diff options
Diffstat (limited to 'fs/xfs/xfs_inode.c')
-rw-r--r-- | fs/xfs/xfs_inode.c | 2865 |
1 files changed, 1226 insertions, 1639 deletions
diff --git a/fs/xfs/xfs_inode.c b/fs/xfs/xfs_inode.c index c5077e6326c7..aa303be11576 100644 --- a/fs/xfs/xfs_inode.c +++ b/fs/xfs/xfs_inode.c @@ -11,7 +11,6 @@ #include "xfs_format.h" #include "xfs_log_format.h" #include "xfs_trans_resv.h" -#include "xfs_sb.h" #include "xfs_mount.h" #include "xfs_defer.h" #include "xfs_inode.h" @@ -21,6 +20,7 @@ #include "xfs_trans.h" #include "xfs_buf_item.h" #include "xfs_inode_item.h" +#include "xfs_iunlink_item.h" #include "xfs_ialloc.h" #include "xfs_bmap.h" #include "xfs_bmap_util.h" @@ -35,8 +35,10 @@ #include "xfs_log.h" #include "xfs_bmap_btree.h" #include "xfs_reflink.h" +#include "xfs_ag.h" +#include "xfs_log_priv.h" -kmem_zone_t *xfs_inode_zone; +struct kmem_cache *xfs_inode_cache; /* * Used in xfs_itruncate_extents(). This is the maximum number of extents @@ -44,9 +46,9 @@ kmem_zone_t *xfs_inode_zone; */ #define XFS_ITRUNC_MAX_EXTENTS 2 -STATIC int xfs_iflush_int(struct xfs_inode *, struct xfs_buf *); STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *); -STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *); +STATIC int xfs_iunlink_remove(struct xfs_trans *tp, struct xfs_perag *pag, + struct xfs_inode *); /* * helper function to extract extent size hint from inode @@ -61,8 +63,8 @@ xfs_get_extsz_hint( */ if (xfs_is_always_cow_inode(ip)) return 0; - if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize) - return ip->i_d.di_extsize; + if ((ip->i_diflags & XFS_DIFLAG_EXTSIZE) && ip->i_extsize) + return ip->i_extsize; if (XFS_IS_REALTIME_INODE(ip)) return ip->i_mount->m_sb.sb_rextsize; return 0; @@ -81,8 +83,8 @@ xfs_get_cowextsz_hint( xfs_extlen_t a, b; a = 0; - if (ip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) - a = ip->i_d.di_cowextsize; + if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) + a = ip->i_cowextsize; b = xfs_get_extsz_hint(ip); a = max(a, b); @@ -112,8 +114,7 @@ xfs_ilock_data_map_shared( { uint lock_mode = XFS_ILOCK_SHARED; - if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE && - (ip->i_df.if_flags & XFS_IFEXTENTS) == 0) + if (xfs_need_iread_extents(&ip->i_df)) lock_mode = XFS_ILOCK_EXCL; xfs_ilock(ip, lock_mode); return lock_mode; @@ -125,16 +126,35 @@ xfs_ilock_attr_map_shared( { uint lock_mode = XFS_ILOCK_SHARED; - if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE && - (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0) + if (xfs_inode_has_attr_fork(ip) && xfs_need_iread_extents(&ip->i_af)) lock_mode = XFS_ILOCK_EXCL; xfs_ilock(ip, lock_mode); return lock_mode; } /* + * You can't set both SHARED and EXCL for the same lock, + * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_MMAPLOCK_SHARED, + * XFS_MMAPLOCK_EXCL, XFS_ILOCK_SHARED, XFS_ILOCK_EXCL are valid values + * to set in lock_flags. + */ +static inline void +xfs_lock_flags_assert( + uint lock_flags) +{ + ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != + (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); + ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != + (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); + ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != + (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); + ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); + ASSERT(lock_flags != 0); +} + +/* * In addition to i_rwsem in the VFS inode, the xfs inode contains 2 - * multi-reader locks: i_mmap_lock and the i_lock. This routine allows + * multi-reader locks: invalidate_lock and the i_lock. This routine allows * various combinations of the locks to be obtained. * * The 3 locks should always be ordered so that the IO lock is obtained first, @@ -142,23 +162,23 @@ xfs_ilock_attr_map_shared( * * Basic locking order: * - * i_rwsem -> i_mmap_lock -> page_lock -> i_ilock + * i_rwsem -> invalidate_lock -> page_lock -> i_ilock * - * mmap_sem locking order: + * mmap_lock locking order: * - * i_rwsem -> page lock -> mmap_sem - * mmap_sem -> i_mmap_lock -> page_lock + * i_rwsem -> page lock -> mmap_lock + * mmap_lock -> invalidate_lock -> page_lock * - * The difference in mmap_sem locking order mean that we cannot hold the - * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can - * fault in pages during copy in/out (for buffered IO) or require the mmap_sem - * in get_user_pages() to map the user pages into the kernel address space for - * direct IO. Similarly the i_rwsem cannot be taken inside a page fault because - * page faults already hold the mmap_sem. + * The difference in mmap_lock locking order mean that we cannot hold the + * invalidate_lock over syscall based read(2)/write(2) based IO. These IO paths + * can fault in pages during copy in/out (for buffered IO) or require the + * mmap_lock in get_user_pages() to map the user pages into the kernel address + * space for direct IO. Similarly the i_rwsem cannot be taken inside a page + * fault because page faults already hold the mmap_lock. * * Hence to serialise fully against both syscall and mmap based IO, we need to - * take both the i_rwsem and the i_mmap_lock. These locks should *only* be both - * taken in places where we need to invalidate the page cache in a race + * take both the i_rwsem and the invalidate_lock. These locks should *only* be + * both taken in places where we need to invalidate the page cache in a race * free manner (e.g. truncate, hole punch and other extent manipulation * functions). */ @@ -169,18 +189,7 @@ xfs_ilock( { trace_xfs_ilock(ip, lock_flags, _RET_IP_); - /* - * You can't set both SHARED and EXCL for the same lock, - * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, - * and XFS_ILOCK_EXCL are valid values to set in lock_flags. - */ - ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != - (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); - ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != - (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); - ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != - (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); - ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); + xfs_lock_flags_assert(lock_flags); if (lock_flags & XFS_IOLOCK_EXCL) { down_write_nested(&VFS_I(ip)->i_rwsem, @@ -190,10 +199,13 @@ xfs_ilock( XFS_IOLOCK_DEP(lock_flags)); } - if (lock_flags & XFS_MMAPLOCK_EXCL) - mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags)); - else if (lock_flags & XFS_MMAPLOCK_SHARED) - mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags)); + if (lock_flags & XFS_MMAPLOCK_EXCL) { + down_write_nested(&VFS_I(ip)->i_mapping->invalidate_lock, + XFS_MMAPLOCK_DEP(lock_flags)); + } else if (lock_flags & XFS_MMAPLOCK_SHARED) { + down_read_nested(&VFS_I(ip)->i_mapping->invalidate_lock, + XFS_MMAPLOCK_DEP(lock_flags)); + } if (lock_flags & XFS_ILOCK_EXCL) mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); @@ -220,18 +232,7 @@ xfs_ilock_nowait( { trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_); - /* - * You can't set both SHARED and EXCL for the same lock, - * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, - * and XFS_ILOCK_EXCL are valid values to set in lock_flags. - */ - ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != - (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); - ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != - (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); - ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != - (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); - ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); + xfs_lock_flags_assert(lock_flags); if (lock_flags & XFS_IOLOCK_EXCL) { if (!down_write_trylock(&VFS_I(ip)->i_rwsem)) @@ -242,10 +243,10 @@ xfs_ilock_nowait( } if (lock_flags & XFS_MMAPLOCK_EXCL) { - if (!mrtryupdate(&ip->i_mmaplock)) + if (!down_write_trylock(&VFS_I(ip)->i_mapping->invalidate_lock)) goto out_undo_iolock; } else if (lock_flags & XFS_MMAPLOCK_SHARED) { - if (!mrtryaccess(&ip->i_mmaplock)) + if (!down_read_trylock(&VFS_I(ip)->i_mapping->invalidate_lock)) goto out_undo_iolock; } @@ -260,9 +261,9 @@ xfs_ilock_nowait( out_undo_mmaplock: if (lock_flags & XFS_MMAPLOCK_EXCL) - mrunlock_excl(&ip->i_mmaplock); + up_write(&VFS_I(ip)->i_mapping->invalidate_lock); else if (lock_flags & XFS_MMAPLOCK_SHARED) - mrunlock_shared(&ip->i_mmaplock); + up_read(&VFS_I(ip)->i_mapping->invalidate_lock); out_undo_iolock: if (lock_flags & XFS_IOLOCK_EXCL) up_write(&VFS_I(ip)->i_rwsem); @@ -289,19 +290,7 @@ xfs_iunlock( xfs_inode_t *ip, uint lock_flags) { - /* - * You can't set both SHARED and EXCL for the same lock, - * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, - * and XFS_ILOCK_EXCL are valid values to set in lock_flags. - */ - ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != - (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); - ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != - (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); - ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != - (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); - ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); - ASSERT(lock_flags != 0); + xfs_lock_flags_assert(lock_flags); if (lock_flags & XFS_IOLOCK_EXCL) up_write(&VFS_I(ip)->i_rwsem); @@ -309,9 +298,9 @@ xfs_iunlock( up_read(&VFS_I(ip)->i_rwsem); if (lock_flags & XFS_MMAPLOCK_EXCL) - mrunlock_excl(&ip->i_mmaplock); + up_write(&VFS_I(ip)->i_mapping->invalidate_lock); else if (lock_flags & XFS_MMAPLOCK_SHARED) - mrunlock_shared(&ip->i_mmaplock); + up_read(&VFS_I(ip)->i_mapping->invalidate_lock); if (lock_flags & XFS_ILOCK_EXCL) mrunlock_excl(&ip->i_lock); @@ -337,7 +326,7 @@ xfs_ilock_demote( if (lock_flags & XFS_ILOCK_EXCL) mrdemote(&ip->i_lock); if (lock_flags & XFS_MMAPLOCK_EXCL) - mrdemote(&ip->i_mmaplock); + downgrade_write(&VFS_I(ip)->i_mapping->invalidate_lock); if (lock_flags & XFS_IOLOCK_EXCL) downgrade_write(&VFS_I(ip)->i_rwsem); @@ -345,9 +334,29 @@ xfs_ilock_demote( } #if defined(DEBUG) || defined(XFS_WARN) -int +static inline bool +__xfs_rwsem_islocked( + struct rw_semaphore *rwsem, + bool shared) +{ + if (!debug_locks) + return rwsem_is_locked(rwsem); + + if (!shared) + return lockdep_is_held_type(rwsem, 0); + + /* + * We are checking that the lock is held at least in shared + * mode but don't care that it might be held exclusively + * (i.e. shared | excl). Hence we check if the lock is held + * in any mode rather than an explicit shared mode. + */ + return lockdep_is_held_type(rwsem, -1); +} + +bool xfs_isilocked( - xfs_inode_t *ip, + struct xfs_inode *ip, uint lock_flags) { if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) { @@ -357,20 +366,17 @@ xfs_isilocked( } if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) { - if (!(lock_flags & XFS_MMAPLOCK_SHARED)) - return !!ip->i_mmaplock.mr_writer; - return rwsem_is_locked(&ip->i_mmaplock.mr_lock); + return __xfs_rwsem_islocked(&VFS_I(ip)->i_mapping->invalidate_lock, + (lock_flags & XFS_MMAPLOCK_SHARED)); } - if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) { - if (!(lock_flags & XFS_IOLOCK_SHARED)) - return !debug_locks || - lockdep_is_held_type(&VFS_I(ip)->i_rwsem, 0); - return rwsem_is_locked(&VFS_I(ip)->i_rwsem); + if (lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) { + return __xfs_rwsem_islocked(&VFS_I(ip)->i_rwsem, + (lock_flags & XFS_IOLOCK_SHARED)); } ASSERT(0); - return 0; + return false; } #endif @@ -397,10 +403,12 @@ xfs_lockdep_subclass_ok( * parent locking. Care must be taken to ensure we don't overrun the subclass * storage fields in the class mask we build. */ -static inline int -xfs_lock_inumorder(int lock_mode, int subclass) +static inline uint +xfs_lock_inumorder( + uint lock_mode, + uint subclass) { - int class = 0; + uint class = 0; ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP | XFS_ILOCK_RTSUM))); @@ -445,13 +453,16 @@ xfs_lock_inodes( int inodes, uint lock_mode) { - int attempts = 0, i, j, try_lock; + int attempts = 0; + uint i; + int j; + bool try_lock; struct xfs_log_item *lp; /* * Currently supports between 2 and 5 inodes with exclusive locking. We * support an arbitrary depth of locking here, but absolute limits on - * inodes depend on the the type of locking and the limits placed by + * inodes depend on the type of locking and the limits placed by * lockdep annotations in xfs_lock_inumorder. These are all checked by * the asserts. */ @@ -470,9 +481,9 @@ xfs_lock_inodes( } else if (lock_mode & XFS_MMAPLOCK_EXCL) ASSERT(!(lock_mode & XFS_ILOCK_EXCL)); - try_lock = 0; - i = 0; again: + try_lock = false; + i = 0; for (; i < inodes; i++) { ASSERT(ips[i]); @@ -487,7 +498,7 @@ again: for (j = (i - 1); j >= 0 && !try_lock; j--) { lp = &ips[j]->i_itemp->ili_item; if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) - try_lock++; + try_lock = true; } } @@ -527,19 +538,15 @@ again: if ((attempts % 5) == 0) { delay(1); /* Don't just spin the CPU */ } - i = 0; - try_lock = 0; goto again; } } /* - * xfs_lock_two_inodes() can only be used to lock one type of lock at a time - - * the mmaplock or the ilock, but not more than one type at a time. If we lock - * more than one at a time, lockdep will report false positives saying we have - * violated locking orders. The iolock must be double-locked separately since - * we use i_rwsem for that. We now support taking one lock EXCL and the other - * SHARED. + * xfs_lock_two_inodes() can only be used to lock ilock. The iolock and + * mmaplock must be double-locked separately since we use i_rwsem and + * invalidate_lock for that. We now support taking one lock EXCL and the + * other SHARED. */ void xfs_lock_two_inodes( @@ -548,8 +555,6 @@ xfs_lock_two_inodes( struct xfs_inode *ip1, uint ip1_mode) { - struct xfs_inode *temp; - uint mode_temp; int attempts = 0; struct xfs_log_item *lp; @@ -557,24 +562,13 @@ xfs_lock_two_inodes( ASSERT(hweight32(ip1_mode) == 1); ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))); ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))); - ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || - !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); - ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || - !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); - ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || - !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); - ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || - !