_FAIL)
+ status = FAIL;
+
+ iowrite32(INTR_STATUS0__ERASE_COMP | INTR_STATUS0__ERASE_FAIL,
+ FlashReg + intr_status);
+ }
+
+ return status;
+}
+
+static u32 Boundary_Check_Block_Page(u32 block, u16 page,
+ u16 page_count)
+{
+ u32 status = PASS;
+
+ if (block >= DeviceInfo.wTotalBlocks)
+ status = FAIL;
+
+ if (page + page_count > DeviceInfo.wPagesPerBlock)
+ status = FAIL;
+
+ return status;
+}
+
+u16 NAND_Read_Page_Spare(u8 *read_data, u32 block, u16 page,
+ u16 page_count)
+{
+ u32 status = PASS;
+ u32 i;
+ u64 flash_add;
+ u32 PageSpareSize = DeviceInfo.wPageSpareSize;
+ u32 spareFlagBytes = DeviceInfo.wNumPageSpareFlag;
+ u32 flash_bank;
+ u32 intr_status = 0;
+ u32 intr_status_addresses[4] = {INTR_STATUS0,
+ INTR_STATUS1, INTR_STATUS2, INTR_STATUS3};
+ u8 *page_spare = buf_read_page_spare;
+
+ if (block >= DeviceInfo.wTotalBlocks) {
+ printk(KERN_ERR "block too big: %d\n", (int)block);
+ status = FAIL;
+ }
+
+ if (page >= DeviceInfo.wPagesPerBlock) {
+ printk(KERN_ERR "page too big: %d\n", page);
+ status = FAIL;
+ }
+
+ if (page_count > 1) {
+ printk(KERN_ERR "page count too big: %d\n", page_count);
+ status = FAIL;
+ }
+
+ flash_add = (u64)(block % (DeviceInfo.wTotalBlocks / totalUsedBanks))
+ * DeviceInfo.wBlockDataSize +
+ (u64)page * DeviceInfo.wPageDataSize;
+
+ flash_bank = block / (DeviceInfo.wTotalBlocks / totalUsedBanks);
+
+ if (status == PASS) {
+ intr_status = intr_status_addresses[flash_bank];
+ iowrite32(ioread32(FlashReg + intr_status),
+ FlashReg + intr_status);
+
+ index_addr((u32)(MODE_10 | (flash_bank << 24) |
+ (flash_add >> DeviceInfo.nBitsInPageDataSize)),
+ 0x41);
+ index_addr((u32)(MODE_10 | (flash_bank << 24) |
+ (flash_add >> DeviceInfo.nBitsInPageDataSize)),
+ 0x2000 | page_count);
+ while (!(ioread32(FlashReg + intr_status) &
+ INTR_STATUS0__LOAD_COMP))
+ ;
+
+ iowrite32((u32)(MODE_01 | (flash_bank << 24) |
+ (flash_add >> DeviceInfo.nBitsInPageDataSize)),
+ FlashMem);
+
+ for (i = 0; i < (PageSpareSize / 4); i++)
+ *((u32 *)page_spare + i) =
+ ioread32(FlashMem + 0x10);
+
+ if (enable_ecc) {
+ for (i = 0; i < spareFlagBytes; i++)
+ read_data[i] =
+ page_spare[PageSpareSize -
+ spareFlagBytes + i];
+ for (i = 0; i < (PageSpareSize - spareFlagBytes); i++)
+ read_data[spareFlagBytes + i] =
+ page_spare[i];
+ } else {
+ for (i = 0; i < PageSpareSize; i++)
+ read_data[i] = page_spare[i];
+ }
+
+ index_addr((u32)(MODE_10 | (flash_bank << 24) |
+ (flash_add >> DeviceInfo.nBitsInPageDataSize)), 0x42);
+ }
+
+ return status;
+}
+
+/* No use function. Should be removed later */
+u16 NAND_Write_Page_Spare(u8 *write_data, u32 block, u16 page,
+ u16 page_count)
+{
+ printk(KERN_ERR
+ "Error! This function (NAND_Write_Page_Spare) should never"
+ " be called!\n");
+ return ERR;
+}
+
+/* op value: 0 - DDMA read; 1 - DDMA write */
+static void ddma_trans(u8 *data, u64 flash_add,
+ u32 flash_bank, int op, u32 numPages)
+{
+ u32 data_addr;
+
+ /* Map virtual address to bus address for DDMA */
+ data_addr = virt_to_bus(data);
+
+ index_addr((u32)(MODE_10 | (flash_bank << 24) |
+ (flash_add >> DeviceInfo.nBitsInPageDataSize)),
+ (u16)(2 << 12) | (op << 8) | numPages);
+
+ index_addr((u32)(MODE_10 | (flash_bank << 24) |
+ ((u16)(0x0FFFF & (data_addr >> 16)) << 8)),
+ (u16)(2 << 12) | (2 << 8) | 0);
+
+ index_addr((u32)(MODE_10 | (flash_bank << 24) |
+ ((u16)(0x0FFFF & data_addr) << 8)),
+ (u16)(2 << 12) | (3 << 8) | 0);
+
+ index_addr((u32)(MODE_10 | (flash_bank << 24) |
+ (1 << 16) | (0x40 << 8)),
+ (u16)(2 << 12) | (4 << 8) | 0);
+}
+
+/* If data in buf are all 0xff, then return 1; otherwise return 0 */
+static int check_all_1(u8 *buf)
+{
+ int i, j, cnt;
+
+ for (i = 0; i < DeviceInfo.wPageDataSize; i++) {
+ if (buf[i] != 0xff) {
+ cnt = 0;
+ nand_dbg_print(NAND_DBG_WARN,
+ "the first non-0xff data byte is: %d\n", i);
+ for (j = i; j < DeviceInfo.wPageDataSize; j++) {
+ nand_dbg_print(NAND_DBG_WARN, "0x%x ", buf[j]);
+ cnt++;
+ if (cnt > 8)
+ break;
+ }
+ nand_dbg_print(NAND_DBG_WARN, "\n");
+ return 0;
+ }
+ }
+
+ return 1;
+}
+
+static int do_ecc_new(unsigned long bank, u8 *buf,
+ u32 block, u16 page)
+{
+ int status = PASS;
+ u16 err_page = 0;
+ u16 err_byte;
+ u8 err_sect;
+ u8 err_dev;
+ u16 err_fix_info;
+ u16 err_addr;
+ u32 ecc_sect_size;
+ u8 *err_pos;
+ u32 err_page_addr[4] = {ERR_PAGE_ADDR0,
+ ERR_PAGE_ADDR1, ERR_PAGE_ADDR2, ERR_PAGE_ADDR3};
+
+ ecc_sect_size = ECC_SECTOR_SIZE * (DeviceInfo.wDevicesConnected);
+
+ do {
+ err_page = ioread32(FlashReg + err_page_addr[bank]);
+ err_addr = ioread32(FlashReg + ECC_ERROR_ADDRESS);
+ err_byte = err_addr & ECC_ERROR_ADDRESS__OFFSET;
+ err_sect = ((err_addr & ECC_ERROR_ADDRESS__SECTOR_NR) >> 12);
+ err_fix_info = ioread32(FlashReg + ERR_CORRECTION_INFO);
+ err_dev = ((err_fix_info & ERR_CORRECTION_INFO__DEVICE_NR)
+ >> 8);
+ if (err_fix_info & ERR_CORRECTION_INFO__ERROR_TYPE) {
+ nand_dbg_print(NAND_DBG_WARN,
+ "%s, Line %d Uncorrectable ECC error "
+ "when read block %d page %d."
+ "PTN_INTR register: 0x%x "
+ "err_page: %d, err_sect: %d, err_byte: %d, "
+ "err_dev: %d, ecc_sect_size: %d, "
+ "err_fix_info: 0x%x\n",
+ __FILE__, __LINE__, block, page,
+ ioread32(FlashReg + PTN_INTR),
+ err_page, err_sect, err_byte, err_dev,
+ ecc_sect_size, (u32)err_fix_info);
+
+ if (check_all_1(buf))
+ nand_dbg_print(NAND_DBG_WARN, "%s, Line %d"
+ "All 0xff!\n",
+ __FILE__, __LINE__);
+ else
+ nand_dbg_print(NAND_DBG_WARN, "%s, Line %d"
+ "Not all 0xff!\n",
+ __FILE__, __LINE__);
+ status = FAIL;
+ } else {
+ nand_dbg_print(NAND_DBG_WARN,
+ "%s, Line %d Found ECC error "
+ "when read block %d page %d."
