aboutsummaryrefslogtreecommitdiffstats
path: root/include/linux/wait_bit.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/linux/wait_bit.h')
-rw-r--r--include/linux/wait_bit.h260
1 files changed, 260 insertions, 0 deletions
diff --git a/include/linux/wait_bit.h b/include/linux/wait_bit.h
new file mode 100644
index 000000000000..8c85c52d94b6
--- /dev/null
+++ b/include/linux/wait_bit.h
@@ -0,0 +1,260 @@
+#ifndef _LINUX_WAIT_BIT_H
+#define _LINUX_WAIT_BIT_H
+
+/*
+ * Linux wait-bit related types and methods:
+ */
+#include <linux/wait.h>
+
+struct wait_bit_key {
+ void *flags;
+ int bit_nr;
+#define WAIT_ATOMIC_T_BIT_NR -1
+ unsigned long timeout;
+};
+
+struct wait_bit_queue_entry {
+ struct wait_bit_key key;
+ struct wait_queue_entry wq_entry;
+};
+
+#define __WAIT_BIT_KEY_INITIALIZER(word, bit) \
+ { .flags = word, .bit_nr = bit, }
+
+#define __WAIT_ATOMIC_T_KEY_INITIALIZER(p) \
+ { .flags = p, .bit_nr = WAIT_ATOMIC_T_BIT_NR, }
+
+typedef int wait_bit_action_f(struct wait_bit_key *key, int mode);
+void __wake_up_bit(struct wait_queue_head *wq_head, void *word, int bit);
+int __wait_on_bit(struct wait_queue_head *wq_head, struct wait_bit_queue_entry *wbq_entry, wait_bit_action_f *action, unsigned int mode);
+int __wait_on_bit_lock(struct wait_queue_head *wq_head, struct wait_bit_queue_entry *wbq_entry, wait_bit_action_f *action, unsigned int mode);
+void wake_up_bit(void *word, int bit);
+void wake_up_atomic_t(atomic_t *p);
+int out_of_line_wait_on_bit(void *word, int, wait_bit_action_f *action, unsigned int mode);
+int out_of_line_wait_on_bit_timeout(void *word, int, wait_bit_action_f *action, unsigned int mode, unsigned long timeout);
+int out_of_line_wait_on_bit_lock(void *word, int, wait_bit_action_f *action, unsigned int mode);
+int out_of_line_wait_on_atomic_t(atomic_t *p, int (*)(atomic_t *), unsigned int mode);
+struct wait_queue_head *bit_waitqueue(void *word, int bit);
+
+int wake_bit_function(struct wait_queue_entry *wq_entry, unsigned mode, int sync, void *key);
+
+#define DEFINE_WAIT_BIT(name, word, bit) \
+ struct wait_bit_queue_entry name = { \
+ .key = __WAIT_BIT_KEY_INITIALIZER(word, bit), \
+ .wq_entry = { \
+ .private = current, \
+ .func = wake_bit_function, \
+ .task_list = \
+ LIST_HEAD_INIT((name).wq_entry.task_list), \
+ }, \
+ }
+
+extern int bit_wait(struct wait_bit_key *key, int bit);
+extern int bit_wait_io(struct wait_bit_key *key, int bit);
+extern int bit_wait_timeout(struct wait_bit_key *key, int bit);
+extern int bit_wait_io_timeout(struct wait_bit_key *key, int bit);
+
+/**
+ * wait_on_bit - wait for a bit to be cleared
+ * @word: the word being waited on, a kernel virtual address
+ * @bit: the bit of the word being waited on
+ * @mode: the task state to sleep in
+ *
+ * There is a standard hashed waitqueue table for generic use. This
+ * is the part of the hashtable's accessor API that waits on a bit.
+ * For instance, if one were to have waiters on a bitflag, one would
+ * call wait_on_bit() in threads waiting for the bit to clear.
+ * One uses wait_on_bit() where one is waiting for the bit to clear,
+ * but has no intention of setting it.
+ * Returned value will be zero if the bit was cleared, or non-zero
+ * if the process received a signal and the mode permitted wakeup
+ * on that signal.
+ */
+static inline int
+wait_on_bit(unsigned long *word, int bit, unsigned mode)
+{
+ might_sleep();
+ if (!test_bit(bit, word))
+ return 0;
+ return out_of_line_wait_on_bit(word, bit,
+ bit_wait,
+ mode);
+}
+
+/**
+ * wait_on_bit_io - wait for a bit to be cleared
+ * @word: the word being waited on, a kernel virtual address
+ * @bit: the bit of the word being waited on
+ * @mode: the task state to sleep in
+ *
+ * Use the standard hashed waitqueue table to wait for a bit
+ * to be cleared. This is similar to wait_on_bit(), but calls
+ * io_schedule() instead of schedule() for the actual waiting.
+ *
+ * Returned value will be zero if the bit was cleared, or non-zero
+ * if the process received a signal and the mode permitted wakeup
+ * on that signal.
+ */
+static inline int
+wait_on_bit_io(unsigned long *word, int bit, unsigned mode)
+{
+ might_sleep();
+ if (!test_bit(bit, word))
+ return 0;
+ return out_of_line_wait_on_bit(word, bit,
+ bit_wait_io,
+ mode);
+}
+
+/**
+ * wait_on_bit_timeout - wait for a bit to be cleared or a timeout elapses
+ * @word: the word being waited on, a kernel virtual address
+ * @bit: the bit of the word being waited on
+ * @mode: the task state to sleep in
+ * @timeout: timeout, in jiffies
+ *
+ * Use the standard hashed waitqueue table to wait for a bit
+ * to be cleared. This is similar to wait_on_bit(), except also takes a
+ * timeout parameter.