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); - + ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL))); + ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL))); ASSERT(ip0->i_ino != ip1->i_ino); if (ip0->i_ino > ip1->i_ino) { - temp = ip0; - ip0 = ip1; - ip1 = temp; - mode_temp = ip0_mode; - ip0_mode = ip1_mode; - ip1_mode = mode_temp; + swap(ip0, ip1); + swap(ip0_mode, ip1_mode); } again: @@ -598,83 +592,55 @@ xfs_lock_two_inodes( } } -void -__xfs_iflock( +uint +xfs_ip2xflags( struct xfs_inode *ip) { - wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT); - DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT); - - do { - prepare_to_wait_exclusive(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); - if (xfs_isiflocked(ip)) - io_schedule(); - } while (!xfs_iflock_nowait(ip)); - - finish_wait(wq, &wait.wq_entry); -} - -STATIC uint -_xfs_dic2xflags( - uint16_t di_flags, - uint64_t di_flags2, - bool has_attr) -{ uint flags = 0; - if (di_flags & XFS_DIFLAG_ANY) { - if (di_flags & XFS_DIFLAG_REALTIME) + if (ip->i_diflags & XFS_DIFLAG_ANY) { + if (ip->i_diflags & XFS_DIFLAG_REALTIME) flags |= FS_XFLAG_REALTIME; - if (di_flags & XFS_DIFLAG_PREALLOC) + if (ip->i_diflags & XFS_DIFLAG_PREALLOC) flags |= FS_XFLAG_PREALLOC; - if (di_flags & XFS_DIFLAG_IMMUTABLE) + if (ip->i_diflags & XFS_DIFLAG_IMMUTABLE) flags |= FS_XFLAG_IMMUTABLE; - if (di_flags & XFS_DIFLAG_APPEND) + if (ip->i_diflags & XFS_DIFLAG_APPEND) flags |= FS_XFLAG_APPEND; - if (di_flags & XFS_DIFLAG_SYNC) + if (ip->i_diflags & XFS_DIFLAG_SYNC) flags |= FS_XFLAG_SYNC; - if (di_flags & XFS_DIFLAG_NOATIME) + if (ip->i_diflags & XFS_DIFLAG_NOATIME) flags |= FS_XFLAG_NOATIME; - if (di_flags & XFS_DIFLAG_NODUMP) + if (ip->i_diflags & XFS_DIFLAG_NODUMP) flags |= FS_XFLAG_NODUMP; - if (di_flags & XFS_DIFLAG_RTINHERIT) + if (ip->i_diflags & XFS_DIFLAG_RTINHERIT) flags |= FS_XFLAG_RTINHERIT; - if (di_flags & XFS_DIFLAG_PROJINHERIT) + if (ip->i_diflags & XFS_DIFLAG_PROJINHERIT) flags |= FS_XFLAG_PROJINHERIT; - if (di_flags & XFS_DIFLAG_NOSYMLINKS) + if (ip->i_diflags & XFS_DIFLAG_NOSYMLINKS) flags |= FS_XFLAG_NOSYMLINKS; - if (di_flags & XFS_DIFLAG_EXTSIZE) + if (ip->i_diflags & XFS_DIFLAG_EXTSIZE) flags |= FS_XFLAG_EXTSIZE; - if (di_flags & XFS_DIFLAG_EXTSZINHERIT) + if (ip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) flags |= FS_XFLAG_EXTSZINHERIT; - if (di_flags & XFS_DIFLAG_NODEFRAG) + if (ip->i_diflags & XFS_DIFLAG_NODEFRAG) flags |= FS_XFLAG_NODEFRAG; - if (di_flags & XFS_DIFLAG_FILESTREAM) + if (ip->i_diflags & XFS_DIFLAG_FILESTREAM) flags |= FS_XFLAG_FILESTREAM; } - if (di_flags2 & XFS_DIFLAG2_ANY) { - if (di_flags2 & XFS_DIFLAG2_DAX) + if (ip->i_diflags2 & XFS_DIFLAG2_ANY) { + if (ip->i_diflags2 & XFS_DIFLAG2_DAX) flags |= FS_XFLAG_DAX; - if (di_flags2 & XFS_DIFLAG2_COWEXTSIZE) + if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) flags |= FS_XFLAG_COWEXTSIZE; } - if (has_attr) + if (xfs_inode_has_attr_fork(ip)) flags |= FS_XFLAG_HASATTR; - return flags; } -uint -xfs_ip2xflags( - struct xfs_inode *ip) -{ - struct xfs_icdinode *dic = &ip->i_d; - - return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip)); -} - /* * Lookups up an inode from "name". If ci_name is not NULL, then a CI match * is allowed, otherwise it has to be an exact match. If a CI match is found, @@ -683,9 +649,9 @@ xfs_ip2xflags( */ int xfs_lookup( - xfs_inode_t *dp, - struct xfs_name *name, - xfs_inode_t **ipp, + struct xfs_inode *dp, + const struct xfs_name *name, + struct xfs_inode **ipp, struct xfs_name *ci_name) { xfs_ino_t inum; @@ -693,7 +659,7 @@ xfs_lookup( trace_xfs_lookup(dp, name); - if (XFS_FORCED_SHUTDOWN(dp->i_mount)) + if (xfs_is_shutdown(dp->i_mount)) return -EIO; error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name); @@ -714,69 +680,121 @@ out_unlock: return error; } -/* - * Allocate an inode on disk and return a copy of its in-core version. - * The in-core inode is locked exclusively. Set mode, nlink, and rdev - * appropriately within the inode. The uid and gid for the inode are - * set according to the contents of the given cred structure. - * - * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc() - * has a free inode available, call xfs_iget() to obtain the in-core - * version of the allocated inode. Finally, fill in the inode and - * log its initial contents. In this case, ialloc_context would be - * set to NULL. - * - * If xfs_dialloc() does not have an available inode, it will replenish - * its supply by doing an allocation. Since we can only do one - * allocation within a transaction without deadlocks, we must commit - * the current transaction before returning the inode itself. - * In this case, therefore, we will set ialloc_context and return. - * The caller should then commit the current transaction, start a new - * transaction, and call xfs_ialloc() again to actually get the inode. - * - * To ensure that some other process does not grab the inode that - * was allocated during the first call to xfs_ialloc(), this routine - * also returns the [locked] bp pointing to the head of the freelist - * as ialloc_context. The caller should hold this buffer across - * the commit and pass it back into this routine on the second call. - * - * If we are allocating quota inodes, we do not have a parent inode - * to attach to or associate with (i.e. pip == NULL) because they - * are not linked into the directory structure - they are attached - * directly to the superblock - and so have no parent. - */ -static int -xfs_ialloc( - xfs_trans_t *tp, - xfs_inode_t *pip, - umode_t mode, - xfs_nlink_t nlink, - dev_t rdev, - prid_t prid, - xfs_buf_t **ialloc_context, - xfs_inode_t **ipp) +/* Propagate di_flags from a parent inode to a child inode. */ +static void +xfs_inode_inherit_flags( + struct xfs_inode *ip, + const struct xfs_inode *pip) { - struct xfs_mount *mp = tp->t_mountp; - xfs_ino_t ino; - xfs_inode_t *ip; - uint flags; - int error; - struct timespec64 tv; - struct inode *inode; + unsigned int di_flags = 0; + xfs_failaddr_t failaddr; + umode_t mode = VFS_I(ip)->i_mode; + + if (S_ISDIR(mode)) { + if (pip->i_diflags & XFS_DIFLAG_RTINHERIT) + di_flags |= XFS_DIFLAG_RTINHERIT; + if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) { + di_flags |= XFS_DIFLAG_EXTSZINHERIT; + ip->i_extsize = pip->i_extsize; + } + if (pip->i_diflags & XFS_DIFLAG_PROJINHERIT) + di_flags |= XFS_DIFLAG_PROJINHERIT; + } else if (S_ISREG(mode)) { + if ((pip->i_diflags & XFS_DIFLAG_RTINHERIT) && + xfs_has_realtime(ip->i_mount)) + di_flags |= XFS_DIFLAG_REALTIME; + if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) { + di_flags |= XFS_DIFLAG_EXTSIZE; + ip->i_extsize = pip->i_extsize; + } + } + if ((pip->i_diflags & XFS_DIFLAG_NOATIME) && + xfs_inherit_noatime) + di_flags |= XFS_DIFLAG_NOATIME; + if ((pip->i_diflags & XFS_DIFLAG_NODUMP) && + xfs_inherit_nodump) + di_flags |= XFS_DIFLAG_NODUMP; + if ((pip->i_diflags & XFS_DIFLAG_SYNC) && + xfs_inherit_sync) + di_flags |= XFS_DIFLAG_SYNC; + if ((pip->i_diflags & XFS_DIFLAG_NOSYMLINKS) && + xfs_inherit_nosymlinks) + di_flags |= XFS_DIFLAG_NOSYMLINKS; + if ((pip->i_diflags & XFS_DIFLAG_NODEFRAG) && + xfs_inherit_nodefrag) + di_flags |= XFS_DIFLAG_NODEFRAG; + if (pip->i_diflags & XFS_DIFLAG_FILESTREAM) + di_flags |= XFS_DIFLAG_FILESTREAM; + + ip->i_diflags |= di_flags; + + /* + * Inode verifiers on older kernels only check that the extent size + * hint is an integer multiple of the rt extent size on realtime files. + * They did not check the hint alignment on a directory with both + * rtinherit and extszinherit flags set. If the misaligned hint is + * propagated from a directory into a new realtime file, new file + * allocations will fail due to math errors in the rt allocator and/or + * trip the verifiers. Validate the hint settings in the new file so + * that we don't let broken hints propagate. + */ + failaddr = xfs_inode_validate_extsize(ip->i_mount, ip->i_extsize, + VFS_I(ip)->i_mode, ip->i_diflags); + if (failaddr) { + ip->i_diflags &= ~(XFS_DIFLAG_EXTSIZE | + XFS_DIFLAG_EXTSZINHERIT); + ip->i_extsize = 0; + } +} - /* - * Call the space management code to pick - * the on-disk inode to be allocated. - */ - error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, - ialloc_context, &ino); - if (error) - return error; - if (*ialloc_context || ino == NULLFSINO) { - *ipp = NULL; - return 0; +/* Propagate di_flags2 from a parent inode to a child inode. */ +static void +xfs_inode_inherit_flags2( + struct xfs_inode *ip, + const struct xfs_inode *pip) +{ + xfs_failaddr_t failaddr; + + if (pip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) { + ip->i_diflags2 |= XFS_DIFLAG2_COWEXTSIZE; + ip->i_cowextsize = pip->i_cowextsize; } - ASSERT(*ialloc_context == NULL); + if (pip->i_diflags2 & XFS_DIFLAG2_DAX) + ip->i_diflags2 |= XFS_DIFLAG2_DAX; + + /* Don't let invalid cowextsize hints propagate. */ + failaddr = xfs_inode_validate_cowextsize(ip->i_mount, ip->i_cowextsize, + VFS_I(ip)->i_mode, ip->i_diflags, ip->i_diflags2); + if (failaddr) { + ip->i_diflags2 &= ~XFS_DIFLAG2_COWEXTSIZE; + ip->i_cowextsize = 0; + } +} + +/* + * Initialise a newly allocated inode and return the in-core inode to the + * caller locked exclusively. + */ +int +xfs_init_new_inode( + struct user_namespace *mnt_userns, + struct xfs_trans *tp, + struct xfs_inode *pip, + xfs_ino_t ino, + umode_t mode, + xfs_nlink_t nlink, + dev_t rdev, + prid_t prid, + bool init_xattrs, + struct xfs_inode **ipp) +{ + struct inode *dir = pip ? VFS_I(pip) : NULL; + struct xfs_mount *mp = tp->t_mountp; + struct xfs_inode *ip; + unsigned int flags; + int error; + struct timespec64 tv; + struct inode *inode; /* * Protect against obviously corrupt allocation btree records. Later @@ -791,36 +809,25 @@ xfs_ialloc( } /* - * Get the in-core inode with the lock held exclusively. - * This is because we're setting fields here we need - * to prevent others from looking at until we're done. + * Get the in-core inode with the lock held exclusively to prevent + * others from looking at until we're done. */ - error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, - XFS_ILOCK_EXCL, &ip); + error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip); if (error) return error; + ASSERT(ip != NULL); inode = VFS_I(ip); - - /* - * We always convert v1 inodes to v2 now - we only support filesystems - * with >= v2 inode capability, so there is no reason for ever leaving - * an inode in v1 format. - */ - if (ip->i_d.di_version == 1) - ip->i_d.di_version = 2; - - inode->i_mode = mode; set_nlink(inode, nlink); - ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid()); - ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid()); inode->i_rdev = rdev; - ip->i_d.di_projid = prid; + ip->i_projid = prid; - if (pip && XFS_INHERIT_GID(pip)) { - ip->i_d.di_gid = pip->i_d.di_gid; - if ((VFS_I(pip)->i_mode & S_ISGID) && S_ISDIR(mode)) - inode->i_mode |= S_ISGID; + if (dir && !(dir->i_mode & S_ISGID) && xfs_has_grpid(mp)) { + inode_fsuid_set(inode, mnt_userns); + inode->i_gid = dir->i_gid; + inode->i_mode = mode; + } else { + inode_init_owner(mnt_userns, inode, dir, mode); } /* @@ -828,115 +835,66 @@ xfs_ialloc( * ID or one of the supplementary group IDs, the S_ISGID bit is cleared * (and only if the irix_sgid_inherit compatibility variable is set). */ - if ((irix_sgid_inherit) && - (inode->i_mode & S_ISGID) && - (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid)))) + if (irix_sgid_inherit && (inode->i_mode & S_ISGID) && + !vfsgid_in_group_p(i_gid_into_vfsgid(mnt_userns, inode))) inode->i_mode &= ~S_ISGID; - ip->i_d.di_size = 0; - ip->i_d.di_nextents = 0; - ASSERT(ip->i_d.di_nblocks == 0); + ip->i_disk_size = 0; + ip->i_df.if_nextents = 0; + ASSERT(ip->i_nblocks == 0); tv = current_time(inode); inode->i_mtime = tv; inode->i_atime = tv; inode->i_ctime = tv; - ip->i_d.di_extsize = 0; - ip->i_d.di_dmevmask = 0; - ip->i_d.di_dmstate = 0; - ip->i_d.di_flags = 0; + ip->i_extsize = 0; + ip->i_diflags = 0; - if (ip->i_d.di_version == 3) { + if (xfs_has_v3inodes(mp)) { inode_set_iversion(inode, 1); - ip->i_d.di_flags2 = 0; - ip->i_d.di_cowextsize = 0; - ip->i_d.di_crtime = tv; + ip->i_cowextsize = 0; + ip->i_crtime = tv; } - flags = XFS_ILOG_CORE; switch (mode & S_IFMT) { case S_IFIFO: case S_IFCHR: case S_IFBLK: case S_IFSOCK: - ip->i_d.di_format = XFS_DINODE_FMT_DEV; - ip->i_df.if_flags = 0; + ip->i_df.if_format = XFS_DINODE_FMT_DEV; flags |= XFS_ILOG_DEV; break; case S_IFREG: case S_IFDIR: - if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) { - uint di_flags = 0; - - if (S_ISDIR(mode)) { - if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) - di_flags |= XFS_DIFLAG_RTINHERIT; - if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { - di_flags |= XFS_DIFLAG_EXTSZINHERIT; - ip->i_d.di_extsize = pip->i_d.di_extsize; - } - if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) - di_flags |= XFS_DIFLAG_PROJINHERIT; - } else if (S_ISREG(mode)) { - if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) - di_flags |= XFS_DIFLAG_REALTIME; - if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { - di_flags |= XFS_DIFLAG_EXTSIZE; - ip->i_d.di_extsize = pip->i_d.di_extsize; - } - } - if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) && - xfs_inherit_noatime) - di_flags |= XFS_DIFLAG_NOATIME; - if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) && - xfs_inherit_nodump) - di_flags |= XFS_DIFLAG_NODUMP; - if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) && - xfs_inherit_sync) - di_flags |= XFS_DIFLAG_SYNC; - if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) && - xfs_inherit_nosymlinks) - di_flags |= XFS_DIFLAG_NOSYMLINKS; - if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) && - xfs_inherit_nodefrag) - di_flags |= XFS_DIFLAG_NODEFRAG; - if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM) - di_flags |= XFS_DIFLAG_FILESTREAM; - - ip->i_d.di_flags |= di_flags; - } - if (pip && - (pip->i_d.di_flags2 & XFS_DIFLAG2_ANY) && - pip->i_d.di_version == 3 && - ip->i_d.di_version == 3) { - uint64_t di_flags2 = 0; - - if (pip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) { - di_flags2 |= XFS_DIFLAG2_COWEXTSIZE; - ip->i_d.di_cowextsize = pip->i_d.di_cowextsize; - } - if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX) - di_flags2 |= XFS_DIFLAG2_DAX; - - ip->i_d.di_flags2 |= di_flags2; - } - /* FALLTHROUGH */ + if (pip && (pip->i_diflags & XFS_DIFLAG_ANY)) + xfs_inode_inherit_flags(ip, pip); + if (pip && (pip->i_diflags2 & XFS_DIFLAG2_ANY)) + xfs_inode_inherit_flags2(ip, pip); + fallthrough; case S_IFLNK: - ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; - ip->i_df.if_flags = XFS_IFEXTENTS; + ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS; ip->i_df.if_bytes = 0; ip->i_df.if_u1.if_root = NULL; break; default: ASSERT(0); } + /* - * Attribute fork settings for new inode. + * If we need to create attributes immediately after allocating the + * inode, initialise an empty attribute fork right now. We use the + * default fork offset for attributes here as we don't know exactly what + * size or how many attributes we might be adding. We can do this + * safely here because we know the data fork is completely empty and + * this saves us from needing to run a separate transaction to set the + * fork