+ "err_page: %d, err_sect: %d, err_byte: %d, "
+ "err_dev: %d, ecc_sect_size: %d, "
+ "err_fix_info: 0x%x\n",
+ __FILE__, __LINE__, block, page,
+ err_page, err_sect, err_byte, err_dev,
+ ecc_sect_size, (u32)err_fix_info);
+ if (err_byte < ECC_SECTOR_SIZE) {
+ err_pos = buf +
+ (err_page - page) *
+ DeviceInfo.wPageDataSize +
+ err_sect * ecc_sect_size +
+ err_byte *
+ DeviceInfo.wDevicesConnected +
+ err_dev;
+
+ *err_pos ^= err_fix_info &
+ ERR_CORRECTION_INFO__BYTEMASK;
+ }
+ }
+ } while (!(err_fix_info & ERR_CORRECTION_INFO__LAST_ERR_INFO));
+
+ return status;
+}
+
+u16 NAND_Read_Page_Main_Polling(u8 *read_data,
+ u32 block, u16 page, u16 page_count)
+{
+ u32 status = PASS;
+ u64 flash_add;
+ u32 intr_status = 0;
+ u32 flash_bank;
+ u32 intr_status_addresses[4] = {INTR_STATUS0,
+ INTR_STATUS1, INTR_STATUS2, INTR_STATUS3};
+ u8 *read_data_l;
+
+ nand_dbg_print(NAND_DBG_WARN, "%s, Line %d, Function: %s\n",
+ __FILE__, __LINE__, __func__);
+
+ status = Boundary_Check_Block_Page(block, page, page_count);
+ if (status != PASS)
+ return status;
+
+ flash_add = (u64)(block % (DeviceInfo.wTotalBlocks / totalUsedBanks))
+ * DeviceInfo.wBlockDataSize +
+ (u64)page * DeviceInfo.wPageDataSize;
+ flash_bank = block / (DeviceInfo.wTotalBlocks / totalUsedBanks);
+
+ iowrite32(0, FlashReg + TRANSFER_SPARE_REG);
+
+ intr_status = intr_status_addresses[flash_bank];
+ iowrite32(ioread32(FlashReg + intr_status), FlashReg + intr_status);
+
+ if (page_count > 1) {
+ read_data_l = read_data;
+ while (page_count > MAX_PAGES_PER_RW) {
+ if (ioread32(FlashReg + MULTIPLANE_OPERATION))
+ status = NAND_Multiplane_Read(read_data_l,
+ block, page, MAX_PAGES_PER_RW);
+ else
+ status = NAND_Pipeline_Read_Ahead_Polling(
+ read_data_l, block, page,
+ MAX_PAGES_PER_RW);
+
+ if (status == FAIL)
+ return status;
+
+ read_data_l += DeviceInfo.wPageDataSize *
+ MAX_PAGES_PER_RW;
+ page_count -= MAX_PAGES_PER_RW;
+ page += MAX_PAGES_PER_RW;
+ }
+ if (ioread32(FlashReg + MULTIPLANE_OPERATION))
+ status = NAND_Multiplane_Read(read_data_l,
+ block, page, page_count);
+ else
+ status = NAND_Pipeline_Read_Ahead_Polling(
+ read_data_l, block, page, page_count);
+
+ return status;
+ }
+
+ iowrite32(1, FlashReg + DMA_ENABLE);
+ while (!(ioread32(FlashReg + DMA_ENABLE) & DMA_ENABLE__FLAG))
+ ;
+
+ iowrite32(0, FlashReg + TRANSFER_SPARE_REG);
+ iowrite32(ioread32(FlashReg + intr_status), FlashReg + intr_status);
+
+ ddma_trans(read_data, flash_add, flash_bank, 0, 1);
+
+ if (enable_ecc) {
+ while (!(ioread32(FlashReg + intr_status) &
+ (INTR_STATUS0__ECC_TRANSACTION_DONE |
+ INTR_STATUS0__ECC_ERR)))
+ ;
+
+ if (ioread32(FlashReg + intr_status) &
+ INTR_STATUS0__ECC_ERR) {
+ iowrite32(INTR_STATUS0__ECC_ERR,
+ FlashReg + intr_status);
+ status = do_ecc_new(flash_bank, read_data,
+ block, page);
+ }
+
+ if (ioread32(FlashReg + intr_status) &
+ INTR_STATUS0__ECC_TRANSACTION_DONE &
+ INTR_STATUS0__ECC_ERR)
+ iowrite32(INTR_STATUS0__ECC_TRANSACTION_DONE |
+ INTR_STATUS0__ECC_ERR,
+ FlashReg + intr_status);
+ else if (ioread32(FlashReg + intr_status) &
+ INTR_STATUS0__ECC_TRANSACTION_DONE)
+ iowrite32(INTR_STATUS0__ECC_TRANSACTION_DONE,
+ FlashReg + intr_status);
+ else if (ioread32(FlashReg + intr_status) &
+ INTR_STATUS0__ECC_ERR)
+ iowrite32(INTR_STATUS0__ECC_ERR,
+ FlashReg + intr_status);
+ } else {
+ while (!(ioread32(FlashReg + intr_status) &
+ INTR_STATUS0__DMA_CMD_COMP))
+ ;
+ iowrite32(INTR_STATUS0__DMA_CMD_COMP, FlashReg + intr_status);
+ }
+
+ iowrite32(ioread32(FlashReg + intr_status), FlashReg + intr_status);
+
+ iowrite32(0, FlashReg + DMA_ENABLE);
+ while ((ioread32(FlashReg + DMA_ENABLE) & DMA_ENABLE__FLAG))
+ ;
+
+ return status;
+}
+
+u16 NAND_Pipeline_Read_Ahead_Polling(u8 *read_data,
+ u32 block, u16 page, u16 page_count)
+{
+ u32 status = PASS;
+ u32 NumPages = page_count;
+ u64 flash_add;
+ u32 flash_bank;
+ u32 intr_status = 0;
+ u32 intr_status_addresses[4] = {INTR_STATUS0,
+ INTR_STATUS1, INTR_STATUS2, INTR_STATUS3};
+ u32 ecc_done_OR_dma_comp;
+
+ nand_dbg_print(NAND_DBG_WARN, "%s, Line %d, Function: %s\n",
+ __FILE__, __LINE__, __func__);
+
+ status = Boundary_Check_Block_Page(block, page, page_count);
+
+ if (page_count < 2)
+ status = FAIL;
+
+ flash_add = (u64)(block % (DeviceInfo.wTotalBlocks / totalUsedBanks))
+ *DeviceInfo.wBlockDataSize +
+ (u64)page * DeviceInfo.wPageDataSize;
+
+ flash_bank = block / (DeviceInfo.wTotalBlocks / totalUsedBanks);
+
+ if (status == PASS) {
+ intr_status = intr_status_addresses[flash_bank];
+ iowrite32(ioread32(FlashReg + intr_status),
+ FlashReg + intr_status);
+
+ iowrite32(1, FlashReg + DMA_ENABLE);
+ while (!(ioread32(FlashReg + DMA_ENABLE) & DMA_ENABLE__FLAG))
+ ;
+
+ iowrite32(0, FlashReg + TRANSFER_SPARE_REG);
+
+ index_addr((u32)(MODE_10 | (flash_bank << 24) |
+ (flash_add >> DeviceInfo.nBitsInPageDataSize)), 0x42);
+ ddma_trans(read_data, flash_add, flash_bank, 0, NumPages);
+
+ ecc_done_OR_dma_comp = 0;
+ while (1) {
+ if (enable_ecc) {
+ while (!ioread32(FlashReg + intr_status))
+ ;
+
+ if (ioread32(FlashReg + intr_status) &
+ INTR_STATUS0__ECC_ERR) {
+ iowrite32(INTR_STATUS0__ECC_ERR,
+ FlashReg + intr_status);
+ status = do_ecc_new(flash_bank,
+ read_data, block, page);
+ } else if (ioread32(FlashReg + intr_status) &
+ INTR_STATUS0__DMA_CMD_COMP) {
+ iowrite32(INTR_STATUS0__DMA_CMD_COMP,
+ FlashReg + intr_status);
+
+ if (1 == ecc_done_OR_dma_comp)
+ break;
+
+ ecc_done_OR_dma_comp = 1;
+ } else if (ioread32(FlashReg + intr_status) &
+ INTR_STATUS0__ECC_TRANSACTION_DONE) {
+ iowrite32(
+ INTR_STATUS0__ECC_TRANSACTION_DONE,
+ FlashReg + intr_status);
+
+ if (1 == ecc_done_OR_dma_comp)
+ break;
+
+ ecc_done_OR_dma_comp = 1;
+ }
+ } else {
+ while (!(ioread32(FlashReg + intr_status) &
