diff options
Diffstat (limited to 'kernel/dma')
-rw-r--r-- | kernel/dma/Kconfig | 89 | ||||
-rw-r--r-- | kernel/dma/Makefile | 9 | ||||
-rw-r--r-- | kernel/dma/coherent.c | 214 | ||||
-rw-r--r-- | kernel/dma/contiguous.c | 180 | ||||
-rw-r--r-- | kernel/dma/debug.c | 173 | ||||
-rw-r--r-- | kernel/dma/debug.h | 130 | ||||
-rw-r--r-- | kernel/dma/direct.c | 582 | ||||
-rw-r--r-- | kernel/dma/direct.h | 126 | ||||
-rw-r--r-- | kernel/dma/dummy.c | 5 | ||||
-rw-r--r-- | kernel/dma/map_benchmark.c | 359 | ||||
-rw-r--r-- | kernel/dma/mapping.c | 562 | ||||
-rw-r--r-- | kernel/dma/ops_helpers.c | 93 | ||||
-rw-r--r-- | kernel/dma/pool.c | 295 | ||||
-rw-r--r-- | kernel/dma/remap.c | 171 | ||||
-rw-r--r-- | kernel/dma/swiotlb.c | 1197 | ||||
-rw-r--r-- | kernel/dma/virt.c | 59 |
16 files changed, 3033 insertions, 1211 deletions
diff --git a/kernel/dma/Kconfig b/kernel/dma/Kconfig index 4c103a24e380..56866aaa2ae1 100644 --- a/kernel/dma/Kconfig +++ b/kernel/dma/Kconfig @@ -1,10 +1,29 @@ # SPDX-License-Identifier: GPL-2.0-only +config NO_DMA + bool + config HAS_DMA bool depends on !NO_DMA default y +config DMA_OPS + depends on HAS_DMA + bool + +# +# IOMMU drivers that can bypass the IOMMU code and optionally use the direct +# mapping fast path should select this option and set the dma_ops_bypass +# flag in struct device where applicable +# +config DMA_OPS_BYPASS + bool + +# Lets platform IOMMU driver choose between bypass and IOMMU +config ARCH_HAS_DMA_MAP_DIRECT + bool + config NEED_SG_DMA_LENGTH bool @@ -14,9 +33,6 @@ config NEED_DMA_MAP_STATE config ARCH_DMA_ADDR_T_64BIT def_bool 64BIT || PHYS_ADDR_T_64BIT -config ARCH_HAS_DMA_COHERENCE_H - bool - config ARCH_HAS_DMA_SET_MASK bool @@ -29,6 +45,12 @@ config ARCH_HAS_DMA_SET_MASK config ARCH_HAS_DMA_WRITE_COMBINE bool +# +# Select if the architectures provides the arch_dma_mark_clean hook +# +config ARCH_HAS_DMA_MARK_CLEAN + bool + config DMA_DECLARE_COHERENT bool @@ -54,34 +76,44 @@ config ARCH_HAS_DMA_PREP_COHERENT config ARCH_HAS_FORCE_DMA_UNENCRYPTED bool -config DMA_NONCOHERENT_CACHE_SYNC - bool - -config DMA_VIRT_OPS - bool - depends on HAS_DMA - config SWIOTLB bool select NEED_DMA_MAP_STATE +config DMA_RESTRICTED_POOL + bool "DMA Restricted Pool" + depends on OF && OF_RESERVED_MEM && SWIOTLB + help + This enables support for restricted DMA pools which provide a level of + DMA memory protection on systems with limited hardware protection + capabilities, such as those lacking an IOMMU. + + For more information see + <Documentation/devicetree/bindings/reserved-memory/reserved-memory.txt> + and <kernel/dma/swiotlb.c>. + If unsure, say "n". + # # Should be selected if we can mmap non-coherent mappings to userspace. # The only thing that is really required is a way to set an uncached bit # in the pagetables # config DMA_NONCOHERENT_MMAP + default y if !MMU bool -config DMA_REMAP - depends on MMU +config DMA_COHERENT_POOL select GENERIC_ALLOCATOR - select DMA_NONCOHERENT_MMAP + bool + +config DMA_GLOBAL_POOL + select DMA_DECLARE_COHERENT bool config DMA_DIRECT_REMAP bool - select DMA_REMAP + select DMA_COHERENT_POOL + select DMA_NONCOHERENT_MMAP config DMA_CMA bool "DMA Contiguous Memory Allocator" @@ -94,10 +126,21 @@ config DMA_CMA You can disable CMA by specifying "cma=0" on the kernel's command line. - For more information see <include/linux/dma-contiguous.h>. + For more information see <kernel/dma/contiguous.c>. If unsure, say "n". if DMA_CMA + +config DMA_PERNUMA_CMA + bool "Enable separate DMA Contiguous Memory Area for each NUMA Node" + default NUMA && ARM64 + help + Enable this option to get pernuma CMA areas so that devices like + ARM64 SMMU can get local memory by DMA coherent APIs. + + You can set the size of pernuma CMA by specifying "cma_pernuma=size" + on the kernel's command line. + comment "Default contiguous memory area size:" config CMA_SIZE_MBYTES @@ -142,7 +185,7 @@ endchoice config CMA_ALIGNMENT int "Maximum PAGE_SIZE order of alignment for contiguous buffers" - range 4 12 + range 2 12 default 8 help DMA mapping framework by default aligns all buffers to the smallest @@ -169,11 +212,6 @@ config DMA_API_DEBUG drivers like double-freeing of DMA mappings or freeing mappings that were never allocated. - This also attempts to catch cases where a page owned by DMA is - accessed by the cpu in a way that could cause data corruption. For - example, this enables cow_user_page() to check that the source page is - not undergoing DMA. - This option causes a performance degradation. Use only if you want to debug device drivers and dma interactions. @@ -195,3 +233,12 @@ config DMA_API_DEBUG_SG is technically out-of-spec. If unsure, say N. + +config DMA_MAP_BENCHMARK + bool "Enable benchmarking of streaming DMA mapping" + depends on DEBUG_FS + help + Provides /sys/kernel/debug/dma_map_benchmark that helps with testing + performance of dma_(un)map_page. + + See tools/testing/selftests/dma/dma_map_benchmark.c diff --git a/kernel/dma/Makefile b/kernel/dma/Makefile index d237cf3dc181..21926e46ef4f 100644 --- a/kernel/dma/Makefile +++ b/kernel/dma/Makefile @@ -1,9 +1,12 @@ # SPDX-License-Identifier: GPL-2.0 -obj-$(CONFIG_HAS_DMA) += mapping.o direct.o dummy.o +obj-$(CONFIG_HAS_DMA) += mapping.o direct.o +obj-$(CONFIG_DMA_OPS) += ops_helpers.o +obj-$(CONFIG_DMA_OPS) += dummy.o obj-$(CONFIG_DMA_CMA) += contiguous.o obj-$(CONFIG_DMA_DECLARE_COHERENT) += coherent.o -obj-$(CONFIG_DMA_VIRT_OPS) += virt.o obj-$(CONFIG_DMA_API_DEBUG) += debug.o obj-$(CONFIG_SWIOTLB) += swiotlb.o -obj-$(CONFIG_DMA_REMAP) += remap.o +obj-$(CONFIG_DMA_COHERENT_POOL) += pool.o +obj-$(CONFIG_MMU) += remap.o +obj-$(CONFIG_DMA_MAP_BENCHMARK) += map_benchmark.o diff --git a/kernel/dma/coherent.c b/kernel/dma/coherent.c index 551b0eb7028a..c21abc77c53e 100644 --- a/kernel/dma/coherent.c +++ b/kernel/dma/coherent.c @@ -7,7 +7,8 @@ #include <linux/slab.h> #include <linux/kernel.h> #include <linux/module.h> -#include <linux/dma-mapping.h> +#include <linux/dma-direct.h> +#include <linux/dma-map-ops.h> struct dma_coherent_mem { void *virt_base; @@ -19,8 +20,6 @@ struct dma_coherent_mem { bool use_dev_dma_pfn_offset; }; -static struct dma_coherent_mem *dma_coherent_default_memory __ro_after_init; - static inline struct dma_coherent_mem *dev_get_coherent_memory(struct device *dev) { if (dev && dev->dma_mem) @@ -32,65 +31,56 @@ static inline dma_addr_t dma_get_device_base(struct device *dev, struct dma_coherent_mem * mem) { if (mem->use_dev_dma_pfn_offset) - return (mem->pfn_base - dev->dma_pfn_offset) << PAGE_SHIFT; - else - return mem->device_base; + return phys_to_dma(dev, PFN_PHYS(mem->pfn_base)); + return mem->device_base; } -static int dma_init_coherent_memory(phys_addr_t phys_addr, - dma_addr_t device_addr, size_t