offset in the immediate future. */ - ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; - ip->i_d.di_anextents = 0; + if (init_xattrs && xfs_has_attr(mp)) { + ip->i_forkoff = xfs_default_attroffset(ip) >> 3; + xfs_ifork_init_attr(ip, XFS_DINODE_FMT_EXTENTS, 0); + } /* * Log the new values stuffed into the inode. @@ -952,146 +910,6 @@ xfs_ialloc( } /* - * Allocates a new inode from disk and return a pointer to the - * incore copy. This routine will internally commit the current - * transaction and allocate a new one if the Space Manager needed - * to do an allocation to replenish the inode free-list. - * - * This routine is designed to be called from xfs_create and - * xfs_create_dir. - * - */ -int -xfs_dir_ialloc( - xfs_trans_t **tpp, /* input: current transaction; - output: may be a new transaction. */ - xfs_inode_t *dp, /* directory within whose allocate - the inode. */ - umode_t mode, - xfs_nlink_t nlink, - dev_t rdev, - prid_t prid, /* project id */ - xfs_inode_t **ipp) /* pointer to inode; it will be - locked. */ -{ - xfs_trans_t *tp; - xfs_inode_t *ip; - xfs_buf_t *ialloc_context = NULL; - int code; - void *dqinfo; - uint tflags; - - tp = *tpp; - ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); - - /* - * xfs_ialloc will return a pointer to an incore inode if - * the Space Manager has an available inode on the free - * list. Otherwise, it will do an allocation and replenish - * the freelist. Since we can only do one allocation per - * transaction without deadlocks, we will need to commit the - * current transaction and start a new one. We will then - * need to call xfs_ialloc again to get the inode. - * - * If xfs_ialloc did an allocation to replenish the freelist, - * it returns the bp containing the head of the freelist as - * ialloc_context. We will hold a lock on it across the - * transaction commit so that no other process can steal - * the inode(s) that we've just allocated. - */ - code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, &ialloc_context, - &ip); - - /* - * Return an error if we were unable to allocate a new inode. - * This should only happen if we run out of space on disk or - * encounter a disk error. - */ - if (code) { - *ipp = NULL; - return code; - } - if (!ialloc_context && !ip) { - *ipp = NULL; - return -ENOSPC; - } - - /* - * If the AGI buffer is non-NULL, then we were unable to get an - * inode in one operation. We need to commit the current - * transaction and call xfs_ialloc() again. It is guaranteed - * to succeed the second time. - */ - if (ialloc_context) { - /* - * Normally, xfs_trans_commit releases all the locks. - * We call bhold to hang on to the ialloc_context across - * the commit. Holding this buffer prevents any other - * processes from doing any allocations in this - * allocation group. - */ - xfs_trans_bhold(tp, ialloc_context); - - /* - * We want the quota changes to be associated with the next - * transaction, NOT this one. So, detach the dqinfo from this - * and attach it to the next transaction. - */ - dqinfo = NULL; - tflags = 0; - if (tp->t_dqinfo) { - dqinfo = (void *)tp->t_dqinfo; - tp->t_dqinfo = NULL; - tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY; - tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY); - } - - code = xfs_trans_roll(&tp); - - /* - * Re-attach the quota info that we detached from prev trx. - */ - if (dqinfo) { - tp->t_dqinfo = dqinfo; - tp->t_flags |= tflags; - } - - if (code) { - xfs_buf_relse(ialloc_context); - *tpp = tp; - *ipp = NULL; - return code; - } - xfs_trans_bjoin(tp, ialloc_context); - - /* - * Call ialloc again. Since we've locked out all - * other allocations in this allocation group, - * this call should always succeed. - */ - code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, - &ialloc_context, &ip); - - /* - * If we get an error at this point, return to the caller - * so that the current transaction can be aborted. - */ - if (code) { - *tpp = tp; - *ipp = NULL; - return code; - } - ASSERT(!ialloc_context && ip); - - } - - *ipp = ip; - *tpp = tp; - - return 0; -} - -/* * Decrement the link count on an inode & log the change. If this causes the * link count to go to zero, move the inode to AGI unlinked list so that it can * be freed when the last active reference goes away via xfs_inactive(). @@ -1122,17 +940,18 @@ xfs_bumplink( { xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); - ASSERT(ip->i_d.di_version > 1); inc_nlink(VFS_I(ip)); xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); } int xfs_create( + struct user_namespace *mnt_userns, xfs_inode_t *dp, struct xfs_name *name, umode_t mode, dev_t rdev, + bool init_xattrs, xfs_inode_t **ipp) { int is_dir = S_ISDIR(mode); @@ -1147,10 +966,11 @@ xfs_create( struct xfs_dquot *pdqp = NULL; struct xfs_trans_res *tres; uint resblks; + xfs_ino_t ino; trace_xfs_create(dp, name); - if (XFS_FORCED_SHUTDOWN(mp)) + if (xfs_is_shutdown(mp)) return -EIO; prid = xfs_get_initial_prid(dp); @@ -1158,10 +978,10 @@ xfs_create( /* * Make sure that we have allocated dquot(s) on disk. */ - error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()), - xfs_kgid_to_gid(current_fsgid()), prid, - XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, - &udqp, &gdqp, &pdqp); + error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(mnt_userns, &init_user_ns), + mapped_fsgid(mnt_userns, &init_user_ns), prid, + XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, + &udqp, &gdqp, &pdqp); if (error) return error; @@ -1179,38 +999,35 @@ xfs_create( * the case we'll drop the one we have and get a more * appropriate transaction later. */ - error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp); + error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks, + &tp); if (error == -ENOSPC) { /* flush outstanding delalloc blocks and retry */ xfs_flush_inodes(mp); - error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp); + error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, + resblks, &tp); } if (error) - goto out_release_inode; + goto out_release_dquots; xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT); unlock_dp_on_error = true; /* - * Reserve disk quota and the inode. - */ - error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp, - pdqp, resblks, 1, 0); - if (error) - goto out_trans_cancel; - - /* * A newly created regular or special file just has one directory * entry pointing to them, but a directory also the "." entry * pointing to itself. */ - error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev, prid, &ip); + error = xfs_dialloc(&tp, dp->i_ino, mode, &ino); + if (!error) + error = xfs_init_new_inode(mnt_userns, tp, dp, ino, mode, + is_dir ? 2 : 1, rdev, prid, init_xattrs, &ip); if (error) goto out_trans_cancel; /* * Now we join the directory inode to the transaction. We do not do it - * earlier because xfs_dir_ialloc might commit the previous transaction + * earlier because xfs_dialloc might commit the previous transaction * (and release all the locks). An error from here on will result in * the transaction cancel unlocking dp so don't do it explicitly in the * error path. @@ -1219,8 +1036,7 @@ xfs_create( unlock_dp_on_error = false; error = xfs_dir_createname(tp, dp, name, ip->i_ino, - resblks ? - resblks - XFS_IALLOC_SPACE_RES(mp) : 0); + resblks - XFS_IALLOC_SPACE_RES(mp)); if (error) { ASSERT(error != -ENOSPC); goto out_trans_cancel; @@ -1241,7 +1057,7 @@ xfs_create( * create transaction goes to disk before returning to * the user. */ - if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) + if (xfs_has_wsync(mp) || xfs_has_dirsync(mp)) xfs_trans_set_sync(tp); /* @@ -1274,7 +1090,7 @@ xfs_create( xfs_finish_inode_setup(ip); xfs_irele(ip); } - + out_release_dquots: xfs_qm_dqrele(udqp); xfs_qm_dqrele(gdqp); xfs_qm_dqrele(pdqp); @@ -1286,6 +1102,7 @@ xfs_create( int xfs_create_tmpfile( + struct user_namespace *mnt_userns, struct xfs_inode *dp, umode_t mode, struct xfs_inode **ipp) @@ -1300,8 +1117,9 @@ xfs_create_tmpfile( struct xfs_dquot *pdqp = NULL; struct xfs_trans_res *tres; uint resblks; + xfs_ino_t ino; - if (XFS_FORCED_SHUTDOWN(mp)) + if (xfs_is_shutdown(mp)) return -EIO; prid = xfs_get_initial_prid(dp); @@ -1309,30 +1127,29 @@ xfs_create_tmpfile( /* * Make sure that we have allocated dquot(s) on disk. */ - error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()), - xfs_kgid_to_gid(current_fsgid()), prid, - XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, - &udqp, &gdqp, &pdqp); + error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(mnt_userns, &init_user_ns), + mapped_fsgid(mnt_userns, &init_user_ns), prid, + XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, + &udqp, &gdqp, &pdqp); if (error) return error; resblks = XFS_IALLOC_SPACE_RES(mp); tres = &M_RES(mp)->tr_create_tmpfile; - error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp); - if (error) - goto out_release_inode; - - error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp, - pdqp, resblks, 1, 0); + error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks, + &tp); if (error) - goto out_trans_cancel; + goto out_release_dquots; - error = xfs_dir_ialloc(&tp, dp, mode, 0, 0, prid, &ip); + error = xfs_dialloc(&tp, dp->i_ino, mode, &ino); + if (!error) + error = xfs_init_new_inode(mnt_userns, tp, dp, ino, mode, + 0, 0, prid, false, &ip); if (error) goto out_trans_cancel; - if (mp->m_flags & XFS_MOUNT_WSYNC) + if (xfs_has_wsync(mp)) xfs_trans_set_sync(tp); /* @@ -1369,7 +1186,7 @@ xfs_create_tmpfile( xfs_finish_inode_setup(ip); xfs_irele(ip); } - + out_release_dquots: xfs_qm_dqrele(udqp); xfs_qm_dqrele(gdqp); xfs_qm_dqrele(pdqp); @@ -1385,14 +1202,14 @@ xfs_link( { xfs_mount_t *mp = tdp->i_mount; xfs_trans_t *tp; - int error; + int error, nospace_error = 0; int resblks; trace_xfs_link(tdp, target_name); ASSERT(!S_ISDIR(VFS_I(sip)->i_mode)); - if (XFS_FORCED_SHUTDOWN(mp)) + if (xfs_is_shutdown(mp)) return -EIO; error = xfs_qm_dqattach(sip); @@ -1404,26 +1221,18 @@ xfs_link( goto std_return; resblks = XFS_LINK_SPACE_RES(mp, target_name->len); - error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp); - if (error == -ENOSPC) { - resblks = 0; - error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp); - } + error = xfs_trans_alloc_dir(tdp, &M_RES(mp)->tr_link, sip, &resblks, + &tp, &nospace_error); if (error) goto std_return; - xfs_lock_two_inodes(sip, XFS_ILOCK_EXCL, tdp, XFS_ILOCK_EXCL); - - xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL); - xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL); - /* * If we are using project inheritance, we only allow hard link * creation in our tree when the project IDs are the same; else * the tree quota mechanism could be circumvented. */ - if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) && - tdp->i_d.di_projid != sip->i_d.di_projid)) { + if (unlikely((tdp->i_diflags & XFS_DIFLAG_PROJINHERIT) && + tdp->i_projid != sip->i_projid)) { error = -EXDEV; goto error_return; } @@ -1438,7 +1247,11 @@ xfs_link( * Handle initial link state of O_TMPFILE inode */ if (VFS_I(sip)->i_nlink == 0) { - error = xfs_iunlink_remove(tp, sip); + struct xfs_perag *pag; + + pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, sip->i_ino)); + error = xfs_iunlink_remove(tp, pag, sip); + xfs_perag_put(pag); if (error) goto error_return; } @@ -1457,7 +1270,7 @@ xfs_link( * link transaction goes to disk before returning to * the user. */ - if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) + if (xfs_has_wsync(mp) || xfs_has_dirsync(mp)) xfs_trans_set_sync(tp); return xfs_trans_commit(tp); @@ -1465,6 +1278,8 @@ xfs_link( error_return: xfs_trans_cancel(tp); std_return: + if (error == -ENOSPC && nospace_error) + error = nospace_error; return error; } @@ -1478,10 +1293,10 @@ xfs_itruncate_clear_reflink_flags( if (!xfs_is_reflink_inode(ip)) return; - dfork = XFS_IFORK_PTR(ip, XFS_DATA_FORK); - cfork = XFS_IFORK_PTR(ip, XFS_COW_FORK); + dfork = xfs_ifork_ptr(ip, XFS_DATA_FORK); + cfork = xfs_ifork_ptr(ip, XFS_COW_FORK); if (dfork->if_bytes == 0 && cfork->if_bytes == 0) - ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK; + ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK; if (cfork->if_bytes == 0) xfs_inode_clear_cowblocks_tag(ip); } @@ -1545,7 +1360,7 @@ xfs_itruncate_extents_flags( * the page cache can't scale that far. */ first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); - if (first_unmap_block >= XFS_MAX_FILEOFF) { + if (!xfs_verify_fileoff(mp, first_unmap_block)) { WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF); return 0; } @@ -1558,17 +1373,10 @@ xfs_itruncate_extents_flags( if (error) goto out; - /* - * Duplicate the transaction that has the permanent - * reservation and commit the old transaction. - */ + /* free the just unmapped extents */ error = xfs_defer_finish(&tp); if (error) goto out; - - error = xfs_trans_roll_inode(&tp, ip); - if (error) - goto out; } if (whichfork == XFS_DATA_FORK) { @@ -1599,16 +1407,16 @@ xfs_release( xfs_inode_t *ip) { xfs_mount_t *mp = ip->i_mount; - int error; + int error = 0; if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0)) return 0; /* If this is a read-only mount, don't do this (would generate I/O) */ - if (mp->m_flags & XFS_MOUNT_RDONLY) + if (xfs_is_readonly(mp)) return 0; - if (!XFS_FORCED_SHUTDOWN(mp)) { + if (!xfs_is_shutdown(mp)) { int truncated; /* @@ -1635,8 +1443,16 @@ xfs_release( if (VFS_I(ip)->i_nlink == 0) return 0; - if (xfs_can_free_eofblocks(ip, false)) { + /* + * If we can't get the iolock just skip truncating the blocks past EOF + * because we could deadlock with the mmap_lock otherwise. We'll get + * another chance to drop them once the last reference to the inode is + * dropped, so we'll never leak blocks permanently. + */ + if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) + return 0; + if (xfs_can_free_eofblocks(ip, false)) { /* * Check if the inode is being opened, written and closed * frequently and we have delayed allocation blocks outstanding @@ -1652,26 +1468,20 @@ xfs_release( * place. */ if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE)) - return 0; - /* - * If we can't get the iolock just skip truncating the blocks - * past EOF because we could deadlock with the mmap_sem - * otherwise. We'll get another chance to drop them once the - * last reference to the inode is dropped, so we'll never leak - * blocks permanently. - */ - if (xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) { - error = xfs_free_eofblocks(ip); - xfs_iunlock(ip, XFS_IOLOCK_EXCL); - if (error) - return error; - } + goto out_unlock; + + error = xfs_free_eofblocks(ip); + if (error) + goto out_unlock; /* delalloc blocks after truncation means it really is dirty */ if (ip->i_delayed_blks) xfs_iflags_set(ip, XFS_IDIRTY_RELEASE); } - return 0; + +out_unlock: + xfs_iunlock(ip, XFS_IOLOCK_EXCL); + return error; } /* @@ -1689,7 +1499,7 @@ xfs_inactive_truncate( error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp); if (error) { - ASSERT(XFS_FORCED_SHUTDOWN(mp)); + ASSERT(xfs_is_shutdown(mp)); return error; } xfs_ilock(ip, XFS_ILOCK_EXCL); @@ -1700,14 +1510,14 @@ xfs_inactive_truncate( * of a system crash before the truncate completes. See the related * comment in xfs_vn_setattr_size() for details. */ - ip->i_d.di_size = 0; + ip->i_disk_size = 0; xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0); if (error) goto error_trans_cancel; - ASSERT(ip->i_d.di_nextents == 0); + ASSERT(ip->i_df.if_nextents == 0); error = xfs_trans_commit(tp); if (error) @@ -1760,28 +1570,48 @@ xfs_inactive_ifree( "Failed to remove inode(s) from unlinked list. " "Please free space, unmount and run xfs_repair."); } else { - ASSERT(XFS_FORCED_SHUTDOWN(mp)); + ASSERT(xfs_is_shutdown(mp)); } return error; } + /* + * We do not hold the inode locked across the entire rolling transaction + * here. We only need to hold it for the first transaction that + * xfs_ifree() builds, which may mark the inode XFS_ISTALE if the + * underlying cluster buffer is freed. Relogging an XFS_ISTALE inode + * here breaks the relationship between cluster buffer invalidation and + * stale inode invalidation on cluster buffer item journal commit + * completion, and can result in leaving dirty stale inodes hanging + * around in memory. + * + * We have no need for serialising this inode operation against other + * operations - we freed the inode and hence reallocation is required + * and that will serialise on reallocating the space the deferops need + * to free. Hence we can unlock the inode on the first commit of + * the transaction rather than roll it right through the deferops. This + * avoids relogging the XFS_ISTALE inode. + * + * We check that xfs_ifree() hasn't grown an internal transaction roll + * by asserting that the inode is still locked when it returns. + */ xfs_ilock(ip, XFS_ILOCK_EXCL); - xfs_trans_ijoin(tp, ip, 0); + xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); error = xfs_ifree(tp, ip); + ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); if (error) { /* * If we fail to free the inode, shut down. The cancel * might do that, we need to make sure. Otherwise the * inode might be lost for a long time or forever. */ - if (!XFS_FORCED_SHUTDOWN(mp)) { + if (!xfs_is_shutdown(mp)) { xfs_notice(mp, "%s: xfs_ifree returned error %d", __func__, error); xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); } xfs_trans_cancel(tp); - xfs_iunlock(ip, XFS_ILOCK_EXCL); return error; } @@ -1799,11 +1629,63 @@ xfs_inactive_ifree( xfs_notice(mp, "%s: xfs_trans_commit returned error %d", __func__, error); - xfs_iunlock(ip, XFS_ILOCK_EXCL); return 0; } /* + * Returns true if we need to update the on-disk metadata before we can free + * the memory used by this inode. Updates include freeing post-eof + * preallocations; freeing COW staging extents; and marking the inode free in + * the inobt if it is on the unlinked list. + */ +bool +xfs_inode_needs_inactive( + struct xfs_inode *ip) +{ + struct xfs_mount *mp = ip->i_mount; + struct xfs_ifork *cow_ifp = xfs_ifork_ptr(ip, XFS_COW_FORK); + + /* + * If the inode is already free, then there can be nothing + * to clean up here. + */ + if (VFS_I(ip)->i_mode == 0) + return false; + + /* If this is a read-only mount, don't do this (would generate I/O) */ + if (xfs_is_readonly(mp)) + return false; + + /* If the log isn't running, push inodes straight to reclaim. */ + if (xfs_is_shutdown(mp) || xfs_has_norecovery(mp)) + return false; + + /* Metadata inodes require explicit resource cleanup. */ + if (xfs_is_metadata_inode(ip)) + return false; + + /* Want to clean out the cow blocks if there are any. */ + if (cow_ifp && cow_ifp->if_bytes > 0) + return true; + + /* Unlinked files must be freed. */ + if (VFS_I(ip)->i_nlink == 0) + return true; + + /* + * This file isn't being freed, so check if there are post-eof blocks + * to free. @force is true because we are evicting an inode from the + * cache. Post-eof blocks must be freed, lest we end up with broken + * free space accounting. + * + * Note: don't bother with iolock here since lockdep complains about + * acquiring it in reclaim context. We have the only reference to the + * inode at this point anyways. + */ + return xfs_can_free_eofblocks(ip, true); +} + +/* * xfs_inactive * * This is called when the vnode reference count for the vnode @@ -1825,15 +1707,19 @@ xfs_inactive( */ if (VFS_I(ip)->i_mode == 0) { ASSERT(ip->i_df.if_broot_bytes == 0); - return; + goto out; } mp = ip->i_mount; ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY)); /* If this is a read-only mount, don't do this (would generate I/O) */ - if (mp->m_flags & XFS_MOUNT_RDONLY) - return; + if (xfs_is_readonly(mp)) + goto out; + + /* Metadata inodes require explicit resource cleanup. */ + if (xfs_is_metadata_inode(ip)) + goto out; /* Try to clean out the cow blocks if there are any. */ if (xfs_inode_has_cow_data(ip)) @@ -1852,49 +1738,47 @@ xfs_inactive( if (xfs_can_free_eofblocks(ip, true)) xfs_free_eofblocks(ip); - return; + goto out; } if (S_ISREG(VFS_I(ip)->i_mode) && - (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 || - ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0)) + (ip->i_disk_size != 0 || XFS_ISIZE(ip) != 0 || + ip->i_df.if_nextents > 0 || ip->i_delayed_blks > 0)) truncate = 1; error = xfs_qm_dqattach(ip); if (error) - return; + goto out; if (S_ISLNK(VFS_I(ip)->i_mode)) error = xfs_inactive_symlink(ip); else if (truncate) error = xfs_inactive_truncate(ip); if (error) - return; + goto out; /* * If there are attributes associated with the file then blow them away * now. The code calls a routine that recursively deconstructs the * attribute fork. If also blows away the in-core attribute fork. */ - if (XFS_IFORK_Q(ip)) { + if (xfs_inode_has_attr_fork(ip)) { error = xfs_attr_inactive(ip); if (error) - return; + goto out; } - ASSERT(!ip->i_afp); - ASSERT(ip->i_d.di_anextents == 0); - ASSERT(ip->i_d.di_forkoff == 0); + ASSERT(ip->i_forkoff == 0); /* * Free the inode. */ - error = xfs_inactive_ifree(ip); - if (error) - return; + xfs_inactive_ifree(ip); +out: /* - * Release the dquots held by inode, if any. + * We're done making metadata updates for this inode, so we can release + * the attached dquots. */ xfs_qm_dqdetach(ip); } @@ -1916,195 +1800,69 @@ xfs_inactive( * because we must walk that list to find the inode that points to the inode * being removed from the unlinked hash bucket list. * - * What if we modelled the unlinked list as a collection of records capturing - * "X.next_unlinked = Y" relations? If we indexed those records on Y, we'd - * have a fast way to look up unlinked list predecessors, which avoids the - * slow list walk. That's exactly what we do here (in-core) with a per-AG - * rhashtable. + * Hence we keep an in-memory double linked list to link each inode on an + * unlinked list. Because there are 64 unlinked lists per AGI, keeping pointer + * based lists would require having 64 list heads in the perag, one for each + * list. This is expensive in terms of memory (think millions of AGs) and cache + * misses on lookups. Instead, use the fact that inodes on the unlinked list + * must be referenced at the VFS level to keep them on the list and hence we + * have an existence guarantee for inodes on the unlinked list. * - * Because this is a backref cache, we ignore operational failures since the - * iunlink code can fall back to the slow bucket walk. The only errors that - * should bubble out are for obviously incorrect situations. - * - * All users of the backref cache MUST hold the AGI buffer lock to serialize - * access or have otherwise provided for concurrency control. + * Given we have an existence guarantee, we can use lockless inode cache lookups + * to resolve aginos to xfs inodes. This means we only need 8 bytes per inode + * for the double linked unlinked list, and we don't need any extra locking to + * keep the list safe as all manipulations are done under the AGI buffer lock. + * Keeping the list up to date does not require memory allocation, just finding + * the XFS inode and updating the next/prev unlinked list aginos. */ -/* Capture a "X.next_unlinked = Y" relationship. */ -struct xfs_iunlink { - struct rhash_head iu_rhash_head; - xfs_agino_t iu_agino; /* X */ - xfs_agino_t iu_next_unlinked; /* Y */ -}; - -/* Unlinked list predecessor lookup hashtable construction */ -static int -xfs_iunlink_obj_cmpfn( - struct rhashtable_compare_arg *arg, - const void *obj) -{ - const xfs_agino_t *key = arg->key; - const struct xfs_iunlink *iu = obj; - - if (iu->iu_next_unlinked != *key) - return 1; - return 0; -} - -static const struct rhashtable_params xfs_iunlink_hash_params = { - .min_size = XFS_AGI_UNLINKED_BUCKETS, - .key_len = sizeof(xfs_agino_t), - .key_offset = offsetof(struct xfs_iunlink, - iu_next_unlinked), - .head_offset = offsetof(struct xfs_iunlink, iu_rhash_head), - .automatic_shrinking = true, - .obj_cmpfn = xfs_iunlink_obj_cmpfn, -}; - /* - * Return X, where X.next_unlinked == @agino. Returns NULLAGINO if no such - * relation is found. + * Find an inode on the unlinked list. This does not take references to the + * inode as we have existence guarantees by holding the AGI buffer lock and that + * only unlinked, referenced inodes can be on the unlinked inode list. If we + * don't find the inode in cache, then let the caller handle the situation. */ -static xfs_agino_t -xfs_iunlink_lookup_backref( +static struct xfs_inode * +xfs_iunlink_lookup( struct xfs_perag *pag, xfs_agino_t agino) { - struct xfs_iunlink *iu; - - iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino, - xfs_iunlink_hash_params); - return iu ? iu->iu_agino : NULLAGINO; -} + struct xfs_inode *ip; -/* - * Take ownership of an iunlink cache entry and insert it into the hash table. - * If successful, the entry will be owned by the cache; if not, it is freed. - * Either way, the caller does not own @iu after this call. - */ -static int -xfs_iunlink_insert_backref( - struct xfs_perag *pag, - struct xfs_iunlink *iu) -{ - int error; + rcu_read_lock(); + ip = radix_tree_lookup(&pag->pag_ici_root, agino); - error = rhashtable_insert_fast(&pag->pagi_unlinked_hash, - &iu->iu_rhash_head, xfs_iunlink_hash_params); /* - * Fail loudly if there already was an entry because that's a sign of - * corruption of in-memory data. Also fail loudly if we see an error - * code we didn't anticipate from the rhashtable code. Currently we - * only anticipate ENOMEM. + * Inode not in memory or in RCU freeing limbo should not happen. + * Warn about this and let the caller handle the failure. */ - if (error) { - WARN(error != -ENOMEM, "iunlink cache insert error %d", error); - kmem_free(iu); + if (WARN_ON_ONCE(!ip || !ip->i_ino)) { + rcu_read_unlock(); + return NULL; } - /* - * Absorb any runtime errors that aren't a result of corruption because - * this is a cache and we can always fall back to bucket list scanning. - */ - if (error != 0 && error != -EEXIST) - error = 0; - return error; + ASSERT(!xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM)); + rcu_read_unlock(); + return ip; } -/* Remember that @prev_agino.next_unlinked = @this_agino. */ +/* Update the prev pointer of the next agino. */ static int -xfs_iunlink_add_backref( +xfs_iunlink_update_backref( struct xfs_perag *pag, xfs_agino_t prev_agino, - xfs_agino_t this_agino) -{ - struct xfs_iunlink *iu; - - if (XFS_TEST_ERROR(false, pag->pag_mount, XFS_ERRTAG_IUNLINK_FALLBACK)) - return 0; - - iu = kmem_zalloc(sizeof(*iu), KM_NOFS); - iu->iu_agino = prev_agino; - iu->iu_next_unlinked = this_agino; - - return xfs_iunlink_insert_backref(pag, iu); -} - -/* - * Replace X.next_unlinked = @agino with X.next_unlinked = @next_unlinked. - * If @next_unlinked is NULLAGINO, we drop the backref and exit. If there - * wasn't any such entry then we don't bother. - */ -static int -xfs_iunlink_change_backref( - struct xfs_perag *pag, - xfs_agino_t agino, - xfs_agino_t next_unlinked) + xfs_agino_t next_agino) { - struct xfs_iunlink *iu; - int error; + struct xfs_inode *ip; - /* Look up the old entry; if there wasn't one then exit. */ - iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino, - xfs_iunlink_hash_params); - if (!iu) + /* No update necessary if we are at the end of the list. */ + if (next_agino == NULLAGINO) return 0; - /* - * Remove the entry. This shouldn't ever return an error, but if we - * couldn't remove the old entry we don't want to add it again to the - * hash table, and if the entry disappeared on us then someone's - * violated the locking rules and we need to fail loudly. Either way - * we cannot remove the inode because internal state is or would have - * been corrupt. - */ - error = rhashtable_remove_fast(&pag->pagi_unlinked_hash, - &iu->iu_rhash_head, xfs_iunlink_hash_params); - if (error) - return error; - - /* If there is no new next entry just free our item and return. */ - if (next_unlinked == NULLAGINO) { - kmem_free(iu); - return 0; - } - - /* Update the entry and re-add it to the hash table. */ - iu->iu_next_unlinked = next_unlinked; - return xfs_iunlink_insert_backref(pag, iu); -} - -/* Set up the in-core predecessor structures. */ -int -xfs_iunlink_init( - struct xfs_perag *pag) -{ - return rhashtable_init(&pag->pagi_unlinked_hash, - &xfs_iunlink_hash_params); -} - -/* Free the in-core predecessor structures. */ -static void -xfs_iunlink_free_item( - void *ptr, - void *arg) -{ - struct xfs_iunlink *iu = ptr; - bool *freed_anything = arg; - - *freed_anything = true; - kmem_free(iu); -} - -void -xfs_iunlink_destroy( - struct xfs_perag *pag) -{ - bool freed_anything = false; - - rhashtable_free_and_destroy(&pag->pagi_unlinked_hash, - xfs_iunlink_free_item, &freed_anything); - - ASSERT(freed_anything == false || XFS_FORCED_SHUTDOWN(pag->pag_mount)); + ip = xfs_iunlink_lookup(pag, next_agino); + if (!ip) + return -EFSCORRUPTED; + ip->i_prev_unlinked = prev_agino; + return 0; } /* @@ -2114,19 +1872,19 @@ xfs_iunlink_destroy( STATIC int xfs_iunlink_update_bucket( struct xfs_trans *tp, - xfs_agnumber_t agno, + struct xfs_perag *pag, struct xfs_buf *agibp, unsigned int bucket_index, xfs_agino_t new_agino) { - struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp); + struct xfs_agi *agi = agibp->b_addr; xfs_agino_t old_value; int offset; - ASSERT(xfs_verify_agino_or_null(tp->t_mountp, agno, new_agino)); + ASSERT(xfs_verify_agino_or_null(pag, new_agino)); old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]); - trace_xfs_iunlink_update_bucket(tp->t_mountp, agno, bucket_index, + trace_xfs_iunlink_update_bucket(tp->t_mountp, pag->pag_agno, bucket_index, old_value, new_agino); /* @@ -2135,7 +1893,7 @@ xfs_iunlink_update_bucket( * head of the list. */ if (old_value == new_agino) { - xfs_buf_corruption_error(agibp); + xfs_buf_mark_corrupt(agibp); return -EFSCORRUPTED; } @@ -2146,121 +1904,20 @@ xfs_iunlink_update_bucket( return 0; } -/* Set an on-disk inode's next_unlinked pointer. */ -STATIC void -xfs_iunlink_update_dinode( - struct xfs_trans *tp, - xfs_agnumber_t agno, - xfs_agino_t agino, - struct xfs_buf *ibp, - struct xfs_dinode *dip, - struct xfs_imap *imap, - xfs_agino_t next_agino) -{ - struct xfs_mount *mp = tp->t_mountp; - int offset; - - ASSERT(xfs_verify_agino_or_null(mp, agno, next_agino)); - - trace_xfs_iunlink_update_dinode(mp, agno, agino, - be32_to_cpu(dip->di_next_unlinked), next_agino); - - dip->di_next_unlinked = cpu_to_be32(next_agino); - offset = imap->im_boffset + - offsetof(struct xfs_dinode, di_next_unlinked); - - /* need to recalc the inode CRC if appropriate */ - xfs_dinode_calc_crc(mp, dip); - xfs_trans_inode_buf(tp, ibp); - xfs_trans_log_buf(tp, ibp, offset, offset + sizeof(xfs_agino_t) - 1); - xfs_inobp_check(mp, ibp); -} - -/* Set an in-core inode's unlinked pointer and return the old value. */ -STATIC int -xfs_iunlink_update_inode( - struct xfs_trans *tp, - struct xfs_inode *ip, - xfs_agnumber_t agno, - xfs_agino_t next_agino, - xfs_agino_t *old_next_agino) -{ - struct xfs_mount *mp = tp->t_mountp; - struct xfs_dinode *dip; - struct xfs_buf *ibp; - xfs_agino_t old_value; - int error; - - ASSERT(xfs_verify_agino_or_null(mp, agno, next_agino)); - - error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 0, 0); - if (error) - return error; - - /* Make sure the old pointer isn't garbage. */ - old_value = be32_to_cpu(dip->di_next_unlinked); - if (!xfs_verify_agino_or_null(mp, agno, old_value)) { - xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, dip, - sizeof(*dip), __this_address); - error = -EFSCORRUPTED; - goto out; - } - - /* - * Since we're updating a linked list, we should never find that the - * current pointer is the same as the new value, unless we're - * terminating the list. - */ - *old_next_agino = old_value; - if (old_value == next_agino) { - if (next_agino != NULLAGINO) { - xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, - dip, sizeof(*dip), __this_address); - error = -EFSCORRUPTED; - } - goto out; - } - - /* Ok, update the new pointer. */ - xfs_iunlink_update_dinode(tp, agno, XFS_INO_TO_AGINO(mp, ip->i_ino), - ibp, dip, &ip->i_imap, next_agino); - return 0; -out: - xfs_trans_brelse(tp, ibp); - return error; -} - -/* - * This is called when the inode's link count has gone to 0 or we are creating - * a tmpfile via O_TMPFILE. The inode @ip must have nlink == 0. - * - * We place the on-disk inode on a list in the AGI. It will be pulled from this - * list when the inode is freed. - */ -STATIC int -xfs_iunlink( +static int +xfs_iunlink_insert_inode( struct xfs_trans *tp, + struct xfs_perag *pag, + struct xfs_buf *agibp, struct xfs_inode *ip) { struct xfs_mount *mp = tp->t_mountp; - struct xfs_agi *agi; - struct xfs_buf *agibp; + struct xfs_agi *agi = agibp->b_addr; xfs_agino_t next_agino; - xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, ip->i_ino); xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino); short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; int error; - ASSERT(VFS_I(ip)->i_nlink == 0); - ASSERT(VFS_I(ip)->i_mode != 0); - trace_xfs_iunlink(ip); - - /* Get the agi buffer first. It ensures lock ordering on the list. */ - error = xfs_read_agi(mp, tp, agno, &agibp); - if (error) - return error; - agi = XFS_BUF_TO_AGI(agibp); - /* * Get the index into the agi hash table for the list this inode will * go on. Make sure the pointer isn't garbage and that this inode @@ -2268,152 +1925,132 @@ xfs_iunlink( */ next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); if (next_agino == agino || - !xfs_verify_agino_or_null(mp, agno, next_agino)) { - xfs_buf_corruption_error(agibp); + !xfs_verify_agino_or_null(pag, next_agino)) { + xfs_buf_mark_corrupt(agibp); return -EFSCORRUPTED; } - if (next_agino != NULLAGINO) { - struct xfs_perag *pag; - xfs_agino_t old_agino; + /* + * Update the prev pointer in the next inode to point back to this + * inode. + */ + error = xfs_iunlink_update_backref(pag, agino, next_agino); + if (error) + return error; + if (next_agino != NULLAGINO) { /* * There is already another inode in the bucket, so point this * inode to the current head of the list. */ - error = xfs_iunlink_update_inode(tp, ip, agno, next_agino, - &old_agino); - if (error) - return error; - ASSERT(old_agino == NULLAGINO); - - /* - * agino has been unlinked, add a backref from the next inode - * back to agino. - */ - pag = xfs_perag_get(mp, agno); - error = xfs_iunlink_add_backref(pag, agino, next_agino); - xfs_perag_put(pag); + error = xfs_iunlink_log_inode(tp, ip, pag, next_agino); if (error) return error; + ip->i_next_unlinked = next_agino; } /* Point the head of the list to point to this inode. */ - return xfs_iunlink_update_bucket(tp, agno, agibp, bucket_index, agino); + return xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index, agino); } -/* Return the imap, dinode pointer, and buffer for an inode. */ +/* + * This is called when the inode's link count has gone to 0 or we are creating + * a tmpfile via O_TMPFILE. The inode @ip must have nlink == 0. + * + * We place the on-disk inode on a list in the AGI. It will be pulled from this + * list when the inode is freed. + */ STATIC int -xfs_iunlink_map_ino( +xfs_iunlink( struct xfs_trans *tp, - xfs_agnumber_t agno, - xfs_agino_t agino, - struct xfs_imap *imap, - struct xfs_dinode **dipp, - struct xfs_buf **bpp) + struct xfs_inode *ip) { struct xfs_mount *mp = tp->t_mountp; + struct xfs_perag *pag; + struct xfs_buf *agibp; int error; - imap->im_blkno = 0; - error = xfs_imap(mp, tp, XFS_AGINO_TO_INO(mp, agno, agino), imap, 0); - if (error) { - xfs_warn(mp, "%s: xfs_imap returned error %d.", - __func__, error); - return error; - } + ASSERT(VFS_I(ip)->i_nlink == 0); + ASSERT(VFS_I(ip)->i_mode != 0); + trace_xfs_iunlink(ip); - error = xfs_imap_to_bp(mp, tp, imap, dipp, bpp, 0, 0); - if (error) { - xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.", - __func__, error); - return error; - } + pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); - return 0; + /* Get the agi buffer first. It ensures lock ordering on the list. */ + error = xfs_read_agi(pag, tp, &agibp); + if (error) + goto out; + + error = xfs_iunlink_insert_inode(tp, pag, agibp, ip); +out: + xfs_perag_put(pag); + return error; } -/* - * Walk the unlinked chain from @head_agino until we find the inode that - * points to @target_agino. Return the inode number, map, dinode pointer, - * and inode cluster buffer of that inode as @agino, @imap, @dipp, and @bpp. - * - * @tp, @pag, @head_agino, and @target_agino are input parameters. - * @agino, @imap, @dipp, and @bpp are all output parameters. - * - * Do not call this function if @target_agino is the head of the list. - */ -STATIC int -xfs_iunlink_map_prev( +static int +xfs_iunlink_remove_inode( struct xfs_trans *tp, - xfs_agnumber_t agno, - xfs_agino_t head_agino, - xfs_agino_t target_agino, - xfs_agino_t *agino, - struct xfs_imap *imap, - struct xfs_dinode **dipp, - struct xfs_buf **bpp, - struct xfs_perag *pag) + struct xfs_perag *pag, + struct xfs_buf *agibp, + struct xfs_inode *ip) { struct xfs_mount *mp = tp->t_mountp; - xfs_agino_t next_agino; + struct xfs_agi *agi = agibp->b_addr; + xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino); + xfs_agino_t head_agino; + short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; int error; - ASSERT(head_agino != target_agino); - *bpp = NULL; - - /* See if our backref cache can find it faster. */ - *agino = xfs_iunlink_lookup_backref(pag, target_agino); - if (*agino != NULLAGINO) { - error = xfs_iunlink_map_ino(tp, agno, *agino, imap, dipp, bpp); - if (error) - return error; - - if (be32_to_cpu((*dipp)->di_next_unlinked) == target_agino) - return 0; + trace_xfs_iunlink_remove(ip); - /* - * If we get here the cache contents were corrupt, so drop the - * buffer and fall back to walking the bucket list. - */ - xfs_trans_brelse(tp, *bpp); - *bpp = NULL; - WARN_ON_ONCE(1); + /* + * Get the index into the agi hash table for the list this inode will + * go on. Make sure the head pointer isn't garbage. + */ + head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); + if (!xfs_verify_agino(pag, head_agino)) { + XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, + agi, sizeof(*agi)); + return -EFSCORRUPTED; } - trace_xfs_iunlink_map_prev_fallback(mp, agno); + /* + * Set our inode's next_unlinked pointer to NULL and then return + * the old pointer value so that we can update whatever was previous + * to us in the list to point to whatever was next in the list. + */ + error = xfs_iunlink_log_inode(tp, ip, pag, NULLAGINO); + if (error) + return error; - /* Otherwise, walk the entire bucket until we find it. */ - next_agino = head_agino; - while (next_agino != target_agino) { - xfs_agino_t unlinked_agino; + /* + * Update the prev pointer in the next inode to point back to previous + * inode in the chain. + */ + error = xfs_iunlink_update_backref(pag, ip->i_prev_unlinked, + ip->i_next_unlinked); + if (error) + return error; - if (*bpp) - xfs_trans_brelse(tp, *bpp); + if (head_agino != agino) { + struct xfs_inode *prev_ip; - *agino = next_agino; - error = xfs_iunlink_map_ino(tp, agno, next_agino, imap, dipp, - bpp); - if (error) - return error; + prev_ip = xfs_iunlink_lookup(pag, ip->i_prev_unlinked); + if (!prev_ip) + return -EFSCORRUPTED; - unlinked_agino = be32_to_cpu((*dipp)->di_next_unlinked); - /* - * Make sure this pointer is valid and isn't an obvious - * infinite loop. - */ - if (!xfs_verify_agino(mp, agno, unlinked_agino) || - next_agino == unlinked_agino) { - XFS_CORRUPTION_ERROR(__func__, - XFS_ERRLEVEL_LOW, mp, - *dipp, sizeof(**dipp)); - error = -EFSCORRUPTED; - return error; - } - next_agino = unlinked_agino; + error = xfs_iunlink_log_inode(tp, prev_ip, pag, + ip->i_next_unlinked); + prev_ip->i_next_unlinked = ip->i_next_unlinked; + } else { + /* Point the head of the list to the next unlinked inode. */ + error = xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index, + ip->i_next_unlinked); } - return 0; + ip->i_next_unlinked = NULLAGINO; + ip->i_prev_unlinked = NULLAGINO; + return error; } /* @@ -2422,105 +2059,116 @@ xfs_iunlink_map_prev( STATIC int xfs_iunlink_remove( struct xfs_trans *tp, + struct xfs_perag *pag, struct xfs_inode *ip) { - struct xfs_mount *mp = tp->t_mountp; - struct xfs_agi *agi; struct xfs_buf *agibp; - struct xfs_buf *last_ibp; - struct xfs_dinode *last_dip = NULL; - struct xfs_perag *pag = NULL; - xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, ip->i_ino); - xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino); - xfs_agino_t next_agino; - xfs_agino_t head_agino; - short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; int error; trace_xfs_iunlink_remove(ip); /* Get the agi buffer first. It ensures lock ordering on the list. */ - error = xfs_read_agi(mp, tp, agno, &agibp); + error = xfs_read_agi(pag, tp, &agibp); if (error) return error; - agi = XFS_BUF_TO_AGI(agibp); - /* - * Get the index into the agi hash table for the list this inode will - * go on. Make sure the head pointer isn't garbage. - */ - head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); - if (!xfs_verify_agino(mp, agno, head_agino)) { - XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, - agi, sizeof(*agi)); - return -EFSCORRUPTED; + return xfs_iunlink_remove_inode(tp, pag, agibp, ip); +} + +/* + * Look up the inode number specified and if it is not already marked XFS_ISTALE + * mark it stale. We should only find clean inodes in this lookup that aren't + * already stale. + */ +static void +xfs_ifree_mark_inode_stale( + struct xfs_perag *pag, + struct xfs_inode *free_ip, + xfs_ino_t inum) +{ + struct xfs_mount *mp = pag->pag_mount; + struct xfs_inode_log_item *iip; + struct xfs_inode *ip; + +retry: + rcu_read_lock(); + ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum)); + + /* Inode not in memory, nothing to do */ + if (!ip) { + rcu_read_unlock(); + return; } /* - * Set our inode's next_unlinked pointer to NULL and then return - * the old pointer value so that we can update whatever was previous - * to us in the list to point to whatever was next in the list. + * because this is an RCU protected lookup, we could find a recently + * freed or even reallocated inode during the lookup. We need to check + * under the i_flags_lock for a valid inode here. Skip it if it is not + * valid, the wrong inode or stale. */ - error = xfs_iunlink_update_inode(tp, ip, agno, NULLAGINO, &next_agino); - if (error) - return error; + spin_lock(&ip->i_flags_lock); + if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE)) + goto out_iflags_unlock; /* - * If there was a backref pointing from the next inode back to this - * one, remove it because we've removed this inode from the list. - * - * Later, if this inode was in the middle of the list we'll update - * this inode's backref to point from the next inode. + * Don't try to lock/unlock the current inode, but we _cannot_ skip the + * other inodes that we did not find in the list attached to the buffer + * and are not already marked stale. If we can't lock it, back off and + * retry. */ - if (next_agino != NULLAGINO) { - pag = xfs_perag_get(mp, agno); - error = xfs_iunlink_change_backref(pag, next_agino, - NULLAGINO); - if (error) - goto out; + if (ip != free_ip) { + if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) { + spin_unlock(&ip->i_flags_lock); + rcu_read_unlock(); + delay(1); + goto retry; + } } + ip->i_flags |= XFS_ISTALE; - if (head_agino == agino) { - /* Point the head of the list to the next unlinked inode. */ - error = xfs_iunlink_update_bucket(tp, agno, agibp, bucket_index, - next_agino); - if (error) - goto out; - } else { - struct xfs_imap imap; - xfs_agino_t prev_agino; + /* + * If the inode is flushing, it is already attached to the buffer. All + * we needed to do here is mark the inode stale so buffer IO completion + * will remove it from the AIL. + */ + iip = ip->i_itemp; + if (__xfs_iflags_test(ip, XFS_IFLUSHING)) { + ASSERT(!list_empty(&iip->ili_item.li_bio_list)); + ASSERT(iip->ili_last_fields); + goto out_iunlock; + } - if (!pag) - pag = xfs_perag_get(mp, agno); + /* + * Inodes not attached to the buffer can be released immediately. + * Everything else has to go through xfs_iflush_abort() on journal + * commit as the flock synchronises removal of the inode from the + * cluster buffer against inode reclaim. + */ + if (!iip || list_empty(&iip->ili_item.li_bio_list)) + goto out_iunlock; - /* We need to search the list for the inode being freed. */ - error = xfs_iunlink_map_prev(tp, agno, head_agino, agino, - &prev_agino, &imap, &last_dip, &last_ibp, - pag); - if (error) - goto out; + __xfs_iflags_set(ip, XFS_IFLUSHING); + spin_unlock(&ip->i_flags_lock); + rcu_read_unlock(); - /* Point