aboutsummaryrefslogtreecommitdiffstats
path: root/include/linux/crypto.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/linux/crypto.h')
-rw-r--r--include/linux/crypto.h248
1 files changed, 52 insertions, 196 deletions
diff --git a/include/linux/crypto.h b/include/linux/crypto.h
index 763863dbc079..2324ab6f1846 100644
--- a/include/linux/crypto.h
+++ b/include/linux/crypto.h
@@ -16,9 +16,8 @@
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/bug.h>
+#include <linux/refcount.h>
#include <linux/slab.h>
-#include <linux/string.h>
-#include <linux/uaccess.h>
#include <linux/completion.h>
/*
@@ -61,8 +60,8 @@
#define CRYPTO_ALG_ASYNC 0x00000080
/*
- * Set this bit if and only if the algorithm requires another algorithm of
- * the same type to handle corner cases.
+ * Set if the algorithm (or an algorithm which it uses) requires another
+ * algorithm of the same type to handle corner cases.
*/
#define CRYPTO_ALG_NEED_FALLBACK 0x00000100
@@ -102,6 +101,47 @@
#define CRYPTO_NOLOAD 0x00008000
/*
+ * The algorithm may allocate memory during request processing, i.e. during
+ * encryption, decryption, or hashing. Users can request an algorithm with this
+ * flag unset if they can't handle memory allocation failures.
+ *
+ * This flag is currently only implemented for algorithms of type "skcipher",
+ * "aead", "ahash", "shash", and "cipher". Algorithms of other types might not
+ * have this flag set even if they allocate memory.
+ *
+ * In some edge cases, algorithms can allocate memory regardless of this flag.
+ * To avoid these cases, users must obey the following usage constraints:
+ * skcipher:
+ * - The IV buffer and all scatterlist elements must be aligned to the
+ * algorithm's alignmask.
+ * - If the data were to be divided into chunks of size
+ * crypto_skcipher_walksize() (with any remainder going at the end), no
+ * chunk can cross a page boundary or a scatterlist element boundary.
+ * aead:
+ * - The IV buffer and all scatterlist elements must be aligned to the
+ * algorithm's alignmask.
+ * - The first scatterlist element must contain all the associated data,
+ * and its pages must be !PageHighMem.
+ * - If the plaintext/ciphertext were to be divided into chunks of size
+ * crypto_aead_walksize() (with the remainder going at the end), no chunk
+ * can cross a page boundary or a scatterlist element boundary.
+ * ahash:
+ * - The result buffer must be aligned to the algorithm's alignmask.
+ * - crypto_ahash_finup() must not be used unless the algorithm implements
+ * ->finup() natively.
+ */
+#define CRYPTO_ALG_ALLOCATES_MEMORY 0x00010000
+
+/*
+ * Mark an algorithm as a service implementation only usable by a
+ * template and never by a normal user of the kernel crypto API.
+ * This is intended to be used by algorithms that are themselves
+ * not FIPS-approved but may instead be used to implement parts of
+ * a FIPS-approved algorithm (e.g., dh vs. ffdhe2048(dh)).
+ */
+#define CRYPTO_ALG_FIPS_INTERNAL 0x00020000
+
+/*
* Transform masks and values (for crt_flags).
*/
#define CRYPTO_TFM_NEED_KEY 0x00000001
@@ -120,9 +160,12 @@
* The macro CRYPTO_MINALIGN_ATTR (along with the void * type in the actual
* declaration) is used to ensure that the crypto_tfm context structure is
* aligned correctly for the given architecture so that there are no alignment
- * faults for C data types. In particular, this is required on platforms such
- * as arm where pointers are 32-bit aligned but there are data types such as
- * u64 which require 64-bit alignment.