size, - struct dma_coherent_mem **mem) +static struct dma_coherent_mem *dma_init_coherent_memory(phys_addr_t phys_addr, + dma_addr_t device_addr, size_t size, bool use_dma_pfn_offset) { - struct dma_coherent_mem *dma_mem = NULL; - void *mem_base = NULL; + struct dma_coherent_mem *dma_mem; int pages = size >> PAGE_SHIFT; - int bitmap_size = BITS_TO_LONGS(pages) * sizeof(long); - int ret; + void *mem_base; - if (!size) { - ret = -EINVAL; - goto out; - } + if (!size) + return ERR_PTR(-EINVAL); mem_base = memremap(phys_addr, size, MEMREMAP_WC); - if (!mem_base) { - ret = -EINVAL; - goto out; - } + if (!mem_base) + return ERR_PTR(-EINVAL); + dma_mem = kzalloc(sizeof(struct dma_coherent_mem), GFP_KERNEL); - if (!dma_mem) { - ret = -ENOMEM; - goto out; - } - dma_mem->bitmap = kzalloc(bitmap_size, GFP_KERNEL); - if (!dma_mem->bitmap) { - ret = -ENOMEM; - goto out; - } + if (!dma_mem) + goto out_unmap_membase; + dma_mem->bitmap = bitmap_zalloc(pages, GFP_KERNEL); + if (!dma_mem->bitmap) + goto out_free_dma_mem; dma_mem->virt_base = mem_base; dma_mem->device_base = device_addr; dma_mem->pfn_base = PFN_DOWN(phys_addr); dma_mem->size = pages; + dma_mem->use_dev_dma_pfn_offset = use_dma_pfn_offset; spin_lock_init(&dma_mem->spinlock); - *mem = dma_mem; - return 0; + return dma_mem; -out: +out_free_dma_mem: kfree(dma_mem); - if (mem_base) - memunmap(mem_base); - return ret; +out_unmap_membase: + memunmap(mem_base); + pr_err("Reserved memory: failed to init DMA memory pool at %pa, size %zd MiB\n", + &phys_addr, size / SZ_1M); + return ERR_PTR(-ENOMEM); } -static void dma_release_coherent_memory(struct dma_coherent_mem *mem) +static void _dma_release_coherent_memory(struct dma_coherent_mem *mem) { if (!mem) return; memunmap(mem->virt_base); - kfree(mem->bitmap); + bitmap_free(mem->bitmap); kfree(mem); } @@ -107,22 +97,45 @@ static int dma_assign_coherent_memory(struct device *dev, return 0; } +/* + * Declare a region of memory to be handed out by dma_alloc_coherent() when it + * is asked for coherent memory for this device. This shall only be used + * from platform code, usually based on the device tree description. + * + * phys_addr is the CPU physical address to which the memory is currently + * assigned (this will be ioremapped so the CPU can access the region). + * + * device_addr is the DMA address the device needs to be programmed with to + * actually address this memory (this will be handed out as the dma_addr_t in + * dma_alloc_coherent()). + * + * size is the size of the area (must be a multiple of PAGE_SIZE). + * + * As a simplification for the platforms, only *one* such region of memory may + * be declared per device. + */ int dma_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr, dma_addr_t device_addr, size_t size) { struct dma_coherent_mem *mem; int ret; - ret = dma_init_coherent_memory(phys_addr, device_addr, size, &mem); - if (ret) - return ret; + mem = dma_init_coherent_memory(phys_addr, device_addr, size, false); + if (IS_ERR(mem)) + return PTR_ERR(mem); ret = dma_assign_coherent_memory(dev, mem); if (ret) - dma_release_coherent_memory(mem); + _dma_release_coherent_memory(mem); return ret; } +void dma_release_coherent_memory(struct device *dev) +{ + if (dev) + _dma_release_coherent_memory(dev->dma_mem); +} + static void *__dma_alloc_from_coherent(struct device *dev, struct dma_coherent_mem *mem, ssize_t size, dma_addr_t *dma_handle) @@ -134,7 +147,7 @@ static void *__dma_alloc_from_coherent(struct device *dev, spin_lock_irqsave(&mem->spinlock, flags); - if (unlikely(size > (mem->size << PAGE_SHIFT))) + if (unlikely(size > ((dma_addr_t)mem->size << PAGE_SHIFT))) goto err; pageno = bitmap_find_free_region(mem->bitmap, mem->size, order); @@ -144,8 +157,9 @@ static void *__dma_alloc_from_coherent(struct device *dev, /* * Memory was found in the coherent area. */ - *dma_handle = dma_get_device_base(dev, mem) + (pageno << PAGE_SHIFT); - ret = mem->virt_base + (pageno << PAGE_SHIFT); + *dma_handle = dma_get_device_base(dev, mem) + + ((dma_addr_t)pageno << PAGE_SHIFT); + ret = mem->virt_base + ((dma_addr_t)pageno << PAGE_SHIFT); spin_unlock_irqrestore(&mem->spinlock, flags); memset(ret, 0, size); return ret; @@ -180,21 +194,11 @@ int dma_alloc_from_dev_coherent(struct device *dev, ssize_t size, return 1; } -void *dma_alloc_from_global_coherent(struct device *dev, ssize_t size, - dma_addr_t *dma_handle) -{ - if (!dma_coherent_default_memory) - return NULL; - - return __dma_alloc_from_coherent(dev, dma_coherent_default_memory, size, - dma_handle); -} - static int __dma_release_from_coherent(struct dma_coherent_mem *mem, int order, void *vaddr) { if (mem && vaddr >= mem->virt_base && vaddr < - (mem->virt_base + (mem->size << PAGE_SHIFT))) { + (mem->virt_base + ((dma_addr_t)mem->size << PAGE_SHIFT))) { int page = (vaddr - mem->virt_base) >> PAGE_SHIFT; unsigned long flags; @@ -225,23 +229,14 @@ int dma_release_from_dev_coherent(struct device *dev, int order, void *vaddr) return __dma_release_from_coherent(mem, order, vaddr); } -int dma_release_from_global_coherent(int order, void *vaddr) -{ - if (!dma_coherent_default_memory) - return 0; - - return __dma_release_from_coherent(dma_coherent_default_memory, order, - vaddr); -} - static int __dma_mmap_from_coherent(struct dma_coherent_mem *mem, struct vm_area_struct *vma, void *vaddr, size_t size, int *ret) { if (mem && vaddr >= mem->virt_base && vaddr + size <= - (mem->virt_base + (mem->size << PAGE_SHIFT))) { + (mem->virt_base + ((dma_addr_t)mem->size << PAGE_SHIFT))) { unsigned long off = vma->vm_pgoff; int start = (vaddr - mem->virt_base) >> PAGE_SHIFT; - int user_count = vma_pages(vma); + unsigned long user_count = vma_pages(vma); int count = PAGE_ALIGN(size) >> PAGE_SHIFT; *ret = -ENXIO; @@ -279,6 +274,28 @@ int dma_mmap_from_dev_coherent(struct device *dev, struct vm_area_struct *vma, return __dma_mmap_from_coherent(mem, vma, vaddr, size, ret); } +#ifdef CONFIG_DMA_GLOBAL_POOL +static struct dma_coherent_mem *dma_coherent_default_memory __ro_after_init; + +void *dma_alloc_from_global_coherent(struct device *dev, ssize_t size, + dma_addr_t *dma_handle) +{ + if (!dma_coherent_default_memory) + return NULL; + + return __dma_alloc_from_coherent(dev, dma_coherent_default_memory, size, + dma_handle); +} + +int dma_release_from_global_coherent(int order, void *vaddr) +{ + if (!dma_coherent_default_memory) + return 0; + + return __dma_release_from_coherent(dma_coherent_default_memory, order, + vaddr); +} + int dma_mmap_from_global_coherent(struct vm_area_struct *vma, void *vaddr, size_t size, int *ret) { @@ -289,6 +306,19 @@ int dma_mmap_from_global_coherent(struct vm_area_struct *vma, void *vaddr, vaddr, size, ret); } +int dma_init_global_coherent(phys_addr_t phys_addr, size_t