the previous inode on the list to the next inode. */ - xfs_iunlink_update_dinode(tp, agno, prev_agino, last_ibp, - last_dip, &imap, next_agino); + /* we have a dirty inode in memory that has not yet been flushed. */ + spin_lock(&iip->ili_lock); + iip->ili_last_fields = iip->ili_fields; + iip->ili_fields = 0; + iip->ili_fsync_fields = 0; + spin_unlock(&iip->ili_lock); + ASSERT(iip->ili_last_fields); - /* - * Now we deal with the backref for this inode. If this inode - * pointed at a real inode, change the backref that pointed to - * us to point to our old next. If this inode was the end of - * the list, delete the backref that pointed to us. Note that - * change_backref takes care of deleting the backref if - * next_agino is NULLAGINO. - */ - error = xfs_iunlink_change_backref(pag, agino, next_agino); - if (error) - goto out; - } + if (ip != free_ip) + xfs_iunlock(ip, XFS_ILOCK_EXCL); + return; -out: - if (pag) - xfs_perag_put(pag); - return error; +out_iunlock: + if (ip != free_ip) + xfs_iunlock(ip, XFS_ILOCK_EXCL); +out_iflags_unlock: + spin_unlock(&ip->i_flags_lock); + rcu_read_unlock(); } /* @@ -2528,28 +2176,23 @@ out: * inodes that are in memory - they all must be marked stale and attached to * the cluster buffer. */ -STATIC int +static int xfs_ifree_cluster( - xfs_inode_t *free_ip, - xfs_trans_t *tp, + struct xfs_trans *tp, + struct xfs_perag *pag, + struct xfs_inode *free_ip, struct xfs_icluster *xic) { - xfs_mount_t *mp = free_ip->i_mount; + struct xfs_mount *mp = free_ip->i_mount; + struct xfs_ino_geometry *igeo = M_IGEO(mp); + struct xfs_buf *bp; + xfs_daddr_t blkno; + xfs_ino_t inum = xic->first_ino; int nbufs; int i, j; int ioffset; - xfs_daddr_t blkno; - xfs_buf_t *bp; - xfs_inode_t *ip; - xfs_inode_log_item_t *iip; - struct xfs_log_item *lip; - struct xfs_perag *pag; - struct xfs_ino_geometry *igeo = M_IGEO(mp); - xfs_ino_t inum; int error; - inum = xic->first_ino; - pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum)); nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster; for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) { @@ -2569,8 +2212,9 @@ xfs_ifree_cluster( /* * We obtain and lock the backing buffer first in the process - * here, as we have to ensure that any dirty inode that we - * can't get the flush lock on is attached to the buffer. + * here to ensure dirty inodes attached to the buffer remain in + * the flushing state while we mark them stale. + * * If we scan the in-memory inodes first, then buffer IO can * complete before we get a lock on it, and hence we may fail * to mark all the active inodes on the buffer stale. @@ -2593,196 +2237,84 @@ xfs_ifree_cluster( bp->b_ops = &xfs_inode_buf_ops; /* - * Walk the inodes already attached to the buffer and mark them - * stale. These will all have the flush locks held, so an - * in-memory inode walk can't lock them. By marking them all - * stale first, we will not attempt to lock them in the loop - * below as the XFS_ISTALE flag will be set. + * Now we need to set all the cached clean inodes as XFS_ISTALE, + * too. This requires lookups, and will skip inodes that we've + * already marked XFS_ISTALE. */ - list_for_each_entry(lip, &bp->b_li_list, li_bio_list) { - if (lip->li_type == XFS_LI_INODE) { - iip = (xfs_inode_log_item_t *)lip; - ASSERT(iip->ili_logged == 1); - lip->li_cb = xfs_istale_done; - xfs_trans_ail_copy_lsn(mp->m_ail, - &iip->ili_flush_lsn, - &iip->ili_item.li_lsn); - xfs_iflags_set(iip->ili_inode, XFS_ISTALE); - } - } - - - /* - * For each inode in memory attempt to add it to the inode - * buffer and set it up for being staled on buffer IO - * completion. This is safe as we've locked out tail pushing - * and flushing by locking the buffer. - * - * We have already marked every inode that was part of a - * transaction stale above, which means there is no point in - * even trying to lock them. - */ - for (i = 0; i < igeo->inodes_per_cluster; i++) { -retry: - rcu_read_lock(); - ip = radix_tree_lookup(&pag->pag_ici_root, - XFS_INO_TO_AGINO(mp, (inum + i))); - - /* Inode not in memory, nothing to do */ - if (!ip) { - rcu_read_unlock(); - continue; - } - - /* - * because this is an RCU protected lookup, we could - * find a recently freed or even reallocated inode - * during the lookup. We need to check under the - * i_flags_lock for a valid inode here. Skip it if it - * is not valid, the wrong inode or stale. - */ - spin_lock(&ip->i_flags_lock); - if (ip->i_ino != inum + i || - __xfs_iflags_test(ip, XFS_ISTALE)) { - spin_unlock(&ip->i_flags_lock); - rcu_read_unlock(); - continue; - } - spin_unlock(&ip->i_flags_lock); - - /* - * Don't try to lock/unlock the current inode, but we - * _cannot_ skip the other inodes that we did not find - * in the list attached to the buffer and are not - * already marked stale. If we can't lock it, back off - * and retry. - */ - if (ip != free_ip) { - if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) { - rcu_read_unlock(); - delay(1); - goto retry; - } - - /* - * Check the inode number again in case we're - * racing with freeing in xfs_reclaim_inode(). - * See the comments in that function for more - * information as to why the initial check is - * not sufficient. - */ - if (ip->i_ino != inum + i) { - xfs_iunlock(ip, XFS_ILOCK_EXCL); - rcu_read_unlock(); - continue; - } - } - rcu_read_unlock(); - - xfs_iflock(ip); - xfs_iflags_set(ip, XFS_ISTALE); - - /* - * we don't need to attach clean inodes or those only - * with unlogged changes (which we throw away, anyway). - */ - iip = ip->i_itemp; - if (!iip || xfs_inode_clean(ip)) { - ASSERT(ip != free_ip); - xfs_ifunlock(ip); - xfs_iunlock(ip, XFS_ILOCK_EXCL); - continue; - } - - iip->ili_last_fields = iip->ili_fields; - iip->ili_fields = 0; - iip->ili_fsync_fields = 0; - iip->ili_logged = 1; - xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, - &iip->ili_item.li_lsn); - - xfs_buf_attach_iodone(bp, xfs_istale_done, - &iip->ili_item); - - if (ip != free_ip) - xfs_iunlock(ip, XFS_ILOCK_EXCL); - } + for (i = 0; i < igeo->inodes_per_cluster; i++) + xfs_ifree_mark_inode_stale(pag, free_ip, inum + i); xfs_trans_stale_inode_buf(tp, bp); xfs_trans_binval(tp, bp); } - - xfs_perag_put(pag); return 0; } /* - * Free any local-format buffers sitting around before we reset to - * extents format. - */ -static inline void -xfs_ifree_local_data( - struct xfs_inode *ip, - int whichfork) -{ - struct xfs_ifork *ifp; - - if (XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_LOCAL) - return; - - ifp = XFS_IFORK_PTR(ip, whichfork); - xfs_idata_realloc(ip, -ifp->if_bytes, whichfork); -} - -/* - * This is called to return an inode to the inode free list. - * The inode should already be truncated to 0 length and have - * no pages associated with it. This routine also assumes that - * the inode is already a part of the transaction. + * This is called to return an inode to the inode free list. The inode should + * already be truncated to 0 length and have no pages associated with it. This + * routine also assumes that the inode is already a part of the transaction. * - * The on-disk copy of the inode will have been added to the list - * of unlinked inodes in the AGI. We need to remove the inode from - * that list atomically with respect to freeing it here. + * The on-disk copy of the inode will have been added to the list of unlinked + * inodes in the AGI. We need to remove the inode from that list atomically with + * respect to freeing it here. */ int xfs_ifree( struct xfs_trans *tp, struct xfs_inode *ip) { - int error; + struct xfs_mount *mp = ip->i_mount; + struct xfs_perag *pag; struct xfs_icluster xic = { 0 }; + struct xfs_inode_log_item *iip = ip->i_itemp; + int error; ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); ASSERT(VFS_I(ip)->i_nlink == 0); - ASSERT(ip->i_d.di_nextents == 0); - ASSERT(ip->i_d.di_anextents == 0); - ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode)); - ASSERT(ip->i_d.di_nblocks == 0); + ASSERT(ip->i_df.if_nextents == 0); + ASSERT(ip->i_disk_size == 0 || !S_ISREG(VFS_I(ip)->i_mode)); + ASSERT(ip->i_nblocks == 0); + + pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); /* - * Pull the on-disk inode from the AGI unlinked list. + * Free the inode first so that we guarantee that the AGI lock is going + * to be taken before we remove the inode from the unlinked list. This + * makes the AGI lock -> unlinked list modification order the same as + * used in O_TMPFILE creation. */ - error = xfs_iunlink_remove(tp, ip); + error = xfs_difree(tp, pag, ip->i_ino, &xic); if (error) - return error; + goto out; - error = xfs_difree(tp, ip->i_ino, &xic); + error = xfs_iunlink_remove(tp, pag, ip); if (error) - return error; + goto out; - xfs_ifree_local_data(ip, XFS_DATA_FORK); - xfs_ifree_local_data(ip, XFS_ATTR_FORK); + /* + * Free any local-format data sitting around before we reset the + * data fork to extents format. Note that the attr fork data has + * already been freed by xfs_attr_inactive. + */ + if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL) { + kmem_free(ip->i_df.if_u1.if_data); + ip->i_df.if_u1.if_data = NULL; + ip->i_df.if_bytes = 0; + } VFS_I(ip)->i_mode = 0; /* mark incore inode as free */ - ip->i_d.di_flags = 0; - ip->i_d.di_flags2 = 0; - ip->i_d.di_dmevmask = 0; - ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */ - ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; - ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; + ip->i_diflags = 0; + ip->i_diflags2 = mp->m_ino_geo.new_diflags2; + ip->i_forkoff = 0; /* mark the attr fork not in use */ + ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS; + if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS)) + xfs_iflags_clear(ip, XFS_IPRESERVE_DM_FIELDS); /* Don't attempt to replay owner changes for a deleted inode */ - ip->i_itemp->ili_fields &= ~(XFS_ILOG_AOWNER|XFS_ILOG_DOWNER); + spin_lock(&iip->ili_lock); + iip->ili_fields &= ~(XFS_ILOG_AOWNER | XFS_ILOG_DOWNER); + spin_unlock(&iip->ili_lock); /* * Bump the generation count so no one will be confused @@ -2792,8 +2324,9 @@ xfs_ifree( xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); if (xic.deleted) - error = xfs_ifree_cluster(ip, tp, &xic); - + error = xfs_ifree_cluster(tp, pag, ip, &xic); +out: + xfs_perag_put(pag); return error; } @@ -2811,7 +2344,7 @@ xfs_iunpin( trace_xfs_inode_unpin_nowait(ip, _RET_IP_); /* Give the log a push to start the unpinning I/O */ - xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0, NULL); + xfs_log_force_seq(ip->i_mount, ip->i_itemp->ili_commit_seq, 0, NULL); } @@ -2876,12 +2409,13 @@ xfs_remove( xfs_mount_t *mp = dp->i_mount; xfs_trans_t *tp = NULL; int is_dir = S_ISDIR(VFS_I(ip)->i_mode); + int dontcare; int error = 0; uint resblks; trace_xfs_remove(dp, name); - if (XFS_FORCED_SHUTDOWN(mp)) + if (xfs_is_shutdown(mp)) return -EIO; error = xfs_qm_dqattach(dp); @@ -2893,31 +2427,24 @@ xfs_remove( goto std_return; /* - * We try to get the real space reservation first, - * allowing for directory btree deletion(s) implying - * possible bmap insert(s). If we can't get the space - * reservation then we use 0 instead, and avoid the bmap - * btree insert(s) in the directory code by, if the bmap - * insert tries to happen, instead trimming the LAST - * block from the directory. + * We try to get the real space reservation first, allowing for + * directory btree deletion(s) implying possible bmap insert(s). If we + * can't get the space reservation then we use 0 instead, and avoid the + * bmap btree insert(s) in the directory code by, if the bmap insert + * tries to happen, instead trimming the LAST block from the directory. + * + * Ignore EDQUOT and ENOSPC being returned via nospace_error because + * the directory code can handle a reservationless update and we don't + * want to prevent a user from trying to free space by deleting things. */ resblks = XFS_REMOVE_SPACE_RES(mp); - error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp); - if (error == -ENOSPC) { - resblks = 0; - error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0, - &tp); - } + error = xfs_trans_alloc_dir(dp, &M_RES(mp)->tr_remove, ip, &resblks, + &tp, &dontcare); if (error) { ASSERT(error != -ENOSPC); goto std_return; } - xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL); - - xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL); - xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); - /* * If we're removing a directory perform some additional validation. */ @@ -2941,6 +2468,19 @@ xfs_remove( error = xfs_droplink(tp, ip); if (error) goto out_trans_cancel; + + /* + * Point the unlinked child directory's ".." entry to the root + * directory to eliminate back-references to inodes that may + * get freed before the child directory is closed. If the fs + * gets shrunk, this can lead to dirent inode validation errors. + */ + if (dp->i_ino != tp->t_mountp->m_sb.sb_rootino) { + error = xfs_dir_replace(tp, ip, &xfs_name_dotdot, + tp->t_mountp->m_sb.sb_rootino, 0); + if (error) + return error; + } } else { /* * When removing a non-directory we need to log the parent @@ -2967,7 +2507,7 @@ xfs_remove( * remove transaction goes to disk before returning to * the user. */ - if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) + if (xfs_has_wsync(mp) || xfs_has_dirsync(mp)) xfs_trans_set_sync(tp); error = xfs_trans_commit(tp); @@ -3044,7 +2584,7 @@ xfs_finish_rename( * If this is a synchronous mount, make sure that the rename transaction * goes to disk before returning to the user. */ - if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) + if (xfs_has_wsync(tp->t_mountp) || xfs_has_dirsync(tp->t_mountp)) xfs_trans_set_sync(tp); return xfs_trans_commit(tp); @@ -3053,7 +2593,7 @@ xfs_finish_rename( /* * xfs_cross_rename() * - * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall + * responsible for handling RENAME_EXCHANGE flag in renameat2() syscall */ STATIC int xfs_cross_rename( @@ -3162,23 +2702,36 @@ out_trans_abort: /* * xfs_rename_alloc_whiteout() * - * Return a referenced, unlinked, unlocked inode that that can be used as a + * Return a referenced, unlinked, unlocked inode that can be used as a * whiteout in a rename transaction. We use a tmpfile inode here so that if we * crash between allocating the inode and linking it into the rename transaction * recovery will free the inode and we won't leak it. */ static int xfs_rename_alloc_whiteout( + struct user_namespace *mnt_userns, + struct xfs_name *src_name, struct xfs_inode *dp, struct xfs_inode **wip) { struct xfs_inode *tmpfile; + struct qstr name; int error; - error = xfs_create_tmpfile(dp, S_IFCHR | WHITEOUT_MODE, &tmpfile); + error = xfs_create_tmpfile(mnt_userns, dp, S_IFCHR | WHITEOUT_MODE, + &tmpfile); if (error) return error; + name.name = src_name->name; + name.len = src_name->len; + error = xfs_inode_init_security(VFS_I(tmpfile), VFS_I(dp), &name); + if (error) { + xfs_finish_inode_setup(tmpfile); + xfs_irele(tmpfile); + return error; + } + /* * Prepare the tmpfile inode as if it were created through the VFS. * Complete the inode setup and flag it as linkable. nlink is already @@ -3197,6 +2750,7 @@ xfs_rename_alloc_whiteout( */ int xfs_rename( + struct user_namespace *mnt_userns, struct xfs_inode *src_dp, struct xfs_name *src_name, struct xfs_inode *src_ip, @@ -3209,12 +2763,13 @@ xfs_rename( struct xfs_trans *tp; struct xfs_inode *wip = NULL; /* whiteout inode */ struct xfs_inode *inodes[__XFS_SORT_INODES]; - struct xfs_buf *agibp; + int i; int num_inodes = __XFS_SORT_INODES; bool new_parent = (src_dp != target_dp); bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode); int spaceres; - int error; + bool retried = false; + int error, nospace_error = 0; trace_xfs_rename(src_dp, target_dp, src_name, target_name); @@ -3227,8 +2782,8 @@ xfs_rename( * appropriately. */ if (flags & RENAME_WHITEOUT) { - ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE))); - error = xfs_rename_alloc_whiteout(target_dp, &wip); + error = xfs_rename_alloc_whiteout(mnt_userns, src_name, + target_dp, &wip); if (error) return error; @@ -3239,9 +2794,12 @@ xfs_rename( xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip, inodes, &num_inodes); +retry: + nospace_error = 0; spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len); error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp); if (error == -ENOSPC) { + nospace_error = error; spaceres = 0; error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0, &tp); @@ -3260,7 +2818,7 @@ xfs_rename( * Lock all the participating inodes. Depending upon whether * the target_name exists in the target directory, and * whether the target directory is the same as the source - * directory, we can lock from 2 to 4 inodes. + * directory, we can lock from 2 to 5 inodes. */ xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL); @@ -3283,8 +2841,8 @@ xfs_rename( * into our tree when the project IDs are the same; else the * tree quota mechanism would be circumvented. */ - if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) && - target_dp->i_d.di_projid != src_ip->i_d.di_projid)) { + if (unlikely((target_dp->i_diflags & XFS_DIFLAG_PROJINHERIT) && + target_dp->i_projid != src_ip->i_projid)) { error = -EXDEV; goto out_trans_cancel; } @@ -3296,6 +2854,31 @@ xfs_rename( spaceres); /* + * Try to reserve quota to handle an expansion of the target directory. + * We'll allow the rename to continue in reservationless mode if we hit + * a space usage constraint. If we trigger reservationless mode, save + * the errno if there isn't any free space in the target directory. + */ + if (spaceres != 0) { + error = xfs_trans_reserve_quota_nblks(tp, target_dp, spaceres, + 0, false); + if (error == -EDQUOT || error == -ENOSPC) { + if (!retried) { + xfs_trans_cancel(tp); + xfs_blockgc_free_quota(target_dp, 0); + retried = true; + goto retry; + } + + nospace_error = error; + spaceres = 0; + error = 0; + } + if (error) + goto out_trans_cancel; + } + + /* * Check for expected errors before we dirty the transaction * so we can return an error without a transaction abort. */ @@ -3323,6 +2906,32 @@ xfs_rename( } /* + * Lock the AGI buffers we need to handle bumping the nlink of the + * whiteout inode off the unlinked list and to handle dropping the + * nlink of the target inode. Per locking order rules, do this in + * increasing AG order and before directory block allocation tries to + * grab AGFs because we grab AGIs before AGFs. + * + * The (vfs) caller must ensure that if src is a directory then + * target_ip is either null or an empty directory. + */ + for (i = 0; i < num_inodes && inodes[i] != NULL; i++) { + if (inodes[i] == wip || + (inodes[i] == target_ip && + (VFS_I(target_ip)->i_nlink == 1 || src_is_directory))) { + struct xfs_perag *pag; + struct xfs_buf *bp; + + pag = xfs_perag_get(mp, + XFS_INO_TO_AGNO(mp, inodes[i]->i_ino)); + error = xfs_read_agi(pag, tp, &bp); + xfs_perag_put(pag); + if (error) + goto out_trans_cancel; + } + } + + /* * Directory entry creation below may acquire the AGF. Remove * the whiteout from the unlinked list first to preserve correct * AGI/AGF locking order. This dirties the transaction so failures @@ -3335,8 +2944,13 @@ xfs_rename( * in future. */ if (wip) { + struct xfs_perag *pag; + ASSERT(VFS_I(wip)->i_nlink == 0); - error = xfs_iunlink_remove(tp, wip); + + pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, wip->i_ino)); + error = xfs_iunlink_remove(tp, pag, wip); + xfs_perag_put(pag); if (error) goto out_trans_cancel; @@ -3374,22 +2988,6 @@ xfs_rename( * In case there is already an entry with the same * name at the destination directory, remove it first. */ - - /* - * Check whether the replace operation will need to allocate - * blocks. This happens when the shortform directory lacks - * space and we have to convert it to a block format directory. - * When more blocks are necessary, we must lock the AGI first - * to preserve locking order (AGI -> AGF). - */ - if (xfs_dir2_sf_replace_needblock(target_dp, src_ip->i_ino)) { - error = xfs_read_agi(mp, tp, - XFS_INO_TO_AGNO(mp, target_ip->i_ino), - &agibp); - if (error) - goto out_trans_cancel; - } - error = xfs_dir_replace(tp, target_dp, target_name, src_ip->i_ino, spaceres); if (error) @@ -3462,12 +3060,13 @@ xfs_rename( * inode number of the whiteout inode rather than removing it * altogether. */ - if (wip) { + if (wip) error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino, spaceres); - } else + else error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino, spaceres); + if (error) goto out_trans_cancel; @@ -3486,394 +3085,105 @@ out_trans_cancel: out_release_wip: if (wip) xfs_irele(wip); + if (error == -ENOSPC && nospace_error) + error = nospace_error; return error; } -STATIC int -xfs_iflush_cluster( - struct xfs_inode *ip, - struct xfs_buf *bp) -{ - struct xfs_mount *mp = ip->i_mount; - struct xfs_perag *pag; - unsigned long first_index, mask; - int cilist_size; - struct xfs_inode **cilist; - struct xfs_inode *cip; - struct xfs_ino_geometry *igeo = M_IGEO(mp); - int nr_found; - int clcount = 0; - int i; - - pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); - - cilist_size = igeo->inodes_per_cluster * sizeof(struct xfs_inode *); - cilist = kmem_alloc(cilist_size, KM_MAYFAIL|KM_NOFS); - if (!cilist) - goto out_put; - - mask = ~(igeo->inodes_per_cluster - 1); - first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask; - rcu_read_lock(); - /* really need a gang lookup range call here */ - nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)cilist, - first_index, igeo->inodes_per_cluster); - if (nr_found == 0) - goto out_free; - - for (i = 0; i < nr_found; i++) { - cip = cilist[i]; - if (cip == ip) - continue; - - /* - * because this is an RCU protected lookup, we could find a - * recently freed or even reallocated inode during the lookup. - * We need to check under the i_flags_lock for a valid inode - * here. Skip it if it is not valid or the wrong inode. - */ - spin_lock(&cip->i_flags_lock); - if (!cip->i_ino || - __xfs_iflags_test(cip, XFS_ISTALE)) { - spin_unlock(&cip->i_flags_lock); - continue; - } - - /* - * Once we fall off the end of the cluster, no point checking - * any more inodes in the list because they will also all be - * outside the cluster. - */ - if ((XFS_INO_TO_AGINO(mp, cip->i_ino) & mask) != first_index) { - spin_unlock(&cip->i_flags_lock); - break; - } - spin_unlock(&cip->i_flags_lock); - - /* - * Do an un-protected check to see if the inode is dirty and - * is a candidate for flushing. These checks will be repeated - * later after the appropriate locks are acquired. - */ - if (xfs_inode_clean(cip) && xfs_ipincount(cip) == 0) - continue; - - /* - * Try to get locks. If any are unavailable or it is pinned, - * then this inode cannot be flushed and is skipped. - */ - - if (!xfs_ilock_nowait(cip, XFS_ILOCK_SHARED)) - continue; - if (!xfs_iflock_nowait(cip)) { - xfs_iunlock(cip, XFS_ILOCK_SHARED); - continue; - } - if (xfs_ipincount(cip)) { - xfs_ifunlock(cip); - xfs_iunlock(cip, XFS_ILOCK_SHARED); - continue; - } - - - /* - * Check the inode number again, just to be certain we are not - * racing with freeing in xfs_reclaim_inode(). See the comments - * in that function for more information as to why the initial - * check is not sufficient. - */ - if (!cip->i_ino) { - xfs_ifunlock(cip); - xfs_iunlock(cip, XFS_ILOCK_SHARED); - continue; - } - - /* - * arriving here means that this inode can be flushed. First - * re-check that it's dirty before flushing. - */ - if (!xfs_inode_clean(cip)) { - int error; - error = xfs_iflush_int(cip, bp); - if (error) { - xfs_iunlock(cip, XFS_ILOCK_SHARED); - goto cluster_corrupt_out; - } - clcount++; - } else { - xfs_ifunlock(cip); - } - xfs_iunlock(cip, XFS_ILOCK_SHARED); - } - - if (clcount) { - XFS_STATS_INC(mp, xs_icluster_flushcnt); - XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount); - } - -out_free: - rcu_read_unlock(); - kmem_free(cilist); -out_put: - xfs_perag_put(pag); - return 0; - - -cluster_corrupt_out: - /* - * Corruption detected in the clustering loop. Invalidate the - * inode buffer and shut down the filesystem. - */ - rcu_read_unlock(); - - /* - * We'll always have an inode attached to the buffer for completion - * process by the time we are called from xfs_iflush(). Hence we have - * always need to do IO completion processing to abort the inodes - * attached to the buffer. handle them just like the shutdown case in - * xfs_buf_submit(). - */ - ASSERT(bp->b_iodone); - bp->b_flags |= XBF_ASYNC; - bp->b_flags &= ~XBF_DONE; - xfs_buf_stale(bp); - xfs_buf_ioerror(bp, -EIO); - xfs_buf_ioend(bp); - - xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); - - /* abort the corrupt inode, as it was not attached to the buffer */ - xfs_iflush_abort(cip, false); - kmem_free(cilist); - xfs_perag_put(pag); - return -EFSCORRUPTED; -} - -/* - * Flush dirty inode metadata into the backing buffer. - * - * The caller must have the inode lock and the inode flush lock held. The - * inode lock will still be held upon return to the caller, and the inode - * flush lock will be released after the inode has reached the disk. - * - * The caller must write out the buffer returned in *bpp and release it. - */ -int +static int xfs_iflush( struct xfs_inode *ip, - struct xfs_buf **bpp) -{ - struct xfs_mount *mp = ip->i_mount; - struct xfs_buf *bp = NULL; - struct xfs_dinode *dip; - int error; - - XFS_STATS_INC(mp, xs_iflush_count); - - ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); - ASSERT(xfs_isiflocked(ip)); - ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || - ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); - - *bpp = NULL; - - xfs_iunpin_wait(ip); - - /* - * For stale inodes we cannot rely on the backing buffer remaining - * stale in cache for the remaining life of the stale inode and so - * xfs_imap_to_bp() below may give us a buffer that no longer contains - * inodes below. We have to check this after ensuring the inode is - * unpinned so that it is safe to reclaim the stale inode after the - * flush call. - */ - if (xfs_iflags_test(ip, XFS_ISTALE)) { - xfs_ifunlock(ip); - return 0; - } - - /* - * This may have been unpinned because the filesystem is shutting - * down forcibly. If that's the case we must not write this inode - * to disk, because the log record didn't make it to disk. - * - * We also have to remove the log item from the AIL in this case, - * as we wait for an empty AIL as part of the unmount process. - */ - if (XFS_FORCED_SHUTDOWN(mp)) { - error = -EIO; - goto abort_out; - } - - /* - * Get the buffer containing the on-disk inode. We are doing a try-lock - * operation here, so we may get an EAGAIN error. In that case, we - * simply want to return with the inode still dirty. - * - * If we get any other error, we effectively have a corruption situation - * and we cannot flush the inode, so we treat it the same as failing - * xfs_iflush_int(). - */ - error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK, - 0); - if (error == -EAGAIN) { - xfs_ifunlock(ip); - return error; - } - if (error) - goto corrupt_out; - - /* - * First flush out the inode that xfs_iflush was called with. - */ - error = xfs_iflush_int(ip, bp); - if (error) - goto corrupt_out; - - /* - * If the buffer is pinned then push on the log now so we won't - * get stuck waiting in the write for too long. - */ - if (xfs_buf_ispinned(bp)) - xfs_log_force(mp, 0); - - /* - * inode clustering: try to gather other inodes into this write - * - * Note: Any error during clustering will result in the filesystem - * being shut down and completion callbacks run on the cluster buffer. - * As we have already flushed and attached this inode to the buffer, - * it has already been aborted and released by xfs_iflush_cluster() and - * so we have no further error handling to do here. - */ - error = xfs_iflush_cluster(ip, bp); - if (error) - return error; - - *bpp = bp; - return 0; - -corrupt_out: - if (bp) - xfs_buf_relse(bp); - xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); -abort_out: - /* abort the corrupt inode, as it was not attached to the buffer */ - xfs_iflush_abort(ip, false); - return error; -} - -/* - * If there are inline format data / attr forks attached to this inode, - * make sure they're not corrupt. - */ -bool -xfs_inode_verify_forks( - struct xfs_inode *ip) -{ - struct xfs_ifork *ifp; - xfs_failaddr_t fa; - - fa = xfs_ifork_verify_data(ip, &xfs_default_ifork_ops); - if (fa) { - ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK); - xfs_inode_verifier_error(ip, -EFSCORRUPTED, "data fork", - ifp->if_u1.if_data, ifp->if_bytes, fa); - return false; - } - - fa = xfs_ifork_verify_attr(ip, &xfs_default_ifork_ops); - if (fa) { - ifp = XFS_IFORK_PTR(ip, XFS_ATTR_FORK); - xfs_inode_verifier_error(ip, -EFSCORRUPTED, "attr fork", - ifp ? ifp->if_u1.if_data : NULL, - ifp ? ifp->if_bytes : 0, fa); - return false; - } - return true; -} - -STATIC int -xfs_iflush_int( - struct xfs_inode *ip, struct xfs_buf *bp) { struct xfs_inode_log_item *iip = ip->i_itemp; struct xfs_dinode *dip; struct xfs_mount *mp = ip->i_mount; + int error; ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); - ASSERT(xfs_isiflocked(ip)); - ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || - ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); - ASSERT(iip != NULL && iip->ili_fields != 0); - ASSERT(ip->i_d.di_version > 1); + ASSERT(xfs_iflags_test(ip, XFS_IFLUSHING)); + ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE || + ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); + ASSERT(iip->ili_item.li_buf == bp); - /* set *dip = inode's place in the buffer */ dip = xfs_buf_offset(bp, ip->i_imap.im_boffset); + /* + * We don't flush