+ INTR_STATUS0__DMA_CMD_COMP))
+ ;
+
+ iowrite32(INTR_STATUS0__DMA_CMD_COMP,
+ FlashReg + intr_status);
+ break;
+ }
+
+ iowrite32((~INTR_STATUS0__ECC_ERR) &
+ (~INTR_STATUS0__ECC_TRANSACTION_DONE) &
+ (~INTR_STATUS0__DMA_CMD_COMP),
+ FlashReg + intr_status);
+
+ }
+
+ iowrite32(ioread32(FlashReg + intr_status),
+ FlashReg + intr_status);
+
+ iowrite32(0, FlashReg + DMA_ENABLE);
+
+ while ((ioread32(FlashReg + DMA_ENABLE) & DMA_ENABLE__FLAG))
+ ;
+ }
+ return status;
+}
+
+u16 NAND_Read_Page_Main(u8 *read_data, u32 block, u16 page,
+ u16 page_count)
+{
+ u32 status = PASS;
+ u64 flash_add;
+ u32 intr_status = 0;
+ u32 flash_bank;
+ u32 intr_status_addresses[4] = {INTR_STATUS0,
+ INTR_STATUS1, INTR_STATUS2, INTR_STATUS3};
+ int ret;
+ u8 *read_data_l;
+
+ nand_dbg_print(NAND_DBG_DEBUG, "%s, Line %d, Function: %s\n",
+ __FILE__, __LINE__, __func__);
+
+ status = Boundary_Check_Block_Page(block, page, page_count);
+ if (status != PASS)
+ return status;
+
+ flash_add = (u64)(block % (DeviceInfo.wTotalBlocks / totalUsedBanks))
+ * DeviceInfo.wBlockDataSize +
+ (u64)page * DeviceInfo.wPageDataSize;
+ flash_bank = block / (DeviceInfo.wTotalBlocks / totalUsedBanks);
+
+ iowrite32(0, FlashReg + TRANSFER_SPARE_REG);
+
+ intr_status = intr_status_addresses[flash_bank];
+ iowrite32(ioread32(FlashReg + intr_status), FlashReg + intr_status);
+
+ if (page_count > 1) {
+ read_data_l = read_data;
+ while (page_count > MAX_PAGES_PER_RW) {
+ if (ioread32(FlashReg + MULTIPLANE_OPERATION))
+ status = NAND_Multiplane_Read(read_data_l,
+ block, page, MAX_PAGES_PER_RW);
+ else
+ status = NAND_Pipeline_Read_Ahead(
+ read_data_l, block, page,
+ MAX_PAGES_PER_RW);
+
+ if (status == FAIL)
+ return status;
+
+ read_data_l += DeviceInfo.wPageDataSize *
+ MAX_PAGES_PER_RW;
+ page_count -= MAX_PAGES_PER_RW;
+ page += MAX_PAGES_PER_RW;
+ }
+ if (ioread32(FlashReg + MULTIPLANE_OPERATION))
+ status = NAND_Multiplane_Read(read_data_l,
+ block, page, page_count);
+ else
+ status = NAND_Pipeline_Read_Ahead(
+ read_data_l, block, page, page_count);
+
+ return status;
+ }
+
+ iowrite32(1, FlashReg + DMA_ENABLE);
+ while (!(ioread32(FlashReg + DMA_ENABLE) & DMA_ENABLE__FLAG))
+ ;
+
+ iowrite32(0, FlashReg + TRANSFER_SPARE_REG);
+ iowrite32(ioread32(FlashReg + intr_status), FlashReg + intr_status);
+
+ /* Fill the mrst_nand_info structure */
+ info.state = INT_READ_PAGE_MAIN;
+ info.read_data = read_data;
+ info.flash_bank = flash_bank;
+ info.block = block;
+ info.page = page;
+ info.ret = PASS;
+
+ ddma_trans(read_data, flash_add, flash_bank, 0, 1);
+
+ iowrite32(1, FlashReg + GLOBAL_INT_ENABLE); /* Enable Interrupt */
+
+ ret = wait_for_completion_timeout(&info.complete, 10 * HZ);
+ if (!ret) {
+ printk(KERN_ERR "Wait for completion timeout "
+ "in %s, Line %d\n", __FILE__, __LINE__);
+ status = ERR;
+ } else {
+ status = info.ret;
+ }
+
+ iowrite32(ioread32(FlashReg + intr_status), FlashReg + intr_status);
+
+ iowrite32(0, FlashReg + DMA_ENABLE);
+ while ((ioread32(FlashReg + DMA_ENABLE) & DMA_ENABLE__FLAG))
+ ;
+
+ return status;
+}
+
+void Conv_Spare_Data_Log2Phy_Format(u8 *data)
+{
+ int i;
+ const u32 spareFlagBytes = DeviceInfo.wNumPageSpareFlag;
+ const u32 PageSpareSize = DeviceInfo.wPageSpareSize;
+
+ if (enable_ecc) {
+ for (i = spareFlagBytes - 1; i >= 0; i++)
+ data[PageSpareSize - spareFlagBytes + i] = data[i];
+ }
+}
+
+void Conv_Spare_Data_Phy2Log_Format(u8 *data)
+{
+ int i;
+ const u32 spareFlagBytes = DeviceInfo.wNumPageSpareFlag;
+ const u32 PageSpareSize = DeviceInfo.wPageSpareSize;
+
+ if (enable_ecc) {
+ for (i = 0; i < spareFlagBytes; i++)
+ data[i] = data[PageSpareSize - spareFlagBytes + i];
+ }
+}
+
+
+void Conv_Main_Spare_Data_Log2Phy_Format(u8 *data, u16 page_count)
+{
+ const u32 PageSize = DeviceInfo.wPageSize;
+ const u32 PageDataSize = DeviceInfo.wPageDataSize;
+ const u32 eccBytes = DeviceInfo.wECCBytesPerSector;
+ const u32 spareSkipBytes = DeviceInfo.wSpareSkipBytes;
+ const u32 spareFlagBytes = DeviceInfo.wNumPageSpareFlag;
+ u32 eccSectorSize;
+ u32 page_offset;
+ int i, j;
+
+ eccSectorSize = ECC_SECTOR_SIZE * (DeviceInfo.wDevicesConnected);
+ if (enable_ecc) {
+ while (page_count > 0) {
+ page_offset = (page_count - 1) * PageSize;
+ j = (DeviceInfo.wPageDataSize / eccSectorSize);
+ for (i = spareFlagBytes - 1; i >= 0; i--)
+ data[page_offset +
+ (eccSectorSize + eccBytes) * j + i] =
+ data[page_offset + PageDataSize + i];
+ for (j--; j >= 1; j--) {
+ for (i = eccSectorSize - 1; i >= 0; i--)
+ data[page_offset +
+ (eccSectorSize + eccBytes) * j + i] =
+ data[page_offset +
+ eccSectorSize * j + i];
+ }
+ for (i = (PageSize - spareSkipBytes) - 1;
+ i >= PageDataSize; i--)
+ data[page_offset + i + spareSkipBytes] =
+ data[page_offset + i];
+ page_count--;
+ }
+ }
+}
+
+void Conv_Main_Spare_Data_Phy2Log_Format(u8 *data, u16 page_count)
+{
+ const u32 PageSize = DeviceInfo.wPageSize;
+ const u32 PageDataSize = DeviceInfo.wPageDataSize;
+ const u32 eccBytes = DeviceInfo.wECCBytesPerSector;
+ const u32 spareSkipBytes = DeviceInfo.wSpareSkipBytes;
+ const u32 spareFlagBytes = DeviceInfo.wNumPageSpareFlag;
+ u32 eccSectorSize;
+ u32 page_offset;
+ int i, j;
+
+ eccSectorSize = ECC_SECTOR_SIZE * (DeviceInfo.wDevicesConnected);
+ if (enable_ecc) {
+ while (page_count > 0) {
+ page_offset = (page_count - 1) * PageSize;
+ for (i = PageDataSize;
+ i < PageSize - spareSkipBytes;
+ i++)
+ data[page_offset + i] =
+ data[page_offset + i +
+ spareSkipBytes];
+ for (j = 1;
+ j < DeviceInfo.wPageDataSize / eccSectorSize;
+ j++) {
+ for (i = 0; i < eccSectorSize; i++)
+ data[page_offset +
+ eccSectorSize * j + i] =
+ data[page_offset +
+ (eccSectorSize + eccBytes) * j
+ + i];
+ }
+ for (i = 0; i < spareFlagBytes; i++)
+ data[page_offset + PageDataSize + i] =
