aboutsummaryrefslogtreecommitdiffstats
path: root/include/linux/spi/spi-mem.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/linux/spi/spi-mem.h')
-rw-r--r--include/linux/spi/spi-mem.h80
1 files changed, 80 insertions, 0 deletions
diff --git a/include/linux/spi/spi-mem.h b/include/linux/spi/spi-mem.h
index 250b6f5c47c2..3fe24500c5ee 100644
--- a/include/linux/spi/spi-mem.h
+++ b/include/linux/spi/spi-mem.h
@@ -125,6 +125,49 @@ struct spi_mem_op {
}
/**
+ * struct spi_mem_dirmap_info - Direct mapping information
+ * @op_tmpl: operation template that should be used by the direct mapping when
+ * the memory device is accessed
+ * @offset: absolute offset this direct mapping is pointing to
+ * @length: length in byte of this direct mapping
+ *
+ * These information are used by the controller specific implementation to know
+ * the portion of memory that is directly mapped and the spi_mem_op that should
+ * be used to access the device.
+ * A direct mapping is only valid for one direction (read or write) and this
+ * direction is directly encoded in the ->op_tmpl.data.dir field.
+ */
+struct spi_mem_dirmap_info {
+ struct spi_mem_op op_tmpl;
+ u64 offset;
+ u64 length;
+};
+
+/**
+ * struct spi_mem_dirmap_desc - Direct mapping descriptor
+ * @mem: the SPI memory device this direct mapping is attached to
+ * @info: information passed at direct mapping creation time
+ * @nodirmap: set to 1 if the SPI controller does not implement
+ * ->mem_ops->dirmap_create() or when this function returned an
+ * error. If @nodirmap is true, all spi_mem_dirmap_{read,write}()
+ * calls will use spi_mem_exec_op() to access the memory. This is a
+ * degraded mode that allows spi_mem drivers to use the same code
+ * no matter whether the controller supports direct mapping or not
+ * @priv: field pointing to controller specific data
+ *
+ * Common part of a direct mapping descriptor. This object is created by
+ * spi_mem_dirmap_create() and controller implementation of ->create_dirmap()
+ * can create/attach direct mapping resources to the descriptor in the ->priv
+ * field.
+ */
+struct spi_mem_dirmap_desc {
+ struct spi_mem *mem;
+ struct spi_mem_dirmap_info info;
+ unsigned int nodirmap;
+ void *priv;
+};
+
+/**
* struct spi_mem - describes a SPI memory device
* @spi: the underlying SPI device
* @drvpriv: spi_mem_driver private data
@@ -179,10 +222,32 @@ static inline void *spi_mem_get_drvdata(struct spi_mem *mem)
* Note that if the implementation of this function allocates memory
* dynamically, then it should do so with devm_xxx(), as we don't
* have a ->free_name() function.
+ * @dirmap_create: create a direct mapping descriptor that can later be used to
+ * access the memory device. This method is optional
+ * @dirmap_destroy: destroy a memory descriptor previous created by
+ * ->dirmap_create()
+ * @dirmap_read: read data from the memory device using the direct mapping
+ * created by ->dirmap_create(). The function can return less
+ * data than requested (for example when the request is crossing
+ * the currently mapped area), and the caller of
+ * spi_mem_dirmap_read() is responsible for calling it again in
+ * this case.
+ * @dirmap_write: write data to the memory device using the direct mapping
+ * created by ->dirmap_create(). The function can return less
+ * data than requested (for example when the request is crossing
+ * the currently mapped area), and the caller of
+ * spi_mem_dirmap_write() is responsible for calling it again in
+ * this case.
*
* This interface should be implemented by SPI controllers providing an
* high-level interface to execute SPI memory operation, which is usually the
* case for QSPI controllers.
+ *
+ * Note on ->dirmap_{read,write}(): drivers should avoid accessing the direct
+ * mapping from the CPU because doing that can stall the CPU waiting for the
+ * SPI mem transaction to finish, and this will make real-time maintainers
+ * unhappy and might make your system less reactive. Instead, drivers should
+ * use DMA to access this direct mapping.
*/
struct spi_controller_mem_ops {
int (*adjust_op_size)(struct spi_mem *mem, struct spi_mem_op *op);
@@ -191,6 +256,12 @@ struct spi_controller_mem_ops {
int (*exec_op)(struct spi_mem *mem,
const struct spi_mem_op *op);
const char *(*get_name)(struct spi_mem *mem);
+ int (*dirmap_create)(struct spi_mem_dirmap_desc *desc);
+ void (*dirmap_destroy)(struct spi_mem_dirmap_desc *desc);
+ ssize_t (*dirmap_read)(struct spi_mem_dirmap_desc *desc,
+ u64 offs, size_t len, void *buf);
+ ssize_t (*dirmap_write)(struct spi_mem_dirmap_desc *desc,
+ u64 offs, size_t len, const void *buf);
};
/**
@@ -251,6 +322,15 @@ int spi_mem_exec_op(struct spi_mem *mem,
const char *spi_mem_get_name(struct spi_mem *mem);
+struct spi_mem_dirmap_desc *
+spi_mem_dirmap_create(struct spi_mem *mem,
+ const struct spi_mem_dirmap_info *info);
+void spi_mem_dirmap_destroy(struct spi_mem_dirmap_desc *desc);
+ssize_t spi_mem_dirmap_read(struct spi_mem_dirmap_desc *desc,
+ u64 offs, size_t len, void *buf);
+ssize_t spi_mem_dirmap_write(struct spi_mem_dirmap_desc *desc,
+ u64 offs, size_t len, const void *buf);
+
int spi_mem_driver_register_with_owner(struct spi_mem_driver *drv,
struct module *owner);