the inode if any of the following checks fail, but we + * do still update the log item and attach to the backing buffer as if + * the flush happened. This is a formality to facilitate predictable + * error handling as the caller will shutdown and fail the buffer. + */ + error = -EFSCORRUPTED; if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC), mp, XFS_ERRTAG_IFLUSH_1)) { xfs_alert_tag(mp, XFS_PTAG_IFLUSH, - "%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT, + "%s: Bad inode %llu magic number 0x%x, ptr "PTR_FMT, __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip); - goto corrupt_out; + goto flush_out; } if (S_ISREG(VFS_I(ip)->i_mode)) { if (XFS_TEST_ERROR( - (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && - (ip->i_d.di_format != XFS_DINODE_FMT_BTREE), + ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS && + ip->i_df.if_format != XFS_DINODE_FMT_BTREE, mp, XFS_ERRTAG_IFLUSH_3)) { xfs_alert_tag(mp, XFS_PTAG_IFLUSH, - "%s: Bad regular inode %Lu, ptr "PTR_FMT, + "%s: Bad regular inode %llu, ptr "PTR_FMT, __func__, ip->i_ino, ip); - goto corrupt_out; + goto flush_out; } } else if (S_ISDIR(VFS_I(ip)->i_mode)) { if (XFS_TEST_ERROR( - (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && - (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) && - (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL), + ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS && + ip->i_df.if_format != XFS_DINODE_FMT_BTREE && + ip->i_df.if_format != XFS_DINODE_FMT_LOCAL, mp, XFS_ERRTAG_IFLUSH_4)) { xfs_alert_tag(mp, XFS_PTAG_IFLUSH, - "%s: Bad directory inode %Lu, ptr "PTR_FMT, + "%s: Bad directory inode %llu, ptr "PTR_FMT, __func__, ip->i_ino, ip); - goto corrupt_out; + goto flush_out; } } - if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents > - ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) { + if (XFS_TEST_ERROR(ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af) > + ip->i_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) { xfs_alert_tag(mp, XFS_PTAG_IFLUSH, - "%s: detected corrupt incore inode %Lu, " - "total extents = %d, nblocks = %Ld, ptr "PTR_FMT, + "%s: detected corrupt incore inode %llu, " + "total extents = %llu nblocks = %lld, ptr "PTR_FMT, __func__, ip->i_ino, - ip->i_d.di_nextents + ip->i_d.di_anextents, - ip->i_d.di_nblocks, ip); - goto corrupt_out; + ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af), + ip->i_nblocks, ip); + goto flush_out; } - if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize, + if (XFS_TEST_ERROR(ip->i_forkoff > mp->m_sb.sb_inodesize, mp, XFS_ERRTAG_IFLUSH_6)) { xfs_alert_tag(mp, XFS_PTAG_IFLUSH, - "%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT, - __func__, ip->i_ino, ip->i_d.di_forkoff, ip); - goto corrupt_out; + "%s: bad inode %llu, forkoff 0x%x, ptr "PTR_FMT, + __func__, ip->i_ino, ip->i_forkoff, ip); + goto flush_out; } /* - * Inode item log recovery for v2 inodes are dependent on the - * di_flushiter count for correct sequencing. We bump the flush - * iteration count so we can detect flushes which postdate a log record - * during recovery. This is redundant as we now log every change and - * hence this can't happen but we need to still do it to ensure - * backwards compatibility with old kernels that predate logging all - * inode changes. + * Inode item log recovery for v2 inodes are dependent on the flushiter + * count for correct sequencing. We bump the flush iteration count so + * we can detect flushes which postdate a log record during recovery. + * This is redundant as we now log every change and hence this can't + * happen but we need to still do it to ensure backwards compatibility + * with old kernels that predate logging all inode changes. */ - if (ip->i_d.di_version < 3) - ip->i_d.di_flushiter++; + if (!xfs_has_v3inodes(mp)) + ip->i_flushiter++; - /* Check the inline fork data before we write out. */ - if (!xfs_inode_verify_forks(ip)) - goto corrupt_out; + /* + * If there are inline format data / attr forks attached to this inode, + * make sure they are not corrupt. + */ + if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL && + xfs_ifork_verify_local_data(ip)) + goto flush_out; + if (xfs_inode_has_attr_fork(ip) && + ip->i_af.if_format == XFS_DINODE_FMT_LOCAL && + xfs_ifork_verify_local_attr(ip)) + goto flush_out; /* * Copy the dirty parts of the inode into the on-disk inode. We always @@ -3883,13 +3193,14 @@ xfs_iflush_int( xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn); /* Wrap, we never let the log put out DI_MAX_FLUSH */ - if (ip->i_d.di_flushiter == DI_MAX_FLUSH) - ip->i_d.di_flushiter = 0; + if (!xfs_has_v3inodes(mp)) { + if (ip->i_flushiter == DI_MAX_FLUSH) + ip->i_flushiter = 0; + } xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK); - if (XFS_IFORK_Q(ip)) + if (xfs_inode_has_attr_fork(ip)) xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK); - xfs_inobp_check(mp, bp); /* * We've recorded everything logged in the inode, so we'd like to clear @@ -3902,45 +3213,154 @@ xfs_iflush_int( * * What we do is move the bits to the ili_last_fields field. When * logging the inode, these bits are moved back to the ili_fields field. - * In the xfs_iflush_done() routine we clear ili_last_fields, since we - * know that the information those bits represent is permanently on + * In the xfs_buf_inode_iodone() routine we clear ili_last_fields, since + * we know that the information those bits represent is permanently on * disk. As long as the flush completes before the inode is logged * again, then both ili_fields and ili_last_fields will be cleared. - * - * We can play with the ili_fields bits here, because the inode lock - * must be held exclusively in order to set bits there and the flush - * lock protects the ili_last_fields bits. Set ili_logged so the flush - * done routine can tell whether or not to look in the AIL. Also, store - * the current LSN of the inode so that we can tell whether the item has - * moved in the AIL from xfs_iflush_done(). In order to read the lsn we - * need the AIL lock, because it is a 64 bit value that cannot be read - * atomically. */ + error = 0; +flush_out: + spin_lock(&iip->ili_lock); iip->ili_last_fields = iip->ili_fields; iip->ili_fields = 0; iip->ili_fsync_fields = 0; - iip->ili_logged = 1; + spin_unlock(&iip->ili_lock); + /* + * Store the current LSN of the inode so that we can tell whether the + * item has moved in the AIL from xfs_buf_inode_iodone(). + */ xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, &iip->ili_item.li_lsn); + /* generate the checksum. */ + xfs_dinode_calc_crc(mp, dip); + return error; +} + +/* + * Non-blocking flush of dirty inode metadata into the backing buffer. + * + * The caller must have a reference to the inode and hold the cluster buffer + * locked. The function will walk across all the inodes on the cluster buffer it + * can find and lock without blocking, and flush them to the cluster buffer. + * + * On successful flushing of at least one inode, the caller must write out the + * buffer and release it. If no inodes are flushed, -EAGAIN will be returned and + * the caller needs to release the buffer. On failure, the filesystem will be + * shut down, the buffer will have been unlocked and released, and EFSCORRUPTED + * will be returned. + */ +int +xfs_iflush_cluster( + struct xfs_buf *bp) +{ + struct xfs_mount *mp = bp->b_mount; + struct xfs_log_item *lip, *n; + struct xfs_inode *ip; + struct xfs_inode_log_item *iip; + int clcount = 0; + int error = 0; + /* - * Attach the function xfs_iflush_done to the inode's - * buffer. This will remove the inode from the AIL - * and unlock the inode's flush lock when the inode is - * completely written to disk. + * We must use the safe variant here as on shutdown xfs_iflush_abort() + * will remove itself from the list. */ - xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item); + list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) { + iip = (struct xfs_inode_log_item *)lip; + ip = iip->ili_inode; - /* generate the checksum. */ - xfs_dinode_calc_crc(mp, dip); + /* + * Quick and dirty check to avoid locks if possible. + */ + if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) + continue; + if (xfs_ipincount(ip)) + continue; + + /* + * The inode is still attached to the buffer, which means it is + * dirty but reclaim might try to grab it. Check carefully for + * that, and grab the ilock while still holding the i_flags_lock + * to guarantee reclaim will not be able to reclaim this inode + * once we drop the i_flags_lock. + */ + spin_lock(&ip->i_flags_lock); + ASSERT(!__xfs_iflags_test(ip, XFS_ISTALE)); + if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) { + spin_unlock(&ip->i_flags_lock); + continue; + } + + /* + * ILOCK will pin the inode against reclaim and prevent + * concurrent transactions modifying the inode while we are + * flushing the inode. If we get the lock, set the flushing + * state before we drop the i_flags_lock. + */ + if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) { + spin_unlock(&ip->i_flags_lock); + continue; + } + __xfs_iflags_set(ip, XFS_IFLUSHING); + spin_unlock(&ip->i_flags_lock); + + /* + * Abort flushing this inode if we are shut down because the + * inode may not currently be in the AIL. This can occur when + * log I/O failure unpins the inode without inserting into the + * AIL, leaving a dirty/unpinned inode attached to the buffer + * that otherwise looks like it should be flushed. + */ + if (xlog_is_shutdown(mp->m_log)) { + xfs_iunpin_wait(ip); + xfs_iflush_abort(ip); + xfs_iunlock(ip, XFS_ILOCK_SHARED); + error = -EIO; + continue; + } + + /* don't block waiting on a log force to unpin dirty inodes */ + if (xfs_ipincount(ip)) { + xfs_iflags_clear(ip, XFS_IFLUSHING); + xfs_iunlock(ip, XFS_ILOCK_SHARED); + continue; + } - ASSERT(!list_empty(&bp->b_li_list)); - ASSERT(bp->b_iodone != NULL); + if (!xfs_inode_clean(ip)) + error = xfs_iflush(ip, bp); + else + xfs_iflags_clear(ip, XFS_IFLUSHING); + xfs_iunlock(ip, XFS_ILOCK_SHARED); + if (error) + break; + clcount++; + } + + if (error) { + /* + * Shutdown first so we kill the log before we release this + * buffer. If it is an INODE_ALLOC buffer and pins the tail + * of the log, failing it before the _log_ is shut down can + * result in the log tail being moved forward in the journal + * on disk because log writes can still be taking place. Hence + * unpinning the tail will allow the ICREATE intent to be + * removed from the log an recovery will fail with uninitialised + * inode cluster buffers. + */ + xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); + bp->b_flags |= XBF_ASYNC; + xfs_buf_ioend_fail(bp); + return error; + } + + if (!clcount) + return -EAGAIN; + + XFS_STATS_INC(mp, xs_icluster_flushcnt); + XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount); return 0; -corrupt_out: - return -EFSCORRUPTED; } /* Release an inode. */ @@ -3951,3 +3371,170 @@ xfs_irele( trace_xfs_irele(ip, _RET_IP_); iput(VFS_I(ip)); } + +/* + * Ensure all commited transactions touching the inode are written to the log. + */ +int +xfs_log_force_inode( + struct xfs_inode *ip) +{ + xfs_csn_t seq = 0; + + xfs_ilock(ip, XFS_ILOCK_SHARED); + if (xfs_ipincount(ip)) + seq = ip->i_itemp->ili_commit_seq; + xfs_iunlock(ip, XFS_ILOCK_SHARED); + + if (!seq) + return 0; + return xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC, NULL); +} + +/* + * Grab the exclusive iolock for a data copy from src to dest, making sure to + * abide vfs locking order (lowest pointer value goes first) and breaking the + * layout leases before proceeding. The loop is needed because we cannot call + * the blocking break_layout() with the iolocks held, and therefore have to + * back out both locks. + */ +static int +xfs_iolock_two_inodes_and_break_layout( + struct inode *src, + struct inode *dest) +{ + int error; + + if (src > dest) + swap(src, dest); + +retry: + /* Wait to break both inodes' layouts before we start locking. */ + error = break_layout(src, true); + if (error) + return error; + if (src != dest) { + error = break_layout(dest, true); + if (error) + return error; + } + + /* Lock one inode and make sure nobody got in and leased it. */ + inode_lock(src); + error = break_layout(src, false); + if (error) { + inode_unlock(src); + if (error == -EWOULDBLOCK) + goto retry; + return error; + } + + if (src == dest) + return 0; + + /* Lock the other inode and make sure nobody got in and leased it. */ + inode_lock_nested(dest, I_MUTEX_NONDIR2); + error = break_layout(dest, false); + if (error) { + inode_unlock(src); + inode_unlock(dest); + if (error == -EWOULDBLOCK) + goto retry; + return error; + } + + return 0; +} + +static int +xfs_mmaplock_two_inodes_and_break_dax_layout( + struct xfs_inode *ip1, + struct xfs_inode *ip2) +{ + int error; + bool retry; + struct page *page; + + if (ip1->i_ino > ip2->i_ino) + swap(ip1, ip2); + +again: + retry = false; + /* Lock the first inode */ + xfs_ilock(ip1, XFS_MMAPLOCK_EXCL); + error = xfs_break_dax_layouts(VFS_I(ip1), &retry); + if (error || retry) { + xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL); + if (error == 0 && retry) + goto again; + return error; + } + + if (ip1 == ip2) + return 0; + + /* Nested lock the second inode */ + xfs_ilock(ip2, xfs_lock_inumorder(XFS_MMAPLOCK_EXCL, 1)); + /* + * We cannot use xfs_break_dax_layouts() directly here because it may + * need to unlock & lock the XFS_MMAPLOCK_EXCL which is not suitable + * for this nested lock case. + */ + page = dax_layout_busy_page(VFS_I(ip2)->i_mapping); + if (page && page_ref_count(page) != 1) { + xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL); + xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL); + goto again; + } + + return 0; +} + +/* + * Lock two inodes so that userspace cannot initiate I/O via file syscalls or + * mmap activity. + */ +int +xfs_ilock2_io_mmap( + struct xfs_inode *ip1, + struct xfs_inode *ip2) +{ + int ret; + + ret = xfs_iolock_two_inodes_and_break_layout(VFS_I(ip1), VFS_I(ip2)); + if (ret) + return ret; + + if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) { + ret = xfs_mmaplock_two_inodes_and_break_dax_layout(ip1, ip2); + if (ret) { + inode_unlock(VFS_I(ip2)); + if (ip1 != ip2) + inode_unlock(VFS_I(ip1)); + return ret; + } + } else + filemap_invalidate_lock_two(VFS_I(ip1)->i_mapping, + VFS_I(ip2)->i_mapping); + + return 0; +} + +/* Unlock both inodes to allow IO and mmap activity. */ +void +xfs_iunlock2_io_mmap( + struct xfs_inode *ip1, + struct xfs_inode *ip2) +{ + if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) { + xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL); + if (ip1 != ip2) + xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL); + } else + filemap_invalidate_unlock_two(VFS_I(ip1)->i_mapping, + VFS_I(ip2)->i_mapping); + + inode_unlock(VFS_I(ip2)); + if (ip1 != ip2) + inode_unlock(VFS_I(ip1)); +} |