+ data[page_offset +
+ (eccSectorSize + eccBytes) * j + i];
+ page_count--;
+ }
+ }
+}
+
+/* Un-tested function */
+u16 NAND_Multiplane_Read(u8 *read_data, u32 block, u16 page,
+ u16 page_count)
+{
+ u32 status = PASS;
+ u32 NumPages = page_count;
+ u64 flash_add;
+ u32 flash_bank;
+ u32 intr_status = 0;
+ u32 intr_status_addresses[4] = {INTR_STATUS0,
+ INTR_STATUS1, INTR_STATUS2, INTR_STATUS3};
+ u32 ecc_done_OR_dma_comp;
+
+ nand_dbg_print(NAND_DBG_WARN, "%s, Line %d, Function: %s\n",
+ __FILE__, __LINE__, __func__);
+
+ status = Boundary_Check_Block_Page(block, page, page_count);
+
+ flash_add = (u64)(block % (DeviceInfo.wTotalBlocks / totalUsedBanks))
+ * DeviceInfo.wBlockDataSize +
+ (u64)page * DeviceInfo.wPageDataSize;
+
+ flash_bank = block / (DeviceInfo.wTotalBlocks / totalUsedBanks);
+
+ if (status == PASS) {
+ intr_status = intr_status_addresses[flash_bank];
+ iowrite32(ioread32(FlashReg + intr_status),
+ FlashReg + intr_status);
+
+ iowrite32(0, FlashReg + TRANSFER_SPARE_REG);
+ iowrite32(0x01, FlashReg + MULTIPLANE_OPERATION);
+
+ iowrite32(1, FlashReg + DMA_ENABLE);
+ while (!(ioread32(FlashReg + DMA_ENABLE) & DMA_ENABLE__FLAG))
+ ;
+ index_addr((u32)(MODE_10 | (flash_bank << 24) |
+ (flash_add >> DeviceInfo.nBitsInPageDataSize)), 0x42);
+ ddma_trans(read_data, flash_add, flash_bank, 0, NumPages);
+
+ ecc_done_OR_dma_comp = 0;
+ while (1) {
+ if (enable_ecc) {
+ while (!ioread32(FlashReg + intr_status))
+ ;
+
+ if (ioread32(FlashReg + intr_status) &
+ INTR_STATUS0__ECC_ERR) {
+ iowrite32(INTR_STATUS0__ECC_ERR,
+ FlashReg + intr_status);
+ status = do_ecc_new(flash_bank,
+ read_data, block, page);
+ } else if (ioread32(FlashReg + intr_status) &
+ INTR_STATUS0__DMA_CMD_COMP) {
+ iowrite32(INTR_STATUS0__DMA_CMD_COMP,
+ FlashReg + intr_status);
+
+ if (1 == ecc_done_OR_dma_comp)
+ break;
+
+ ecc_done_OR_dma_comp = 1;
+ } else if (ioread32(FlashReg + intr_status) &
+ INTR_STATUS0__ECC_TRANSACTION_DONE) {
+ iowrite32(
+ INTR_STATUS0__ECC_TRANSACTION_DONE,
+ FlashReg + intr_status);
+
+ if (1 == ecc_done_OR_dma_comp)
+ break;
+
+ ecc_done_OR_dma_comp = 1;
+ }
+ } else {
+ while (!(ioread32(FlashReg + intr_status) &
+ INTR_STATUS0__DMA_CMD_COMP))
+ ;
+ iowrite32(INTR_STATUS0__DMA_CMD_COMP,
+ FlashReg + intr_status);
+ break;
+ }
+
+ iowrite32((~INTR_STATUS0__ECC_ERR) &
+ (~INTR_STATUS0__ECC_TRANSACTION_DONE) &
+ (~INTR_STATUS0__DMA_CMD_COMP),
+ FlashReg + intr_status);
+
+ }
+
+ iowrite32(ioread32(FlashReg + intr_status),
+ FlashReg + intr_status);
+
+ iowrite32(0, FlashReg + DMA_ENABLE);
+
+ while ((ioread32(FlashReg + DMA_ENABLE) & DMA_ENABLE__FLAG))
+ ;
+
+ iowrite32(0, FlashReg + MULTIPLANE_OPERATION);
+ }
+
+ return status;
+}
+
+u16 NAND_Pipeline_Read_Ahead(u8 *read_data, u32 block,
+ u16 page, u16 page_count)
+{
+ u32 status = PASS;
+ u32 NumPages = page_count;
+ u64 flash_add;
+ u32 flash_bank;
+ u32 intr_status = 0;
+ u32 intr_status_addresses[4] = {INTR_STATUS0,
+ INTR_STATUS1, INTR_STATUS2, INTR_STATUS3};
+ int ret;
+
+ nand_dbg_print(NAND_DBG_DEBUG, "%s, Line %d, Function: %s\n",
+ __FILE__, __LINE__, __func__);
+
+ status = Boundary_Check_Block_Page(block, page, page_count);
+
+ if (page_count < 2)
+ status = FAIL;
+
+ if (status != PASS)
+ return status;
+
+ flash_add = (u64)(block % (DeviceInfo.wTotalBlocks / totalUsedBanks))
+ *DeviceInfo.wBlockDataSize +
+ (u64)page * DeviceInfo.wPageDataSize;
+
+ flash_bank = block / (DeviceInfo.wTotalBlocks / totalUsedBanks);
+
+ intr_status = intr_status_addresses[flash_bank];
+ iowrite32(ioread32(FlashReg + intr_status), FlashReg + intr_status);
+
+ iowrite32(1, FlashReg + DMA_ENABLE);
+ while (!(ioread32(FlashReg + DMA_ENABLE) & DMA_ENABLE__FLAG))
+ ;
+
+ iowrite32(0, FlashReg + TRANSFER_SPARE_REG);
+
+ /* Fill the mrst_nand_info structure */
+ info.state = INT_PIPELINE_READ_AHEAD;
+ info.read_data = read_data;
+ info.flash_bank = flash_bank;
+ info.block = block;
+ info.page = page;
+ info.ret = PASS;
+
+ index_addr((u32)(MODE_10 | (flash_bank << 24) |
+ (flash_add >> DeviceInfo.nBitsInPageDataSize)), 0x42);
+
+ ddma_trans(read_data, flash_add, flash_bank, 0, NumPages);
+
+ iowrite32(1, FlashReg + GLOBAL_INT_ENABLE); /* Enable Interrupt */
+
+ ret = wait_for_completion_timeout(&info.complete, 10 * HZ);
+ if (!ret) {
+ printk(KERN_ERR "Wait for completion timeout "
+ "in %s, Line %d\n", __FILE__, __LINE__);
+ status = ERR;
+ } else {
+ status = info.ret;
+ }
+
+ iowrite32(ioread32(FlashReg + intr_status), FlashReg + intr_status);
+
+ iowrite32(0, FlashReg + DMA_ENABLE);
+
+ while ((ioread32(FlashReg + DMA_ENABLE) & DMA_ENABLE__FLAG))
+ ;
+
+ return status;
+}
+
+
+u16 NAND_Write_Page_Main(u8 *write_data, u32 block, u16 page,
+ u16 page_count)
+{
+ u32 status = PASS;
+ u64 flash_add;
+ u32 intr_status = 0;
+ u32 flash_bank;
+ u32 intr_status_addresses[4] = {INTR_STATUS0,
+ INTR_STATUS1, INTR_STATUS2, INTR_STATUS3};
+ int ret;
+ u8 *write_data_l;
+
+ nand_dbg_print(NAND_DBG_DEBUG, "%s, Line %d, Function: %s\n",
+ __FILE__, __LINE__, __func__);
+
+ status = Boundary_Check_Block_Page(block, page, page_count);
+ if (status != PASS)
+ return status;
+
+ flash_add = (u64)(block % (DeviceInfo.wTotalBlocks / totalUsedBanks))
+ * DeviceInfo.wBlockDataSize +
+ (u64)page * DeviceInfo.wPageDataSize;
+
+ flash_bank = block / (DeviceInfo.wTotalBlocks / totalUsedBanks);
+
+ intr_status = intr_status_addresses[flash_bank];
+
+ iowrite32(0, FlashReg + TRANSFER_SPARE_REG);
+
+ iowrite32(INTR_STATUS0__PROGRAM_COMP |
+ INTR_STATUS0__PROGRAM_FAIL, FlashReg + intr_status);
+
+ if (page_count > 1) {
+ write_data_l = write_data;
+ while (page_count > MAX_PAGES_PER_RW) {
+ if (ioread32(FlashReg + MULTIPLANE_OPERATION))
+ status = NAND_Multiplane_Write(write_data_l,