+ *
+ * Returned value will be zero if the bit was cleared before the
+ * @timeout elapsed, or non-zero if the @timeout elapsed or process
+ * received a signal and the mode permitted wakeup on that signal.
+ */
+static inline int
+wait_on_bit_timeout(unsigned long *word, int bit, unsigned mode,
+ unsigned long timeout)
+{
+ might_sleep();
+ if (!test_bit(bit, word))
+ return 0;
+ return out_of_line_wait_on_bit_timeout(word, bit,
+ bit_wait_timeout,
+ mode, timeout);
+}
+
+/**
+ * wait_on_bit_action - wait for a bit to be cleared
+ * @word: the word being waited on, a kernel virtual address
+ * @bit: the bit of the word being waited on
+ * @action: the function used to sleep, which may take special actions
+ * @mode: the task state to sleep in
+ *
+ * Use the standard hashed waitqueue table to wait for a bit
+ * to be cleared, and allow the waiting action to be specified.
+ * This is like wait_on_bit() but allows fine control of how the waiting
+ * is done.
+ *
+ * Returned value will be zero if the bit was cleared, or non-zero
+ * if the process received a signal and the mode permitted wakeup
+ * on that signal.
+ */
+static inline int
+wait_on_bit_action(unsigned long *word, int bit, wait_bit_action_f *action,
+ unsigned mode)
+{
+ might_sleep();
+ if (!test_bit(bit, word))
+ return 0;
+ return out_of_line_wait_on_bit(word, bit, action, mode);
+}
+
+/**
+ * wait_on_bit_lock - wait for a bit to be cleared, when wanting to set it
+ * @word: the word being waited on, a kernel virtual address
+ * @bit: the bit of the word being waited on
+ * @mode: the task state to sleep in
+ *
+ * There is a standard hashed waitqueue table for generic use. This
+ * is the part of the hashtable's accessor API that waits on a bit
+ * when one intends to set it, for instance, trying to lock bitflags.
+ * For instance, if one were to have waiters trying to set bitflag
+ * and waiting for it to clear before setting it, one would call
+ * wait_on_bit() in threads waiting to be able to set the bit.
+ * One uses wait_on_bit_lock() where one is waiting for the bit to
+ * clear with the intention of setting it, and when done, clearing it.
+ *
+ * Returns zero if the bit was (eventually) found to be clear and was
+ * set. Returns non-zero if a signal was delivered to the process and
+ * the @mode allows that signal to wake the process.
+ */
+static inline int
+wait_on_bit_lock(unsigned long *word, int bit, unsigned mode)
+{
+ might_sleep();
+ if (!test_and_set_bit(bit, word))
+ return 0;
+ return out_of_line_wait_on_bit_lock(word, bit, bit_wait, mode);
+}
+
+/**
+ * wait_on_bit_lock_io - wait for a bit to be cleared, when wanting to set it
+ * @word: the word being waited on, a kernel virtual address
+ * @bit: the bit of the word being waited on
+ * @mode: the task state to sleep in
+ *
+ * Use the standard hashed waitqueue table to wait for a bit
+ * to be cleared and then to atomically set it. This is similar
+ * to wait_on_bit(), but calls io_schedule() instead of schedule()
+ * for the actual waiting.
+ *
+ * Returns zero if the bit was (eventually) found to be clear and was
+ * set. Returns non-zero if a signal was delivered to the process and
+ * the @mode allows that signal to wake the process.
+ */
+static inline int
+wait_on_bit_lock_io(unsigned long *word, int bit, unsigned mode)
+{
+ might_sleep();
+ if (!test_and_set_bit(bit, word))
+ return 0;
+ return out_of_line_wait_on_bit_lock(word, bit, bit_wait_io, mode);
+}
+
+/**
+ * wait_on_bit_lock_action - wait for a bit to be cleared, when wanting to set it
+ * @word: the word being waited on, a kernel virtual address
+ * @bit: the bit of the word being waited on
+ * @action: the function used to sleep, which may take special actions
+ * @mode: the task state to sleep in
+ *
+ * Use the standard hashed waitqueue table to wait for a bit
+ * to be cleared and then to set it, and allow the waiting action
+ * to be specified.
+ * This is like wait_on_bit() but allows fine control of how the waiting
+ * is done.
+ *
+ * Returns zero if the bit was (eventually) found to be clear and was
+ * set. Returns non-zero if a signal was delivered to the process and
+ * the @mode allows that signal to wake the process.
+ */
+static inline int
+wait_on_bit_lock_action(unsigned long *word, int bit, wait_bit_action_f *action,
+ unsigned mode)
+{
+ might_sleep();
+ if (!test_and_set_bit(bit, word))
+ return 0;
+ return out_of_line_wait_on_bit_lock(word, bit, action, mode);
+}
+
+/**
+ * wait_on_atomic_t - Wait for an atomic_t to become 0
+ * @val: The atomic value being waited on, a kernel virtual address
+ * @action: the function used to sleep, which may take special actions
+ * @mode: the task state to sleep in
+ *
+ * Wait for an atomic_t to become 0. We abuse the bit-wait waitqueue table for
+ * the purpose of getting a waitqueue, but we set the key to a bit number
+ * outside of the target 'word'.
+ */
+static inline
+int wait_on_atomic_t(atomic_t *val, int (*action)(atomic_t *), unsigned mode)
+{
+ might_sleep();
+ if (atomic_read(val) == 0)
+ return 0;
+ return out_of_line_wait_on_atomic_t(val, action, mode);
+}
+
+#endif /* _LINUX_WAIT_BIT_H */