+ * faults for C data types. On architectures that support non-cache coherent
+ * DMA, such as ARM or arm64, it also takes into account the minimal alignment
+ * that is required to ensure that the context struct member does not share any
+ * cachelines with the rest of the struct. This is needed to ensure that cache
+ * maintenance for non-coherent DMA (cache invalidation in particular) does not
+ * affect data that may be accessed by the CPU concurrently.
*/
#define CRYPTO_MINALIGN ARCH_KMALLOC_MINALIGN
@@ -595,6 +638,8 @@ int crypto_has_alg(const char *name, u32 type, u32 mask);
struct crypto_tfm {
u32 crt_flags;
+
+ int node;
void (*exit)(struct crypto_tfm *tfm);
@@ -603,40 +648,10 @@ struct crypto_tfm {
void *__crt_ctx[] CRYPTO_MINALIGN_ATTR;
};
-struct crypto_cipher {
- struct crypto_tfm base;
-};
-
struct crypto_comp {
struct crypto_tfm base;
};
-enum {
- CRYPTOA_UNSPEC,
- CRYPTOA_ALG,
- CRYPTOA_TYPE,
- CRYPTOA_U32,
- __CRYPTOA_MAX,
-};
-
-#define CRYPTOA_MAX (__CRYPTOA_MAX - 1)
-
-/* Maximum number of (rtattr) parameters for each template. */
-#define CRYPTO_MAX_ATTRS 32
-
-struct crypto_attr_alg {
- char name[CRYPTO_MAX_ALG_NAME];
-};
-
-struct crypto_attr_type {
- u32 type;
- u32 mask;
-};
-
-struct crypto_attr_u32 {
- u32 num;
-};
-
/*
* Transform user interface.
*/
@@ -710,165 +725,6 @@ static inline unsigned int crypto_tfm_ctx_alignment(void)
return __alignof__(tfm->__crt_ctx);
}
-/**
- * DOC: Single Block Cipher API
- *
- * The single block cipher API is used with the ciphers of type
- * CRYPTO_ALG_TYPE_CIPHER (listed as type "cipher" in /proc/crypto).
- *
- * Using the single block cipher API calls, operations with the basic cipher
- * primitive can be implemented. These cipher primitives exclude any block
- * chaining operations including IV handling.
- *
- * The purpose of this single block cipher API is to support the implementation
- * of templates or other concepts that only need to perform the cipher operation
- * on one block at a time. Templates invoke the underlying cipher primitive
- * block-wise and process either the input or the output data of these cipher
- * operations.
- */
-
-static inline struct crypto_cipher *__crypto_cipher_cast(struct crypto_tfm *tfm)
-{
- return (struct crypto_cipher *)tfm;
-}
-
-/**
- * crypto_alloc_cipher() - allocate single block cipher handle
- * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
- * single block cipher
- * @type: specifies the type of the cipher
- * @mask: specifies the mask for the cipher
- *
- * Allocate a cipher handle for a single block cipher. The returned struct
- * crypto_cipher is the cipher handle that is required for any subsequent API
- * invocation for that single block cipher.
- *
- * Return: allocated cipher handle in case of success; IS_ERR() is true in case
- * of an error, PTR_ERR() returns the error code.