+ block, page, MAX_PAGES_PER_RW);
+ else
+ status = NAND_Pipeline_Write_Ahead(
+ write_data_l, block, page,
+ MAX_PAGES_PER_RW);
+ if (status == FAIL)
+ return status;
+
+ write_data_l += DeviceInfo.wPageDataSize *
+ MAX_PAGES_PER_RW;
+ page_count -= MAX_PAGES_PER_RW;
+ page += MAX_PAGES_PER_RW;
+ }
+ if (ioread32(FlashReg + MULTIPLANE_OPERATION))
+ status = NAND_Multiplane_Write(write_data_l,
+ block, page, page_count);
+ else
+ status = NAND_Pipeline_Write_Ahead(write_data_l,
+ block, page, page_count);
+
+ return status;
+ }
+
+ iowrite32(1, FlashReg + DMA_ENABLE);
+ while (!(ioread32(FlashReg + DMA_ENABLE) & DMA_ENABLE__FLAG))
+ ;
+
+ iowrite32(0, FlashReg + TRANSFER_SPARE_REG);
+
+ iowrite32(ioread32(FlashReg + intr_status), FlashReg + intr_status);
+
+ /* Fill the mrst_nand_info structure */
+ info.state = INT_WRITE_PAGE_MAIN;
+ info.write_data = write_data;
+ info.flash_bank = flash_bank;
+ info.block = block;
+ info.page = page;
+ info.ret = PASS;
+
+ ddma_trans(write_data, flash_add, flash_bank, 1, 1);
+
+ iowrite32(1, FlashReg + GLOBAL_INT_ENABLE); /* Enable interrupt */
+
+ ret = wait_for_completion_timeout(&info.complete, 10 * HZ);
+ if (!ret) {
+ printk(KERN_ERR "Wait for completion timeout "
+ "in %s, Line %d\n", __FILE__, __LINE__);
+ status = ERR;
+ } else {
+ status = info.ret;
+ }
+
+ iowrite32(ioread32(FlashReg + intr_status), FlashReg + intr_status);
+
+ iowrite32(0, FlashReg + DMA_ENABLE);
+ while (ioread32(FlashReg + DMA_ENABLE) & DMA_ENABLE__FLAG)
+ ;
+
+ return status;
+}
+
+void NAND_ECC_Ctrl(int enable)
+{
+ if (enable) {
+ nand_dbg_print(NAND_DBG_WARN,
+ "Will enable ECC in %s, Line %d, Function: %s\n",
+ __FILE__, __LINE__, __func__);
+ iowrite32(1, FlashReg + ECC_ENABLE);
+ enable_ecc = 1;
+ } else {
+ nand_dbg_print(NAND_DBG_WARN,
+ "Will disable ECC in %s, Line %d, Function: %s\n",
+ __FILE__, __LINE__, __func__);
+ iowrite32(0, FlashReg + ECC_ENABLE);
+ enable_ecc = 0;
+ }
+}
+
+u16 NAND_Write_Page_Main_Spare(u8 *write_data, u32 block,
+ u16 page, u16 page_count)
+{
+ u32 status = PASS;
+ u32 i, j, page_num = 0;
+ u32 PageSize = DeviceInfo.wPageSize;
+ u32 PageDataSize = DeviceInfo.wPageDataSize;
+ u32 eccBytes = DeviceInfo.wECCBytesPerSector;
+ u32 spareFlagBytes = DeviceInfo.wNumPageSpareFlag;
+ u32 spareSkipBytes = DeviceInfo.wSpareSkipBytes;
+ u64 flash_add;
+ u32 eccSectorSize;
+ u32 flash_bank;
+ u32 intr_status = 0;
+ u32 intr_status_addresses[4] = {INTR_STATUS0,
+ INTR_STATUS1, INTR_STATUS2, INTR_STATUS3};
+ u8 *page_main_spare = buf_write_page_main_spare;
+
+ nand_dbg_print(NAND_DBG_WARN, "%s, Line %d, Function: %s\n",
+ __FILE__, __LINE__, __func__);
+
+ eccSectorSize = ECC_SECTOR_SIZE * (DeviceInfo.wDevicesConnected);
+
+ status = Boundary_Check_Block_Page(block, page, page_count);
+
+ flash_bank = block / (DeviceInfo.wTotalBlocks / totalUsedBanks);
+
+ if (status == PASS) {
+ intr_status = intr_status_addresses[flash_bank];
+
+ iowrite32(1, FlashReg + TRANSFER_SPARE_REG);
+
+ while ((status != FAIL) && (page_count > 0)) {
+ flash_add = (u64)(block %
+ (DeviceInfo.wTotalBlocks / totalUsedBanks)) *
+ DeviceInfo.wBlockDataSize +
+ (u64)page * DeviceInfo.wPageDataSize;
+
+ iowrite32(ioread32(FlashReg + intr_status),
+ FlashReg + intr_status);
+
+ iowrite32((u32)(MODE_01 | (flash_bank << 24) |
+ (flash_add >>
+ DeviceInfo.nBitsInPageDataSize)),
+ FlashMem);
+
+ if (enable_ecc) {
+ for (j = 0;
+ j <
+ DeviceInfo.wPageDataSize / eccSectorSize;
+ j++) {
+ for (i = 0; i < eccSectorSize; i++)
+ page_main_spare[(eccSectorSize +
+ eccBytes) * j +
+ i] =
+ write_data[eccSectorSize *
+ j + i];
+
+ for (i = 0; i < eccBytes; i++)
+ page_main_spare[(eccSectorSize +
+ eccBytes) * j +
+ eccSectorSize +
+ i] =
+ write_data[PageDataSize +
+ spareFlagBytes +
+ eccBytes * j +
+ i];
+ }
+
+ for (i = 0; i < spareFlagBytes; i++)
+ page_main_spare[(eccSectorSize +
+ eccBytes) * j + i] =
+ write_data[PageDataSize + i];
+
+ for (i = PageSize - 1; i >= PageDataSize +
+ spareSkipBytes; i--)
+ page_main_spare[i] = page_main_spare[i -
+ spareSkipBytes];
+
+ for (i = PageDataSize; i < PageDataSize +
+ spareSkipBytes; i++)
+ page_main_spare[i] = 0xff;
+
+ for (i = 0; i < PageSize / 4; i++)
+ iowrite32(
+ *((u32 *)page_main_spare + i),
+ FlashMem + 0x10);
+ } else {
+
+ for (i = 0; i < PageSize / 4; i++)
+ iowrite32(*((u32 *)write_data + i),
+ FlashMem + 0x10);
+ }
+
+ while (!(ioread32(FlashReg + intr_status) &
+ (INTR_STATUS0__PROGRAM_COMP |
+ INTR_STATUS0__PROGRAM_FAIL)))
+ ;
+
+ if (ioread32(FlashReg + intr_status) &
+ INTR_STATUS0__PROGRAM_FAIL)
+ status = FAIL;
+
+ iowrite32(ioread32(FlashReg + intr_status),
+ FlashReg + intr_status);
+
+ page_num++;
+ page_count--;
+ write_data += PageSize;
+ }
+
+ iowrite32(0, FlashReg + TRANSFER_SPARE_REG);
+ }
+
+ return status;
+}
+
+u16 NAND_Read_Page_Main_Spare(u8 *read_data, u32 block, u16 page,
+ u16 page_count)
+{
+ u32 status = PASS;
+ u32 i, j;
+ u64 flash_add = 0;
+ u32 PageSize = DeviceInfo.wPageSize;
+ u32 PageDataSize = DeviceInfo.wPageDataSize;
+ u32 PageSpareSize = DeviceInfo.wPageSpareSize;
+ u32 eccBytes = DeviceInfo.wECCBytesPerSector;
+ u32 spareFlagBytes = DeviceInfo.wNumPageSpareFlag;
+ u32 spareSkipBytes = DeviceInfo.wSpareSkipBytes;
+ u32 eccSectorSize;
+ u32 flash_bank;
+ u32 intr_status = 0;
+ u8 *read_data_l = read_data;
+ u32 intr_status_addresses[4] = {INTR_STATUS0,
+ INTR_STATUS1, INTR_STATUS2, INTR_STATUS3};
+ u8 *page_main_spare = buf_read_page_main_spare;
+
+ nand_dbg_print(NAND_DBG_WARN, "%s, Line %d, Function: %s\n",
+ __FILE__, __LINE__, __func__);
+
+ eccSectorSize = ECC_SECTOR_SIZE * (DeviceInfo.wDevicesConnected);
+
+ status = Boundary_Check_Block_Page(block, page, page_count);
+
+ flash_bank = block / (DeviceInfo.wTotalBlocks / totalUsedBanks);