size) +{ + struct dma_coherent_mem *mem; + + mem = dma_init_coherent_memory(phys_addr, phys_addr, size, true); + if (IS_ERR(mem)) + return PTR_ERR(mem); + dma_coherent_default_memory = mem; + pr_info("DMA: default coherent area is set\n"); + return 0; +} +#endif /* CONFIG_DMA_GLOBAL_POOL */ + /* * Support for reserved memory regions defined in device tree */ @@ -297,25 +327,22 @@ int dma_mmap_from_global_coherent(struct vm_area_struct *vma, void *vaddr, #include <linux/of_fdt.h> #include <linux/of_reserved_mem.h> +#ifdef CONFIG_DMA_GLOBAL_POOL static struct reserved_mem *dma_reserved_default_memory __initdata; +#endif static int rmem_dma_device_init(struct reserved_mem *rmem, struct device *dev) { - struct dma_coherent_mem *mem = rmem->priv; - int ret; - - if (!mem) { - ret = dma_init_coherent_memory(rmem->base, rmem->base, - rmem->size, &mem); - if (ret) { - pr_err("Reserved memory: failed to init DMA memory pool at %pa, size %ld MiB\n", - &rmem->base, (unsigned long)rmem->size / SZ_1M); - return ret; - } + if (!rmem->priv) { + struct dma_coherent_mem *mem; + + mem = dma_init_coherent_memory(rmem->base, rmem->base, + rmem->size, true); + if (IS_ERR(mem)) + return PTR_ERR(mem); + rmem->priv = mem; } - mem->use_dev_dma_pfn_offset = true; - rmem->priv = mem; - dma_assign_coherent_memory(dev, mem); + dma_assign_coherent_memory(dev, rmem->priv); return 0; } @@ -343,7 +370,9 @@ static int __init rmem_dma_setup(struct reserved_mem *rmem) pr_err("Reserved memory: regions without no-map are not yet supported\n"); return -EINVAL; } +#endif +#ifdef CONFIG_DMA_GLOBAL_POOL if (of_get_flat_dt_prop(node, "linux,dma-default", NULL)) { WARN(dma_reserved_default_memory, "Reserved memory: region for default DMA coherent area is redefined\n"); @@ -357,31 +386,16 @@ static int __init rmem_dma_setup(struct reserved_mem *rmem) return 0; } +#ifdef CONFIG_DMA_GLOBAL_POOL static int __init dma_init_reserved_memory(void) { - const struct reserved_mem_ops *ops; - int ret; - if (!dma_reserved_default_memory) return -ENOMEM; - - ops = dma_reserved_default_memory->ops; - - /* - * We rely on rmem_dma_device_init() does not propagate error of - * dma_assign_coherent_memory() for "NULL" device. - */ - ret = ops->device_init(dma_reserved_default_memory, NULL); - - if (!ret) { - dma_coherent_default_memory = dma_reserved_default_memory->priv; - pr_info("DMA: default coherent area is set\n"); - } - - return ret; + return dma_init_global_coherent(dma_reserved_default_memory->base, + dma_reserved_default_memory->size); } - core_initcall(dma_init_reserved_memory); +#endif /* CONFIG_DMA_GLOBAL_POOL */ RESERVEDMEM_OF_DECLARE(dma, "shared-dma-pool", rmem_dma_setup); #endif diff --git a/kernel/dma/contiguous.c b/kernel/dma/contiguous.c index 8bc6f2d670f9..6ea80ae42622 100644 --- a/kernel/dma/contiguous.c +++ b/kernel/dma/contiguous.c @@ -5,6 +5,34 @@ * Written by: * Marek Szyprowski <m.szyprowski@samsung.com> * Michal Nazarewicz <mina86@mina86.com> + * + * Contiguous Memory Allocator + * + * The Contiguous Memory Allocator (CMA) makes it possible to + * allocate big contiguous chunks of memory after the system has + * booted. + * + * Why is it needed? + * + * Various devices on embedded systems have no scatter-getter and/or + * IO map support and require contiguous blocks of memory to + * operate. They include devices such as cameras, hardware video + * coders, etc. + * + * Such devices often require big memory buffers (a full HD frame + * is, for instance, more than 2 mega pixels large, i.e. more than 6 + * MB of memory), which makes mechanisms such as kmalloc() or + * alloc_page() ineffective. + * + * At the same time, a solution where a big memory region is + * reserved for a device is suboptimal since often more memory is + * reserved then strictly required and, moreover, the memory is + * inaccessible to page system even if device drivers don't use it. + * + * CMA tries to solve this issue by operating on memory regions + * where only movable pages can be allocated from. This way, kernel + * can use the memory for pagecache and when device driver requests + * it, allocated pages can be migrated. */ #define pr_fmt(fmt) "cma: " fmt @@ -16,12 +44,11 @@ #endif #include <asm/page.h> -#include <asm/dma-contiguous.h> #include <linux/memblock.h> #include <linux/err.h> #include <linux/sizes.h> -#include <linux/dma-contiguous.h> +#include <linux/dma-map-ops.h> #include <linux/cma.h> #ifdef CONFIG_CMA_SIZE_MBYTES @@ -69,20 +96,24 @@ static int __init early_cma(char *p) } early_param("cma", early_cma); +#ifdef CONFIG_DMA_PERNUMA_CMA + +static struct cma *dma_contiguous_pernuma_area[MAX_NUMNODES]; +static phys_addr_t pernuma_size_bytes __initdata; + +static int __init early_cma_pernuma(char *p) +{ + pernuma_size_bytes = memparse(p, &p); + return 0; +} +early_param("cma_pernuma", early_cma_pernuma); +#endif + #ifdef CONFIG_CMA_SIZE_PERCENTAGE static phys_addr_t __init __maybe_unused cma_early_percent_memory(void) { - struct memblock_region *reg; - unsigned long total_pages = 0; - - /* - * We cannot use memblock_phys_mem_size() here, because - * memblock_analyze() has not been called yet. - */ - for_each_memblock(memory, reg) - total_pages += memblock_region_memory_end_pfn(reg) - - memblock_region_memory_base_pfn(reg); + unsigned long total_pages = PHYS_PFN(memblock_phys_mem_size()); return (total_pages * CONFIG_CMA_SIZE_PERCENTAGE / 100) << PAGE_SHIFT; } @@ -96,6 +127,34 @@ static inline __maybe_unused phys_addr_t cma_early_percent_memory(void) #endif +#ifdef CONFIG_DMA_PERNUMA_CMA +void __init dma_pernuma_cma_reserve(void) +{ + int nid; + + if (!pernuma_size_bytes) + return; + + for_each_online_node(nid) { + int ret; + char name[CMA_MAX_NAME]; + struct cma **cma = &dma_contiguous_pernuma_area[nid]; + + snprintf(name, sizeof(name), "pernuma%d", nid); + ret = cma_declare_contiguous_nid(0, pernuma_size_bytes, 0, 0, + 0, false, name, cma, nid); + if (ret) { + pr_warn("%s: reservation failed: err %d, node %d", __func__, + ret, nid); + continue; + } + + pr_debug("%s: reserved %llu MiB on node %d\n", __func__, + (unsigned long long)pernuma_size_bytes / SZ_1M, nid); + } +} +#endif + /** * dma_contiguous_reserve() - reserve area(s) for contiguous memory handling * @limit: End address of the reserved memory (optional, 0 for any). @@ -143,6 +202,11 @@ void __init dma_contiguous_reserve(phys_addr_t limit) } } +void __weak +dma_contiguous_early_fixup(phys_addr_t base, unsigned long size) +{ +} + /** * dma_contiguous_reserve_area() - reserve custom contiguous area * @size: Size of the reserved area (in bytes), @@ -215,40 +279,58 @@ bool dma_release_from_contiguous(struct device *dev, struct page *pages, return cma_release(dev_get_cma_area(dev), pages, count); } +static struct page *cma_alloc_aligned(struct cma *cma, size_t size, gfp_t gfp) +{ + unsigned int align = min(get_order(size), CONFIG_CMA_ALIGNMENT); + + return cma_alloc(cma, size >> PAGE_SHIFT, align, gfp & __GFP_NOWARN); +} + /** * dma_alloc_contiguous() - allocate contiguous pages * @dev: Pointer to device for which the allocation is performed. * @size: Requested allocation size. * @gfp: Allocation flags. * - * This function allocates contiguous memory buffer for specified device. It - * first tries to use device specific contiguous memory area if available or - * the default global one, then tries a fallback allocation of normal pages. + * tries to use device specific contiguous memory area if available, or it + * tries to use per-numa cma, if the allocation fails, it will fallback to + * try default global one. * - * Note that it byapss one-page size of allocations from the global area as - * the addresses within one page are always contiguous, so there is no need - * to waste CMA pages for that kind; it also helps reduce fragmentations. + * Note that it bypass one-page size of allocations from the per-numa and + * global area as the addresses within one page are always contiguous, so + * there is no need to waste CMA pages for that kind; it also helps reduce + * fragmentations. */ struct page *dma_alloc_contiguous(struct device *dev, size_t size, gfp_t gfp) { - size_t count = size >> PAGE_SHIFT; - struct page *page = NULL; - struct cma *cma = NULL; - - if (dev && dev->cma_area) - cma = dev->cma_area; - else if (count > 1) - cma = dma_contiguous_default_area; +#ifdef CONFIG_DMA_PERNUMA_CMA + int nid = dev_to_node(dev); +#endif /* CMA can be used only in the context which permits sleeping */ - if (cma && gfpflags_allow_blocking(gfp)) { - size_t align = get_order(size); - size_t cma_align = min_t(size_t, align, CONFIG_CMA_ALIGNMENT); - - page = cma_alloc(cma, count, cma_align, gfp & __GFP_NOWARN); + if (!gfpflags_allow_blocking(gfp)) + return NULL; + if (dev->cma_area) + return cma_alloc_aligned(dev->cma_area, size, gfp); + if (size <= PAGE_SIZE) + return NULL; + +#ifdef CONFIG_DMA_PERNUMA_CMA + if (nid != NUMA_NO_NODE && !(gfp & (GFP_DMA | GFP_DMA32))) { + struct cma *cma = dma_contiguous_pernuma_area[nid]; + struct page *page; + + if (cma) { + page = cma_alloc_aligned(cma, size, gfp); + if (page) + return page; + } } +#endif + if (!dma_contiguous_default_area) + return NULL; - return page; + return cma_alloc_aligned(dma_contiguous_default_area, size, gfp); } /** @@ -264,9 +346,27 @@ struct page *dma_alloc_contiguous(struct device *dev, size_t size, gfp_t gfp) */ void dma_free_contiguous(struct device *dev, struct page *page, size_t size) { - if (!cma_release(dev_get_cma_area(dev), page, - PAGE_ALIGN(size) >> PAGE_SHIFT)) - __free_pages(page, get_order(size)); + unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; + + /* if dev has its own cma, free page from there */ + if (dev->cma_area) { + if (cma_release(dev->cma_area, page, count)) + return; + } else { + /* + * otherwise, page is from either per-numa cma or default cma + */ +#ifdef CONFIG_DMA_PERNUMA_CMA + if (cma_release(dma_contiguous_pernuma_area[page_to_nid(page)], + page, count)) + return; +#endif + if (cma_release(dma_contiguous_default_area, page, count)) + return; + } + + /* not in any cma, free from buddy */ + __free_pages(page, get_order(size)); } /* @@ -282,14 +382,14 @@ void dma_free_contiguous(struct device *dev, struct page *page, size_t size) static int rmem_cma_device_init(struct reserved_mem *rmem, struct device *dev) { - dev_set_cma_area(dev, rmem->priv); + dev->cma_area = rmem->priv; return 0; } static void rmem_cma_device_release(struct reserved_mem *rmem, struct device *dev) { - dev_set_cma_area(dev, NULL); + dev->cma_area = NULL; } static const struct reserved_mem_ops rmem_cma_ops = { @@ -299,8 +399,6 @@ static const struct reserved_mem_ops rmem_cma_ops = { static int __init rmem_cma_setup(struct reserved_mem *rmem) { - phys_addr_t align = PAGE_SIZE << max(MAX_ORDER - 1, pageblock_order); - phys_addr_t mask = align - 1; unsigned long node = rmem->fdt_node; bool default_cma = of_get_flat_dt_prop(node, "linux,cma-default", NULL); struct cma *cma; @@ -316,7 +414,7 @@ static int __init rmem_cma_setup(struct reserved_mem *rmem) of_get_flat_dt_prop(node, "no-map", NULL)) return -EINVAL; - if ((rmem->base & mask) || (rmem->size & mask)) { + if (!IS_ALIGNED(rmem->base | rmem->size, CMA_MIN_ALIGNMENT_BYTES)) { pr_err("Reserved memory: incorrect alignment of CMA region\n"); return -EINVAL; } @@ -330,7 +428,7 @@ static int __init rmem_cma_setup(struct reserved_mem *rmem) dma_contiguous_early_fixup(rmem->base, rmem->size); if (default_cma) - dma_contiguous_set_default(cma); + dma_contiguous_default_area = cma; rmem->ops = &rmem_cma_ops; rmem->priv = cma; diff --git a/kernel/dma/debug.c b/kernel/dma/debug.c index 2031ed1ad7fa..18c93c2276ca 100644 --- a/kernel/dma/debug.c +++ b/kernel/dma/debug.c @@ -9,10 +9,9 @@ #include <linux/sched/task_stack.h> #include <linux/scatterlist.h> -#include <linux/dma-mapping.h> +#include <linux/dma-map-ops.h> #include <linux/sched/task.h> #include <linux/stacktrace.h> -#include <linux/dma-debug.h> #include <linux/spinlock.h> #include <linux/vmalloc.h> #include <linux/debugfs.h> @@ -24,8 +23,8 @@ #include <linux/ctype.h> #include <linux/list.h> #include <linux/slab.h> - #include <asm/sections.h> +#include "debug.h" #define HASH_SIZE 16384ULL #define HASH_FN_SHIFT 13 @@ -137,12 +136,19 @@ static const char *const maperr2str[] = { [MAP_ERR_CHECKED] = "dma map error checked", }; -static const char *type2name[5] = { "single", "page", - "scather-gather", "coherent", - "resource" }; +static const char *type2name[] = { + [dma_debug_single] = "single", + [dma_debug_sg] = "scather-gather", + [dma_debug_coherent] = "coherent", + [dma_debug_resource] = "resource", +}; -static const char *dir2name[4] = { "DMA_BIDIRECTIONAL", "DMA_TO_DEVICE", - "DMA_FROM_DEVICE", "DMA_NONE" }; +static const char *dir2name[] = { + [DMA_BIDIRECTIONAL] = "DMA_BIDIRECTIONAL", + [DMA_TO_DEVICE] = "DMA_TO_DEVICE", + [DMA_FROM_DEVICE] = "DMA_FROM_DEVICE", + [DMA_NONE] = "DMA_NONE", +}; /* * The access to some variables in this macro is racy. We can't use atomic_t @@ -344,11 +350,10 @@ static struct dma_debug_entry *bucket_find_contain(struct hash_bucket **bucket, unsigned long *flags) { - unsigned int max_range = dma_get_max_seg_size(ref->dev); struct dma_debug_entry *entry, index = *ref; - unsigned int range = 0; + int limit = min(HASH_SIZE, (index.dev_addr >> HASH_FN_SHIFT) + 1); - while (range <= max_range) { + for (int i = 0; i < limit; i++) { entry = __hash_bucket_find(*bucket, ref, containing_match); if (entry) @@ -358,7 +363,6 @@ static struct dma_debug_entry *bucket_find_contain(struct hash_bucket **bucket, * Nothing found, go back a hash bucket */ put_hash_bucket(*bucket, *flags); - range += (1 << HASH_FN_SHIFT); index.dev_addr -= (1 << HASH_FN_SHIFT); *bucket = get_hash_bucket(&index, flags); } @@ -441,11 +445,8 @@ void debug_dma_dump_mappings(struct device *dev) * dma_active_cacheline entry to track per event. dma_map_sg(), on the * other hand, consumes a single dma_debug_entry, but inserts 'nents' * entries into the tree. - * - * At any time debug_dma_assert_idle() can be called to trigger a - * warning if any cachelines in the given page are in the active set. */ -static RADIX_TREE(dma_active_cacheline, GFP_NOWAIT); +static RADIX_TREE(dma_active_cacheline, GFP_ATOMIC); static DEFINE_SPINLOCK(radix_lock); #define ACTIVE_CACHELINE_MAX_OVERLAP ((1 << RADIX_TREE_MAX_TAGS) - 1) #define CACHELINE_PER_PAGE_SHIFT (PAGE_SHIFT - L1_CACHE_SHIFT) @@ -490,10 +491,7 @@ static void active_cacheline_inc_overlap(phys_addr_t cln) overlap = active_cacheline_set_overlap(cln, ++overlap); /* If we overflowed the overlap counter then we're potentially - * leaking dma-mappings. Otherwise, if maps and unmaps are - * balanced then this overflow may cause false negatives in - * debug_dma_assert_idle() as the cacheline may be marked idle - * prematurely. + * leaking dma-mappings. */ WARN_ONCE(overlap > ACTIVE_CACHELINE_MAX_OVERLAP, pr_fmt("exceeded %d overlapping mappings of cacheline %pa\n"), @@ -548,58 +546,11 @@ static void active_cacheline_remove(struct dma_debug_entry *entry) spin_unlock_irqrestore(&radix_lock, flags); } -/** - * debug_dma_assert_idle() - assert that a page is not undergoing dma - * @page: page to lookup in the dma_active_cacheline tree - * - * Place a call to this routine in cases where the cpu touching the page - * before the dma completes (page is dma_unmapped) will lead to data - * corruption. - */ -void debug_dma_assert_idle(struct page *page) -{ - static struct dma_debug_entry *ents[CACHELINES_PER_PAGE]; - struct dma_debug_entry *entry = NULL; - void **results = (void **) &ents; - unsigned int nents, i; - unsigned long flags; - phys_addr_t cln; - - if (dma_debug_disabled()) - return; - - if (!page) - return; - - cln = (phys_addr_t) page_to_pfn(page) << CACHELINE_PER_PAGE_SHIFT; - spin_lock_irqsave(&radix_lock, flags); - nents = radix_tree_gang_lookup(&dma_active_cacheline, results, cln, - CACHELINES_PER_PAGE); - for (i = 0; i < nents; i++) { - phys_addr_t ent_cln = to_cacheline_number(ents[i]); - - if (ent_cln == cln) { - entry = ents[i]; - break; - } else if (ent_cln >= cln + CACHELINES_PER_PAGE) - break; - } - spin_unlock_irqrestore(&radix_lock, flags); - - if (!entry) - return; - - cln = to_cacheline_number(entry); - err_printk(entry->dev, entry, - "cpu touching an active dma mapped cacheline [cln=%pa]\n", - &cln); -} - /* * Wrapper function for adding an entry to the hash. * This function takes care of locking itself. */ -static void add_dma_entry(struct dma_debug_entry *entry) +static void add_dma_entry(struct dma_debug_entry *entry, unsigned long attrs) { struct hash_bucket *bucket; unsigned long flags; @@ -611,13 +562,12 @@ static void add_dma_entry(struct dma_debug_entry *entry) rc = active_cacheline_insert(entry); if (rc == -ENOMEM) { - pr_err("cacheline tracking ENOMEM, dma-debug disabled\n"); + pr_err_once("cacheline tracking ENOMEM, dma-debug disabled\n"); global_disable = true; + } else if (rc == -EEXIST && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) { + err_printk(entry->dev, entry, + "cacheline tracking EEXIST, overlapping mappings aren't supported\n"); } - - /* TODO: report -EEXIST errors here as overlapping mappings are - * not supported by the DMA API - */ } static int dma_debug_create_entries(gfp_t gfp) @@ -653,7 +603,7 @@ static struct dma_debug_entry *__dma_entry_alloc(void) return entry; } -void __dma_entry_alloc_check_leak(void) +static void __dma_entry_alloc_check_leak(void) { u32 tmp = nr_total_entries % nr_prealloc_entries; @@ -841,7 +791,7 @@ static int dump_show(struct seq_file *seq, void *v) } DEFINE_SHOW_ATTRIBUTE(dump); -static void dma_debug_fs_init(void) +static int __init dma_debug_fs_init(void) { struct dentry *dentry = debugfs_create_dir("dma-api", NULL); @@ -854,7 +804,10 @@ static void dma_debug_fs_init(void) debugfs_create_u32("nr_total_entries", 0444, dentry, &nr_total_entries); debugfs_create_file("driver_filter", 0644, dentry, NULL, &filter_fops); debugfs_create_file("dump", 0444, dentry, NULL, &dump_fops); + + return 0; } +core_initcall_sync(dma_debug_fs_init); static int device_dma_allocations(struct device *dev, struct dma_debug_entry **out_entry) { @@ -879,7 +832,7 @@ static int device_dma_allocations(struct device *dev, struct dma_debug_entry **o static int dma_debug_device_change(struct notifier_block *nb, unsigned long action, void *data) { struct device *dev = data; - struct dma_debug_entry *uninitialized_var(entry); + struct dma_debug_entry *entry; int count; if (dma_debug_disabled()) @@ -939,8 +892,6 @@ static int dma_debug_init(void) spin_lock_init(&dma_entry_hash[i].lock); } - dma_debug_fs_init(); - nr_pages = DIV_ROUND_UP(nr_prealloc_entries, DMA_DEBUG_DYNAMIC_ENTRIES); for (i = 0; i < nr_pages; ++i) dma_debug_create_entries(GFP_KERNEL); @@ -974,7 +925,7 @@ static __init int dma_debug_cmdline(char *str) global_disable = true; } - return 0; + return 1; } static __init int dma_debug_entries_cmdline(char *str) @@ -983,7 +934,7 @@ static __init int dma_debug_entries_cmdline(char *str) return -EINVAL; if (!get_option(&str, &nr_prealloc_entries)) nr_prealloc_entries = PREALLOC_DMA_DEBUG_ENTRIES; - return 0; + return 1; } __setup("dma_debug=", dma_debug_cmdline); @@ -1068,7 +1019,7 @@ static void check_unmap(struct dma_debug_entry *ref) /* * Drivers should use dma_mapping_error() to check the returned * addresses of dma_map_single() and dma_map_page(). - * If not, print this warning message. See Documentation/DMA-API.txt. + * If not, print this warning message. See Documentation/core-api/dma-api.rst. */ if (entry->map_err_type == MAP_ERR_NOT_CHECKED) { err_printk(ref->dev, entry, @@ -1113,20 +1064,10 @@ static void check_for_stack(struct device *dev, } } -static inline bool overlap(void *addr, unsigned long len, void *start, void *end) -{ - unsigned long a1 = (unsigned long)addr; - unsigned long b1 = a1 + len; - unsigned long a2 = (unsigned long)start; - unsigned long b2 = (unsigned long)end; - - return !