- */
-static inline struct crypto_cipher *crypto_alloc_cipher(const char *alg_name,
- u32 type, u32 mask)
-{
- type &= ~CRYPTO_ALG_TYPE_MASK;
- type |= CRYPTO_ALG_TYPE_CIPHER;
- mask |= CRYPTO_ALG_TYPE_MASK;
-
- return __crypto_cipher_cast(crypto_alloc_base(alg_name, type, mask));
-}
-
-static inline struct crypto_tfm *crypto_cipher_tfm(struct crypto_cipher *tfm)
-{
- return &tfm->base;
-}
-
-/**
- * crypto_free_cipher() - zeroize and free the single block cipher handle
- * @tfm: cipher handle to be freed
- */
-static inline void crypto_free_cipher(struct crypto_cipher *tfm)
-{
- crypto_free_tfm(crypto_cipher_tfm(tfm));
-}
-
-/**
- * crypto_has_cipher() - Search for the availability of a single block cipher
- * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
- * single block cipher
- * @type: specifies the type of the cipher
- * @mask: specifies the mask for the cipher
- *
- * Return: true when the single block cipher is known to the kernel crypto API;
- * false otherwise
- */
-static inline int crypto_has_cipher(const char *alg_name, u32 type, u32 mask)
-{
- type &= ~CRYPTO_ALG_TYPE_MASK;
- type |= CRYPTO_ALG_TYPE_CIPHER;
- mask |= CRYPTO_ALG_TYPE_MASK;
-
- return crypto_has_alg(alg_name, type, mask);
-}
-
-/**
- * crypto_cipher_blocksize() - obtain block size for cipher
- * @tfm: cipher handle
- *
- * The block size for the single block cipher referenced with the cipher handle
- * tfm is returned. The caller may use that information to allocate appropriate
- * memory for the data returned by the encryption or decryption operation
- *
- * Return: block size of cipher
- */
-static inline unsigned int crypto_cipher_blocksize(struct crypto_cipher *tfm)
-{
- return crypto_tfm_alg_blocksize(crypto_cipher_tfm(tfm));
-}
-
-static inline unsigned int crypto_cipher_alignmask(struct crypto_cipher *tfm)
-{
- return crypto_tfm_alg_alignmask(crypto_cipher_tfm(tfm));
-}
-
-static inline u32 crypto_cipher_get_flags(struct crypto_cipher *tfm)
-{
- return crypto_tfm_get_flags(crypto_cipher_tfm(tfm));
-}
-
-static inline void crypto_cipher_set_flags(struct crypto_cipher *tfm,
- u32 flags)
-{
- crypto_tfm_set_flags(crypto_cipher_tfm(tfm), flags);
-}
-
-static inline void crypto_cipher_clear_flags(struct crypto_cipher *tfm,
- u32 flags)
-{
- crypto_tfm_clear_flags(crypto_cipher_tfm(tfm), flags);
-}
-
-/**
- * crypto_cipher_setkey() - set key for cipher
- * @tfm: cipher handle
- * @key: buffer holding the key
- * @keylen: length of the key in bytes
- *
- * The caller provided key is set for the single block cipher referenced by the
- * cipher handle.
- *
- * Note, the key length determines the cipher type. Many block ciphers implement
- * different cipher modes depending on the key size, such as AES-128 vs AES-192
- * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
- * is performed.
- *
- * Return: 0 if the setting of the key was successful; < 0 if an error occurred
- */
-int crypto_cipher_setkey(struct crypto_cipher *tfm,
- const u8 *key, unsigned int keylen);
-
-/**
- * crypto_cipher_encrypt_one() - encrypt one block of plaintext
- * @tfm: cipher handle
- * @dst: points to the buffer that will be filled with the ciphertext
- * @src: buffer holding the plaintext to be encrypted
- *
- * Invoke the encryption operation of one block. The caller must ensure that
- * the plaintext and ciphertext buffers are at least one block in size.
- */
-void crypto_cipher_encrypt_one(struct crypto_cipher *tfm,
- u8 *dst, const u8 *src);
-
-/**
- * crypto_cipher_decrypt_one() - decrypt one block of ciphertext
- * @tfm: cipher handle
- * @dst: points to the buffer that will be filled with the plaintext
- * @src: buffer holding the ciphertext to be decrypted
- *
- * Invoke the decryption operation of one block. The caller must ensure that
- * the plaintext and ciphertext buffers are at least one block in size.
- */
-void crypto_cipher_decrypt_one(struct crypto_cipher *tfm,
- u8 *dst, const u8 *src);
-
static inline struct crypto_comp *__crypto_comp_cast(struct crypto_tfm *tfm)
{
return (struct crypto_comp *)tfm;