+
+ if (status == PASS) {
+ intr_status = intr_status_addresses[flash_bank];
+
+ iowrite32(1, FlashReg + TRANSFER_SPARE_REG);
+
+ iowrite32(ioread32(FlashReg + intr_status),
+ FlashReg + intr_status);
+
+ while ((status != FAIL) && (page_count > 0)) {
+ flash_add = (u64)(block %
+ (DeviceInfo.wTotalBlocks / totalUsedBanks))
+ * DeviceInfo.wBlockDataSize +
+ (u64)page * DeviceInfo.wPageDataSize;
+
+ index_addr((u32)(MODE_10 | (flash_bank << 24) |
+ (flash_add >> DeviceInfo.nBitsInPageDataSize)),
+ 0x43);
+ index_addr((u32)(MODE_10 | (flash_bank << 24) |
+ (flash_add >> DeviceInfo.nBitsInPageDataSize)),
+ 0x2000 | page_count);
+
+ while (!(ioread32(FlashReg + intr_status) &
+ INTR_STATUS0__LOAD_COMP))
+ ;
+
+ iowrite32((u32)(MODE_01 | (flash_bank << 24) |
+ (flash_add >>
+ DeviceInfo.nBitsInPageDataSize)),
+ FlashMem);
+
+ for (i = 0; i < PageSize / 4; i++)
+ *(((u32 *)page_main_spare) + i) =
+ ioread32(FlashMem + 0x10);
+
+ if (enable_ecc) {
+ for (i = PageDataSize; i < PageSize -
+ spareSkipBytes; i++)
+ page_main_spare[i] = page_main_spare[i +
+ spareSkipBytes];
+
+ for (j = 0;
+ j < DeviceInfo.wPageDataSize / eccSectorSize;
+ j++) {
+
+ for (i = 0; i < eccSectorSize; i++)
+ read_data_l[eccSectorSize * j +
+ i] =
+ page_main_spare[
+ (eccSectorSize +
+ eccBytes) * j + i];
+
+ for (i = 0; i < eccBytes; i++)
+ read_data_l[PageDataSize +
+ spareFlagBytes +
+ eccBytes * j + i] =
+ page_main_spare[
+ (eccSectorSize +
+ eccBytes) * j +
+ eccSectorSize + i];
+ }
+
+ for (i = 0; i < spareFlagBytes; i++)
+ read_data_l[PageDataSize + i] =
+ page_main_spare[(eccSectorSize +
+ eccBytes) * j + i];
+ } else {
+ for (i = 0; i < (PageDataSize + PageSpareSize);
+ i++)
+ read_data_l[i] = page_main_spare[i];
+
+ }
+
+ if (enable_ecc) {
+ while (!(ioread32(FlashReg + intr_status) &
+ (INTR_STATUS0__ECC_TRANSACTION_DONE |
+ INTR_STATUS0__ECC_ERR)))
+ ;
+
+ if (ioread32(FlashReg + intr_status) &
+ INTR_STATUS0__ECC_ERR) {
+ iowrite32(INTR_STATUS0__ECC_ERR,
+ FlashReg + intr_status);
+ status = do_ecc_new(flash_bank,
+ read_data, block, page);
+ }
+
+ if (ioread32(FlashReg + intr_status) &
+ INTR_STATUS0__ECC_TRANSACTION_DONE &
+ INTR_STATUS0__ECC_ERR) {
+ iowrite32(INTR_STATUS0__ECC_ERR |
+ INTR_STATUS0__ECC_TRANSACTION_DONE,
+ FlashReg + intr_status);
+ } else if (ioread32(FlashReg + intr_status) &
+ INTR_STATUS0__ECC_TRANSACTION_DONE) {
+ iowrite32(
+ INTR_STATUS0__ECC_TRANSACTION_DONE,
+ FlashReg + intr_status);
+ } else if (ioread32(FlashReg + intr_status) &
+ INTR_STATUS0__ECC_ERR) {
+ iowrite32(INTR_STATUS0__ECC_ERR,
+ FlashReg + intr_status);
+ }
+ }
+
+ page++;
+ page_count--;
+ read_data_l += PageSize;
+ }
+ }
+
+ iowrite32(0, FlashReg + TRANSFER_SPARE_REG);
+
+ index_addr((u32)(MODE_10 | (flash_bank << 24) |
+ (flash_add >> DeviceInfo.nBitsInPageDataSize)), 0x42);
+
+ return status;
+}
+
+u16 NAND_Pipeline_Write_Ahead(u8 *write_data, u32 block,
+ u16 page, u16 page_count)
+{
+ u16 status = PASS;
+ u32 NumPages = page_count;
+ u64 flash_add;
+ u32 flash_bank;
+ u32 intr_status = 0;
+ u32 intr_status_addresses[4] = {INTR_STATUS0,
+ INTR_STATUS1, INTR_STATUS2, INTR_STATUS3};
+ int ret;
+
+ nand_dbg_print(NAND_DBG_DEBUG, "%s, Line %d, Function: %s\n",
+ __FILE__, __LINE__, __func__);
+
+ status = Boundary_Check_Block_Page(block, page, page_count);
+
+ if (page_count < 2)
+ status = FAIL;
+
+ if (status != PASS)
+ return status;
+
+ flash_add = (u64)(block % (DeviceInfo.wTotalBlocks / totalUsedBanks))
+ * DeviceInfo.wBlockDataSize +
+ (u64)page * DeviceInfo.wPageDataSize;
+
+ flash_bank = block / (DeviceInfo.wTotalBlocks / totalUsedBanks);
+
+ intr_status = intr_status_addresses[flash_bank];
+ iowrite32(ioread32(FlashReg + intr_status), FlashReg + intr_status);
+
+ iowrite32(1, FlashReg + DMA_ENABLE);
+ while (!(ioread32(FlashReg + DMA_ENABLE) & DMA_ENABLE__FLAG))
+ ;
+
+ iowrite32(0, FlashReg + TRANSFER_SPARE_REG);
+
+ /* Fill the mrst_nand_info structure */
+ info.state = INT_PIPELINE_WRITE_AHEAD;
+ info.write_data = write_data;
+ info.flash_bank = flash_bank;
+ info.block = block;
+ info.page = page;
+ info.ret = PASS;
+
+ index_addr((u32)(MODE_10 | (flash_bank << 24) |
+ (flash_add >> DeviceInfo.nBitsInPageDataSize)), 0x42);
+
+ ddma_trans(write_data, flash_add, flash_bank, 1, NumPages);
+
+ iowrite32(1, FlashReg + GLOBAL_INT_ENABLE); /* Enable interrupt */
+
+ ret = wait_for_completion_timeout(&info.complete, 10 * HZ);
+ if (!ret) {
+ printk(KERN_ERR "Wait for completion timeout "
+ "in %s, Line %d\n", __FILE__, __LINE__);
+ status = ERR;
+ } else {
+ status = info.ret;
+ }
+
+ iowrite32(ioread32(FlashReg + intr_status), FlashReg + intr_status);
+
+ iowrite32(0, FlashReg + DMA_ENABLE);
+ while ((ioread32(FlashReg + DMA_ENABLE) & DMA_ENABLE__FLAG))
+ ;
+
+ return status;
+}
+
+/* Un-tested function */
+u16 NAND_Multiplane_Write(u8 *write_data, u32 block, u16 page,
+ u16 page_count)
+{
+ u16 status = PASS;
+ u32 NumPages = page_count;
+ u64 flash_add;
+ u32 flash_bank;
+ u32 intr_status = 0;
+ u32 intr_status_addresses[4] = {INTR_STATUS0,
+ INTR_STATUS1, INTR_STATUS2, INTR_STATUS3};
+ u16 status2 = PASS;
+ u32 t;
+
+ nand_dbg_print(NAND_DBG_WARN, "%s, Line %d, Function: %s\n",
+ __FILE__, __LINE__, __func__);
+
+ status = Boundary_Check_Block_Page(block, page, page_count);
+ if (status != PASS)
+ return status;
+
+ flash_add = (u64)(block % (DeviceInfo.wTotalBlocks / totalUsedBanks))
+ * DeviceInfo.wBlockDataSize +
+ (u64)page * DeviceInfo.wPageDataSize;
+
+ flash_bank = block / (DeviceInfo.wTotalBlocks / totalUsedBanks);
+
+ intr_status = intr_status_addresses[flash_bank];
+ iowrite32(ioread32(FlashReg + intr_status), FlashReg + intr_status);
+
+ iowrite32(0, FlashReg + TRANSFER_SPARE_REG);
+ iowrite32(0x01, FlashReg + MULTIPLANE_OPERATION);
+
+ iowrite32(1, FlashReg + DMA_ENABLE);
+ while (!(ioread32(FlashReg + DMA_ENABLE) & DMA_ENABLE__FLAG))
+ ;
+
+ iowrite32(0, FlashReg + TRANSFER_SPARE_REG);
+
+ index_addr((u32)(MODE_10 | (flash_bank << 24) |
+ (flash_add >> DeviceInfo.nBitsInPageDataSize)), 0x42);
+
+ ddma_trans(write_data, flash_add, flash_bank, 1, NumPages);
+
+ while (1) {
+ while (!ioread32(FlashReg + intr_status))
+ ;
+
+ if (ioread32(FlashReg + intr_status) &
+ INTR_STATUS0__DMA_CMD_COMP) {
+ iowrite32(INTR_STATUS0__DMA_CMD_COMP,
+ FlashReg + intr_status);
+ status = PASS;
+ if (status2 == FAIL)
+ status = FAIL;
+ break;
+ } else if (ioread32(FlashReg + intr_status) &
+ INTR_STATUS0__PROGRAM_FAIL) {
+ status2 = FAIL;
+ status = FAIL;
+ t = ioread32(FlashReg + intr_status) &
+ INTR_STATUS0__PROGRAM_FAIL;
+ iowrite32(t, FlashReg + intr_status);
+ } else {
+ iowrite32((~INTR_STATUS0__PROGRAM_FAIL) &
+ (~INTR_STATUS0__DMA_CMD_COMP),
+ FlashReg + intr_status);
+ }
+ }
+
+ iowrite32(ioread32(FlashReg + intr_status), FlashReg + intr_status);
+
+ iowrite32(0, FlashReg + DMA_ENABLE);
+
+ while ((ioread32(FlashReg + DMA_ENABLE) & DMA_ENABLE__FLAG))
+ ;
+
+ iowrite32(0, FlashReg + MULTIPLANE_OPERATION);
+
+ return status;
+}
+
+
+#if CMD_DMA
+static irqreturn_t cdma_isr(int irq, void *dev_id)
+{
+ struct mrst_nand_info *dev = dev_id;
+ int first_failed_cmd;
+
+ nand_dbg_print(NAND_DBG_DEBUG, "%s, Line %d, Function: %s\n",
+ __FILE__, __LINE__, __func__);
+
+ if (!is_cdma_interrupt())
+ return IRQ_NONE;
+
+ /* Disable controller interrupts */
+ iowrite32(0, FlashReg + GLOBAL_INT_ENABLE);
+ GLOB_FTL_Event_Status(&first_failed_cmd);
+ complete(&dev->complete);
+
+ return IRQ_HANDLED;
+}
+#else
+static void handle_nand_int_read(struct mrst_nand_info *dev)
+{
+ u32 intr_status_addresses[4] = {INTR_STATUS0,
+ INTR_STATUS1, INTR_STATUS2, INTR_STATUS3};
+ u32 intr_status;
+ u32 ecc_done_OR_dma_comp = 0;
+
+ nand_dbg_print(NAND_DBG_DEBUG, "%s, Line %d, Function: %s\n",
+ __FILE__, __LINE__, __func__);
+
+ dev->ret = PASS;
+ intr_status = intr_status_addresses[dev->flash_bank];
+
+ while (1) {
+ if (enable_ecc) {
+ if (ioread32(FlashReg + intr_status) &
+ INTR_STATUS0__ECC_ERR) {
+ iowrite32(INTR_STATUS0__ECC_ERR,
+ FlashReg + intr_status);
+ dev->ret = do_ecc_new(dev->flash_bank,
+ dev->read_data,
+ dev->block, dev->page);
+ } else if (ioread32(FlashReg + intr_status) &
+ INTR_STATUS0__DMA_CMD_COMP) {
+ iowrite32(INTR_STATUS0__DMA_CMD_COMP,
+ FlashReg + intr_status);
+ if (1 == ecc_done_OR_dma_comp)
+ break;
+ ecc_done_OR_dma_comp = 1;
+ } else if (ioread32(FlashReg + intr_status) &
+ INTR_STATUS0__ECC_TRANSACTION_DONE) {
+ iowrite32(INTR_STATUS0__ECC_TRANSACTION_DONE,
+ FlashReg + intr_status);
+ if (1 == ecc_done_OR_dma_comp)
+ break;
+ ecc_done_OR_dma_comp = 1;
+ }
+ } else {
+ if (ioread32(FlashReg + intr_status) &
+ INTR_STATUS0__DMA_CMD_COMP) {
+ iowrite32(INTR_STATUS0__DMA_CMD_COMP,
+ FlashReg + intr_status);
+ break;
+ } else {
+ printk(KERN_ERR "Illegal INTS "
+ "(offset addr 0x%x) value: 0x%x\n",
+ intr_status,
+ ioread32(FlashReg + intr_status));
+ }
+ }
+
+ iowrite32((~INTR_STATUS0__ECC_ERR) &
+ (~INTR_STATUS0__ECC_TRANSACTION_DONE) &
+ (~INTR_STATUS0__DMA_CMD_COMP),
+ FlashReg + intr_status);
+ }
+}
+
+static void handle_nand_int_write(struct mrst_nand_info *dev)
+{
+ u32 intr_status;
+ u32 intr[4] = {INTR_STATUS0, INTR_STATUS1,
+ INTR_STATUS2, INTR_STATUS3};
+ int status = PASS;
+
+ nand_dbg_print(NAND_DBG_DEBUG, "%s, Line %d, Function: %s\n",
+ __FILE__, __LINE__, __func__);
+
+ dev->ret = PASS;
+ intr_status = intr[dev->flash_bank];
+
+ while (1) {
+ while (!ioread32(FlashReg + intr_status))
+ ;
+
+ if (ioread32(FlashReg + intr_status) &
+ INTR_STATUS0__DMA_CMD_COMP) {
+ iowrite32(INTR_STATUS0__DMA_CMD_COMP,
+ FlashReg + intr_status);
+ if (FAIL == status)
+ dev->ret = FAIL;
+ break;
+ } else if (ioread32(FlashReg + intr_status) &
+ INTR_STATUS0__PROGRAM_FAIL) {
+ status = FAIL;
+ iowrite32(INTR_STATUS0__PROGRAM_FAIL,
+ FlashReg + intr_status);
+ } else {
+ iowrite32((~INTR_STATUS0__PROGRAM_FAIL) &
+ (~INTR_STATUS0__DMA_CMD_COMP),
+ FlashReg + intr_status);
+ }
+ }
+}
+
+static irqreturn_t ddma_isr(int irq, void *dev_id)
+{
+ struct mrst_nand_info *dev = dev_id;
+ u32 int_mask, ints0, ints1, ints2, ints3, ints_offset;
+ u32 intr[4] = {INTR_STATUS0, INTR_STATUS1,
+ INTR_STATUS2, INTR_STATUS3};
+
+ int_mask = INTR_STATUS0__DMA_CMD_COMP |
+ INTR_STATUS0__ECC_TRANSACTION_DONE |
+ INTR_STATUS0__ECC_ERR |
+ INTR_STATUS0__PROGRAM_FAIL |
+ INTR_STATUS0__ERASE_FAIL;
+
+ ints0 = ioread32(FlashReg + INTR_STATUS0);
+ ints1 = ioread32(FlashReg + INTR_STATUS1);
+ ints2 = ioread32(FlashReg + INTR_STATUS2);
+ ints3 = ioread32(FlashReg + INTR_STATUS3);
+
+ ints_offset = intr[dev->flash_bank];
+
+ nand_dbg_print(NAND_DBG_DEBUG,
+ "INTR0: 0x%x, INTR1: 0x%x, INTR2: 0x%x, INTR3: 0x%x, "
+ "DMA_INTR: 0x%x, "
+ "dev->state: 0x%x, dev->flash_bank: %d\n",
+ ints0, ints1, ints2, ints3,
+ ioread32(FlashReg + DMA_INTR),
+ dev->state, dev->flash_bank);
+
+ if (!(ioread32(FlashReg + ints_offset) & int_mask)) {
+ iowrite32(ints0, FlashReg + INTR_STATUS0);
+ iowrite32(ints1, FlashReg + INTR_STATUS1);
+ iowrite32(ints2, FlashReg + INTR_STATUS2);
+ iowrite32(ints3, FlashReg + INTR_STATUS3);
+ nand_dbg_print(NAND_DBG_WARN,
+ "ddma_isr: Invalid interrupt for NAND controller. "
+ "Ignore it\n");
+ return IRQ_NONE;
+ }
+
+ switch (dev->state) {
+ case INT_READ_PAGE_MAIN:
+ case INT_PIPELINE_READ_AHEAD:
+ /* Disable controller interrupts */
+ iowrite32(0, FlashReg + GLOBAL_INT_ENABLE);
+ handle_nand_int_read(dev);
+ break;
+ case INT_WRITE_PAGE_MAIN:
+ case INT_PIPELINE_WRITE_AHEAD:
+ iowrite32(0, FlashReg + GLOBAL_INT_ENABLE);
+ handle_nand_int_write(dev);
+ break;
+ default:
+ printk(KERN_ERR "ddma_isr - Illegal state: 0x%x\n",
+ dev->state);
+ return IRQ_NONE;
+ }
+
+ dev->state = INT_IDLE_STATE;
+ complete(&dev->complete);
+ return IRQ_HANDLED;
+}
+#endif
+
+static const struct pci_device_id nand_pci_ids[] = {
+ {
+ .vendor = 0x8086,
+ .device = 0x0809,
+ .subvendor = PCI_ANY_ID,
+ .subdevice = PCI_ANY_ID,
+ },
+ { /* end: all zeroes */ }
+};
+
+static int nand_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
+{
+ int ret = -ENODEV;
+ unsigned long csr_base;
+ unsigned long csr_len;
+ struct mrst_nand_info *pndev = &info;
+
+ nand_dbg_print(NAND_DBG_WARN, "%s, Line %d, Function: %s\n",
+ __FILE__, __LINE__, __func__);
+
+ ret = pci_enable_device(dev);
+ if (ret) {
+ printk(KERN_ERR "Spectra: pci_enable_device failed.\n");
+ return ret;
+ }
+
+ pci_set_master(dev);
+ pndev->dev = dev;
+
+ csr_base = pci_resource_start(dev, 0);
+ if (!csr_base) {
+ printk(KERN_ERR "Spectra: pci_resource_start failed!\n");
+ return -ENODEV;
+ }
+
+ csr_len = pci_resource_len(dev, 0);
+ if (!csr_len) {
+ printk(KERN_ERR "Spectra: pci_resource_len failed!\n");
+ return -ENODEV;
+ }
+
+ ret = pci_request_regions(dev, SPECTRA_NAND_NAME);
+ if (ret) {
+ printk(KERN_ERR "Spectra: Unable to request "
+ "memory region\n");
+ goto failed_req_csr;
+ }
+
+ pndev->ioaddr = ioremap_nocache(csr_base, csr_len);
+ if (!pndev->ioaddr) {
+ printk(KERN_ERR "Spectra: Unable to remap memory region\n");
+ ret = -ENOMEM;
+ goto failed_remap_csr;
+ }
+ nand_dbg_print(NAND_DBG_DEBUG, "Spectra: CSR 0x%08lx -> 0x%p (0x%lx)\n",
+ csr_base, pndev->ioaddr, csr_len);
+
+ init_completion(&pndev->complete);
+ nand_dbg_print(NAND_DBG_DEBUG, "Spectra: IRQ %d\n", dev->irq);
+
+#if CMD_DMA
+ if (request_irq(dev->irq, cdma_isr, IRQF_SHARED,
+ SPECTRA_NAND_NAME, &info)) {
+ printk(KERN_ERR "Spectra: Unable to allocate IRQ\n");
+ ret = -ENODEV;
+ iounmap(pndev->ioaddr);
+ goto failed_remap_csr;
+ }
+#else
+ if (request_irq(dev->irq, ddma_isr, IRQF_SHARED,
+ SPECTRA_NAND_NAME, &info)) {
+ printk(KERN_ERR "Spectra: Unable to allocate IRQ\n");
+ ret = -ENODEV;
+ iounmap(pndev->ioaddr);
+ goto failed_remap_csr;
+ }
+#endif
+
+ pci_set_drvdata(dev, pndev);
+
+ return 0;
+
+failed_remap_csr:
+ pci_release_regions(dev);
+failed_req_csr:
+
+ return ret;
+}
+
+static void nand_pci_remove(struct pci_dev *dev)
+{
+ struct mrst_nand_info *pndev = pci_get_drvdata(dev);
+
+ nand_dbg_print(NAND_DBG_WARN, "%s, Line %d, Function: %s\n",
+ __FILE__, __LINE__, __func__);
+
+#if CMD_DMA
+ free_irq(dev->irq, pndev);
+#endif
+ iounmap(pndev->ioaddr);
+ pci_release_regions(dev);
+ pci_disable_device(dev);
+}
+
+MODULE_DEVICE_TABLE(pci, nand_pci_ids);
+
+static struct pci_driver nand_pci_driver = {
+ .name = SPECTRA_NAND_NAME,
+ .id_table = nand_pci_ids,
+ .probe = nand_pci_probe,
+ .remove = nand_pci_remove,
+};
+
+int NAND_Flash_Init(void)
+{
+ int retval;
+ u32 int_mask;
+
+ nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
+ __FILE__, __LINE__, __func__);
+
+ FlashReg = ioremap_nocache(GLOB_HWCTL_REG_BASE,
+ GLOB_HWCTL_REG_SIZE);
+ if (!FlashReg) {
+ printk(KERN_ERR "Spectra: ioremap_nocache failed!");
+ return -ENOMEM;
+ }
+ nand_dbg_print(NAND_DBG_WARN,
+ "Spectra: Remapped reg base address: "
+ "0x%p, len: %d\n",
+ FlashReg, GLOB_HWCTL_REG_SIZE);
+
+ FlashMem = ioremap_nocache(GLOB_HWCTL_MEM_BASE,
+ GLOB_HWCTL_MEM_SIZE);
+ if (!FlashMem) {
+ printk(KERN_ERR "Spectra: ioremap_nocache failed!");
+ iounmap(FlashReg);
+ return -ENOMEM;
+ }
+ nand_dbg_print(NAND_DBG_WARN,
+ "Spectra: Remapped flash base address: "
+ "0x%p, len: %d\n",
+ (void *)FlashMem, GLOB_HWCTL_MEM_SIZE);
+
+ nand_dbg_print(NAND_DBG_DEBUG, "Dump timing register values:"
+ "acc_clks: %d, re_2_we: %d, we_2_re: %d,"
+ "addr_2_data: %d, rdwr_en_lo_cnt: %d, "
+ "rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n",
+ ioread32(FlashReg + ACC_CLKS),
+ ioread32(FlashReg + RE_2_WE),
+ ioread32(FlashReg + WE_2_RE),
+ ioread32(FlashReg + ADDR_2_DATA),
+ ioread32(FlashReg + RDWR_EN_LO_CNT),
+ ioread32(FlashReg + RDWR_EN_HI_CNT),
+ ioread32(FlashReg + CS_SETUP_CNT));
+
+ NAND_Flash_Reset();
+
+ iowrite32(0, FlashReg + GLOBAL_INT_ENABLE);
+
+#if CMD_DMA
+ info.pcmds_num = 0;
+ info.flash_bank = 0;
+ info.cdma_num = 0;
+ int_mask = (DMA_INTR__DESC_COMP_CHANNEL0 |
+ DMA_INTR__DESC_COMP_CHANNEL1 |
+ DMA_INTR__DESC_COMP_CHANNEL2 |
+ DMA_INTR__DESC_COMP_CHANNEL3 |
+ DMA_INTR__MEMCOPY_DESC_COMP);
+ iowrite32(int_mask, FlashReg + DMA_INTR_EN);
+ iowrite32(0xFFFF, FlashReg + DMA_INTR);
+
+ int_mask = (INTR_STATUS0__ECC_ERR |
+ INTR_STATUS0__PROGRAM_FAIL |
+ INTR_STATUS0__ERASE_FAIL);
+#else
+ int_mask = INTR_STATUS0__DMA_CMD_COMP |
+ INTR_STATUS0__ECC_TRANSACTION_DONE |
+ INTR_STATUS0__ECC_ERR |
+ INTR_STATUS0__PROGRAM_FAIL |
+ INTR_STATUS0__ERASE_FAIL;
+#endif
+ iowrite32(int_mask, FlashReg + INTR_EN0);
+ iowrite32(int_mask, FlashReg + INTR_EN1);
+ iowrite32(int_mask, FlashReg + INTR_EN2);
+ iowrite32(int_mask, FlashReg + INTR_EN3);
+
+ /* Clear all status bits */
+ iowrite32(0xFFFF, FlashReg + INTR_STATUS0);
+ iowrite32(0xFFFF, FlashReg + INTR_STATUS1);
+ iowrite32(0xFFFF, FlashReg + INTR_STATUS2);
+ iowrite32(0xFFFF, FlashReg + INTR_STATUS3);
+
+ iowrite32(0x0F, FlashReg + RB_PIN_ENABLED);
+ iowrite32(CHIP_EN_DONT_CARE__FLAG, FlashReg + CHIP_ENABLE_DONT_CARE);
+
+ /* Should set value for these registers when init */
+ iowrite32(0, FlashReg + TWO_ROW_ADDR_CYCLES);
+ iowrite32(1, FlashReg + ECC_ENABLE);
+ enable_ecc = 1;
+
+ retval = pci_register_driver(&nand_pci_driver);
+ if (retval)
+ return -ENOMEM;
+
+ return PASS;
+}
+
+/* Free memory */
+int nand_release_spectra(void)
+{
+ pci_unregister_driver(&nand_pci_driver);
+ iounmap(FlashMem);
+ iounmap(FlashReg);
+
+ return 0;
+}
+
+
+