(b1 <= a2 || a1 >= b2); -} - static void check_for_illegal_area(struct device *dev, void *addr, unsigned long len) { - if (overlap(addr, len, _stext, _etext) || - overlap(addr, len, __start_rodata, __end_rodata)) + if (memory_intersects(_stext, _etext, addr, len) || + memory_intersects(__start_rodata, __end_rodata, addr, len)) err_printk(dev, NULL, "device driver maps memory from kernel text or rodata [addr=%p] [len=%lu]\n", addr, len); } @@ -1248,7 +1189,8 @@ void debug_dma_map_single(struct device *dev, const void *addr, EXPORT_SYMBOL(debug_dma_map_single); void debug_dma_map_page(struct device *dev, struct page *page, size_t offset, - size_t size, int direction, dma_addr_t dma_addr) + size_t size, int direction, dma_addr_t dma_addr, + unsigned long attrs) { struct dma_debug_entry *entry; @@ -1265,7 +1207,7 @@ void debug_dma_map_page(struct device *dev, struct page *page, size_t offset, entry->dev = dev; entry->type = dma_debug_single; entry->pfn = page_to_pfn(page); - entry->offset = offset, + entry->offset = offset; entry->dev_addr = dma_addr; entry->size = size; entry->direction = direction; @@ -1279,9 +1221,8 @@ void debug_dma_map_page(struct device *dev, struct page *page, size_t offset, check_for_illegal_area(dev, addr, size); } - add_dma_entry(entry); + add_dma_entry(entry, attrs); } -EXPORT_SYMBOL(debug_dma_map_page); void debug_dma_mapping_error(struct device *dev, dma_addr_t dma_addr) { @@ -1336,10 +1277,10 @@ void debug_dma_unmap_page(struct device *dev, dma_addr_t addr, return; check_unmap(&ref); } -EXPORT_SYMBOL(debug_dma_unmap_page); void debug_dma_map_sg(struct device *dev, struct scatterlist *sg, - int nents, int mapped_ents, int direction) + int nents, int mapped_ents, int direction, + unsigned long attrs) { struct dma_debug_entry *entry; struct scatterlist *s; @@ -1348,6 +1289,12 @@ void debug_dma_map_sg(struct device *dev, struct scatterlist *sg, if (unlikely(dma_debug_disabled())) return; + for_each_sg(sg, s, nents, i) { + check_for_stack(dev, sg_page(s), s->offset); + if (!PageHighMem(sg_page(s))) + check_for_illegal_area(dev, sg_virt(s), s->length); + } + for_each_sg(sg, s, mapped_ents, i) { entry = dma_entry_alloc(); if (!entry) @@ -1356,25 +1303,18 @@ void debug_dma_map_sg(struct device *dev, struct scatterlist *sg, entry->type = dma_debug_sg; entry->dev = dev; entry->pfn = page_to_pfn(sg_page(s)); - entry->offset = s->offset, + entry->offset = s->offset; entry->size = sg_dma_len(s); entry->dev_addr = sg_dma_address(s); entry->direction = direction; entry->sg_call_ents = nents; entry->sg_mapped_ents = mapped_ents; - check_for_stack(dev, sg_page(s), s->offset); - - if (!PageHighMem(sg_page(s))) { - check_for_illegal_area(dev, sg_virt(s), sg_dma_len(s)); - } - check_sg_segment(dev, s); - add_dma_entry(entry); + add_dma_entry(entry, attrs); } } -EXPORT_SYMBOL(debug_dma_map_sg); static int get_nr_mapped_entries(struct device *dev, struct dma_debug_entry *ref) @@ -1426,10 +1366,10 @@ void debug_dma_unmap_sg(struct device *dev, struct scatterlist *sglist, check_unmap(&ref); } } -EXPORT_SYMBOL(debug_dma_unmap_sg); void debug_dma_alloc_coherent(struct device *dev, size_t size, - dma_addr_t dma_addr, void *virt) + dma_addr_t dma_addr, void *virt, + unsigned long attrs) { struct dma_debug_entry *entry; @@ -1459,7 +1399,7 @@ void debug_dma_alloc_coherent(struct device *dev, size_t size, else entry->pfn = page_to_pfn(virt_to_page(virt)); - add_dma_entry(entry); + add_dma_entry(entry, attrs); } void debug_dma_free_coherent(struct device *dev, size_t size, @@ -1490,7 +1430,8 @@ void debug_dma_free_coherent(struct device *dev, size_t size, } void debug_dma_map_resource(struct device *dev, phys_addr_t addr, size_t size, - int direction, dma_addr_t dma_addr) + int direction, dma_addr_t dma_addr, + unsigned long attrs) { struct dma_debug_entry *entry; @@ -1510,9 +1451,8 @@ void debug_dma_map_resource(struct device *dev, phys_addr_t addr, size_t size, entry->direction = direction; entry->map_err_type = MAP_ERR_NOT_CHECKED; - add_dma_entry(entry); + add_dma_entry(entry, attrs); } -EXPORT_SYMBOL(debug_dma_map_resource); void debug_dma_unmap_resource(struct device *dev, dma_addr_t dma_addr, size_t size, int direction) @@ -1530,7 +1470,6 @@ void debug_dma_unmap_resource(struct device *dev, dma_addr_t dma_addr, check_unmap(&ref); } -EXPORT_SYMBOL(debug_dma_unmap_resource); void debug_dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_handle, size_t size, int direction) @@ -1549,7 +1488,6 @@ void debug_dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_handle, check_sync(dev, &ref, true); } -EXPORT_SYMBOL(debug_dma_sync_single_for_cpu); void debug_dma_sync_single_for_device(struct device *dev, dma_addr_t dma_handle, size_t size, @@ -1569,7 +1507,6 @@ void debug_dma_sync_single_for_device(struct device *dev, check_sync(dev, &ref, false); } -EXPORT_SYMBOL(debug_dma_sync_single_for_device); void debug_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, int nelems, int direction) @@ -1602,7 +1539,6 @@ void debug_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, check_sync(dev, &ref, true); } } -EXPORT_SYMBOL(debug_dma_sync_sg_for_cpu); void debug_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, int nelems, int direction) @@ -1634,7 +1570,6 @@ void debug_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, check_sync(dev, &ref, false); } } -EXPORT_SYMBOL(debug_dma_sync_sg_for_device); static int __init dma_debug_driver_setup(char *str) { diff --git a/kernel/dma/debug.h b/kernel/dma/debug.h new file mode 100644 index 000000000000..f525197d3cae --- /dev/null +++ b/kernel/dma/debug.h @@ -0,0 +1,130 @@ +/* SPDX-License-Identifier: GPL-2.0-only */ +/* + * Copyright (C) 2008 Advanced Micro Devices, Inc. + * + * Author: Joerg Roedel <joerg.roedel@amd.com> + */ + +#ifndef _KERNEL_DMA_DEBUG_H +#define _KERNEL_DMA_DEBUG_H + +#ifdef CONFIG_DMA_API_DEBUG +extern void debug_dma_map_page(struct device *dev, struct page *page, + size_t offset, size_t size, + int direction, dma_addr_t dma_addr, + unsigned long attrs); + +extern void debug_dma_unmap_page(struct device *dev, dma_addr_t addr, + size_t size, int direction); + +extern void debug_dma_map_sg(struct device *dev, struct scatterlist *sg, + int nents, int mapped_ents, int direction, + unsigned long attrs); + +extern void debug_dma_unmap_sg(struct device *dev, struct scatterlist *sglist, + int nelems, int dir); + +extern void debug_dma_alloc_coherent(struct device *dev, size_t size, + dma_addr_t dma_addr, void *virt, + unsigned long attrs); + +extern void debug_dma_free_coherent(struct device *dev, size_t size, + void *virt, dma_addr_t addr); + +extern void debug_dma_map_resource(struct device *dev, phys_addr_t addr, + size_t size, int direction, + dma_addr_t dma_addr, + unsigned long attrs); + +extern void debug_dma_unmap_resource(struct device *dev, dma_addr_t dma_addr, + size_t size, int direction); + +extern void debug_dma_sync_single_for_cpu(struct device *dev, + dma_addr_t dma_handle, size_t size, + int direction); + +extern void debug_dma_sync_single_for_device(struct device *dev, + dma_addr_t dma_handle, + size_t size, int direction); + +extern void debug_dma_sync_sg_for_cpu(struct device *dev, + struct scatterlist *sg, + int nelems, int direction); + +extern void debug_dma_sync_sg_for_device(struct device *dev, + struct scatterlist *sg, + int nelems, int direction); +#else /* CONFIG_DMA_API_DEBUG */ +static inline void debug_dma_map_page(struct device *dev, struct page *page, + size_t offset, size_t size, + int direction, dma_addr_t dma_addr, + unsigned long attrs) +{ +} + +static inline void debug_dma_unmap_page(struct device *dev, dma_addr_t addr, + size_t size, int direction) +{ +} + +static inline void debug_dma_map_sg(struct device *dev, struct scatterlist *sg, + int nents, int mapped_ents, int direction, + unsigned long attrs) +{ +} + +static inline void debug_dma_unmap_sg(struct device *dev, + struct scatterlist *sglist, + int nelems, int dir) +{ +} + +static inline void debug_dma_alloc_coherent(struct device *dev, size_t size, + dma_addr_t dma_addr, void *virt, + unsigned long attrs) +{ +} + +static inline void debug_dma_free_coherent(struct device *dev, size_t size, + void *virt, dma_addr_t addr) +{ +} + +static inline void debug_dma_map_resource(struct device *dev, phys_addr_t addr, + size_t size, int direction, + dma_addr_t dma_addr, + unsigned long attrs) +{ +} + +static inline void debug_dma_unmap_resource(struct device *dev, + dma_addr_t dma_addr, size_t size, + int direction) +{ +} + +static inline void debug_dma_sync_single_for_cpu(struct device *dev, + dma_addr_t dma_handle, + size_t size, int direction) +{ +} + +static inline void debug_dma_sync_single_for_device(struct device *dev, + dma_addr_t dma_handle, + size_t size, int direction) +{ +} + +static inline void debug_dma_sync_sg_for_cpu(struct device *dev, + struct scatterlist *sg, + int nelems, int direction) +{ +} + +static inline void debug_dma_sync_sg_for_device(struct device *dev, + struct scatterlist *sg, + int nelems, int direction) +{ +} +#endif /* CONFIG_DMA_API_DEBUG */ +#endif /* _KERNEL_DMA_DEBUG_H */ diff --git a/kernel/dma/direct.c b/kernel/dma/direct.c index ac7956c38f69..63859a101ed8 100644 --- a/kernel/dma/direct.c +++ b/kernel/dma/direct.c @@ -1,23 +1,22 @@ // SPDX-License-Identifier: GPL-2.0 /* - * Copyright (C) 2018 Christoph Hellwig. + * Copyright (C) 2018-2020 Christoph Hellwig. * * DMA operations that map physical memory directly without using an IOMMU. */ #include <linux/memblock.h> /* for max_pfn */ #include <linux/export.h> #include <linux/mm.h> -#include <linux/dma-direct.h> +#include <linux/dma-map-ops.h> #include <linux/scatterlist.h> -#include <linux/dma-contiguous.h> -#include <linux/dma-noncoherent.h> #include <linux/pfn.h> #include <linux/vmalloc.h> #include <linux/set_memory.h> -#include <linux/swiotlb.h> +#include <linux/slab.h> +#include "direct.h" /* - * Most architectures use ZONE_DMA for the first 16 Megabytes, but some use it + * Most architectures use ZONE_DMA for the first 16 Megabytes, but some use * it for entirely different regions. In that case the arch code needs to * override the variable below for dma-direct to work properly. */ @@ -27,7 +26,7 @@ static inline dma_addr_t phys_to_dma_direct(struct device *dev, phys_addr_t phys) { if (force_dma_unencrypted(dev)) - return __phys_to_dma(dev, phys); + return phys_to_dma_unencrypted(dev, phys); return phys_to_dma(dev, phys); } @@ -39,21 +38,17 @@ static inline struct page *dma_direct_to_page(struct device *dev, u64 dma_direct_get_required_mask(struct device *dev) { - u64 max_dma = phys_to_dma_direct(dev, (max_pfn - 1) << PAGE_SHIFT); + phys_addr_t phys = (phys_addr_t)(max_pfn - 1) << PAGE_SHIFT; + u64 max_dma = phys_to_dma_direct(dev, phys); return (1ULL << (fls64(max_dma) - 1)) * 2 - 1; } -static gfp_t __dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask, - u64 *phys_limit) +static gfp_t dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask, + u64 *phys_limit) { u64 dma_limit = min_not_zero(dma_mask, dev->bus_dma_limit); - if (force_dma_unencrypted(dev)) - *phys_limit = __dma_to_phys(dev, dma_limit); - else - *phys_limit = dma_to_phys(dev, dma_limit); - /* * Optimistically try the zone that the physical address mask falls * into first. If that returns memory that isn't actually addressable @@ -62,6 +57,7 @@ static gfp_t __dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask, * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding * zones. */ + *phys_limit = dma_to_phys(dev, dma_limit); if (*phys_limit <= DMA_BIT_MASK(zone_dma_bits)) return GFP_DMA; if (*phys_limit <= DMA_BIT_MASK(32)) @@ -71,33 +67,78 @@ static gfp_t __dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask, static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size) { - return phys_to_dma_direct(dev, phys) + size - 1 <= - min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit); + dma_addr_t dma_addr = phys_to_dma_direct(dev, phys); + + if (dma_addr == DMA_MAPPING_ERROR) + return false; + return dma_addr + size - 1 <= + min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit); +} + +static int dma_set_decrypted(struct device *dev, void *vaddr, size_t size) +{ + if (!force_dma_unencrypted(dev)) + return 0; + return set_memory_decrypted((unsigned long)vaddr, PFN_UP(size)); +} + +static int dma_set_encrypted(struct device *dev, void *vaddr, size_t size) +{ + int ret; + + if (!force_dma_unencrypted(dev)) + return 0; + ret = set_memory_encrypted((unsigned long)vaddr, PFN_UP(size)); + if (ret) + pr_warn_ratelimited("leaking DMA memory that can't be re-encrypted\n"); + return ret; +} + +static void __dma_direct_free_pages(struct device *dev, struct page *page, + size_t size) +{ + if (swiotlb_free(dev, page, size)) + return; + dma_free_contiguous(dev, page, size); } -struct page *__dma_direct_alloc_pages(struct device *dev, size_t size, - gfp_t gfp, unsigned long attrs) +static struct page *dma_direct_alloc_swiotlb(struct device *dev, size_t size) +{ + struct page *page = swiotlb_alloc(dev, size); + + if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) { + swiotlb_free(dev, page, size); + return NULL; + } + + return page; +} + +static struct page *__dma_direct_alloc_pages(struct device *dev, size_t size, + gfp_t gfp, bool allow_highmem) { - size_t alloc_size = PAGE_ALIGN(size); int node = dev_to_node(dev); struct page *page = NULL; u64 phys_limit; - if (attrs & DMA_ATTR_NO_WARN) - gfp |= __GFP_NOWARN; + WARN_ON_ONCE(!PAGE_ALIGNED(size)); - /* we always manually zero the memory once we are done: */ - gfp &= ~__GFP_ZERO; - gfp |= __dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask, - &phys_limit); - page = dma_alloc_contiguous(dev, alloc_size, gfp); - if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) { - dma_free_contiguous(dev, page, alloc_size); - page = NULL; + if (is_swiotlb_for_alloc(dev)) + return dma_direct_alloc_swiotlb(dev, size); + + gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask, + &phys_limit); + page = dma_alloc_contiguous(dev, size, gfp); + if (page) { + if (!dma_coherent_ok(dev, page_to_phys(page), size) || + (!allow_highmem && PageHighMem(page))) { + dma_free_contiguous(dev, page, size); + page = NULL; + } } again: if (!page) - page = alloc_pages_node(node, gfp, get_order(alloc_size)); + page = alloc_pages_node(node, gfp, get_order(size)); if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) { dma_free_contiguous(dev, page, size); page = NULL; @@ -118,146 +159,253 @@ again: return page; } -void *dma_direct_alloc_pages(struct device *dev, size_t size, - dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs) +/* + * Check if a potentially blocking operations needs to dip into the atomic + * pools for the given device/gfp. + */ +static bool dma_direct_use_pool(struct device *dev, gfp_t gfp) +{ + return !gfpflags_allow_blocking(gfp) && !is_swiotlb_for_alloc(dev); +} + +static void *dma_direct_alloc_from_pool(struct device *dev, size_t size, + dma_addr_t *dma_handle, gfp_t gfp) { struct page *page; + u64 phys_mask; void *ret; - if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && - dma_alloc_need_uncached(dev, attrs) && - !gfpflags_allow_blocking(gfp)) { - ret = dma_alloc_from_pool(PAGE_ALIGN(size), &page, gfp); - if (!ret) - return NULL; - goto done; - } + if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_DMA_COHERENT_POOL))) + return NULL; - page = __dma_direct_alloc_pages(dev, size, gfp, attrs); + gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask, + &phys_mask); + page = dma_alloc_from_pool(dev, size, &ret, gfp, dma_coherent_ok); if (!page) return NULL; + *dma_handle = phys_to_dma_direct(dev, page_to_phys(page)); + return ret; +} - if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) && - !force_dma_unencrypted(dev)) { - /* remove any dirty cache lines on the kernel alias */ - if (!PageHighMem(page)) - arch_dma_prep_coherent(page, size); - /* return the page pointer as the opaque cookie */ - ret = page; - goto done; - } +static void *dma_direct_alloc_no_mapping(struct device *dev, size_t size, + dma_addr_t *dma_handle, gfp_t gfp) +{ + struct page *page; - if ((IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && - dma_alloc_need_uncached(dev, attrs)) || - (IS_ENABLED(CONFIG_DMA_REMAP) && PageHighMem(page))) { - /* remove any dirty cache lines on the kernel alias */ - arch_dma_prep_coherent(page, PAGE_ALIGN(size)); + page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO, true); + if (!page) + return NULL; - /* create a coherent mapping */ - ret = dma_common_contiguous_remap(page, PAGE_ALIGN(size), - dma_pgprot(dev, PAGE_KERNEL, attrs), - __builtin_return_address(0)); - if (!ret) { - dma_free_contiguous(dev, page, size); - return ret; - } + /* remove any dirty cache lines on the kernel alias */ + if (!PageHighMem(page)) + arch_dma_prep_coherent(page, size); - memset(ret, 0, size); - goto done; - } + /* return the page pointer as the opaque cookie */ + *dma_handle = phys_to_dma_direct(dev, page_to_phys(page)); + return page; +} - if (PageHighMem(page)) { +void *dma_direct_alloc(struct device *dev, size_t size, + dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs) +{ + bool remap = false, set_uncached = false; + struct page *page; + void *ret; + + size = PAGE_ALIGN(size); + if (attrs & DMA_ATTR_NO_WARN) + gfp |= __GFP_NOWARN; + + if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) && + !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev)) + return dma_direct_alloc_no_mapping(dev, size, dma_handle, gfp); + + if (!dev_is_dma_coherent(dev)) { /* - * Depending on the cma= arguments and per-arch setup - * dma_alloc_contiguous could return highmem pages. - * Without remapping there is no way to return them here, - * so log an error and fail. + * Fallback to the arch handler if it exists. This should + * eventually go away. */ - dev_info(dev, "Rejecting highmem page from CMA.\n"); - dma_free_contiguous(dev, page, size); + if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) && + !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && + !IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) && + !is_swiotlb_for_alloc(dev)) + return arch_dma_alloc(dev, size, dma_handle, gfp, + attrs); + + /* + * If there is a global pool, always allocate from it for + * non-coherent devices. + */ + if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL)) + return dma_alloc_from_global_coherent(dev, size, + dma_handle); + + /* + * Otherwise remap if the architecture is asking for it. But + * given that remapping memory is a blocking operation we'll + * instead have to dip into the atomic pools. + */ + remap = IS_ENABLED(CONFIG_DMA_DIRECT_REMAP); + if (remap) { + if (dma_direct_use_pool(dev, gfp)) + return dma_direct_alloc_from_pool(dev, size, + dma_handle, gfp); + } else { + if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED)) + return NULL; + set_uncached = true; + } + } + + /* + * Decrypting memory may block, so allocate the memory from the atomic + * pools if we can't block. + */ + if (force_dma_unencrypted(dev) && dma_direct_use_pool(dev, gfp)) + return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp); + + /* we always manually zero the memory once we are done */ + page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO, true); + if (!page) return NULL; + + /* + * dma_alloc_contiguous can return highmem pages depending on a + * combination the cma= arguments and per-arch setup. These need to be + * remapped to return a kernel virtual address. + */ + if (PageHighMem(page)) { + remap = true; + set_uncached = false; } - ret = page_address(page); - if (force_dma_unencrypted(dev)) - set_memory_decrypted((unsigned long)ret, 1 << get_order(size)); + if (remap) { + pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs); + + if (force_dma_unencrypted(dev)) + prot = pgprot_decrypted(prot); + + /* remove any dirty cache lines on the kernel alias */ + arch_dma_prep_coherent(page, size); + + /* create a coherent mapping */ + ret = dma_common_contiguous_remap(page, size, prot, + __builtin_return_address(0)); + if (!ret) + goto out_free_pages; + } else { + ret = page_address(page); + if (dma_set_decrypted(dev, ret, size)) + goto out_free_pages; + } memset(ret, 0, size); - if (IS_ENABLED(CONFIG_ARCH_HAS_UNCACHED_SEGMENT) && - dma_alloc_need_uncached(dev, attrs)) { + if (set_uncached) { arch_dma_prep_coherent(page, size); - ret = uncached_kernel_address(ret); + ret = arch_dma_set_uncached(ret, size); + if (IS_ERR(ret)) + goto out_encrypt_pages; } -done: - if (force_dma_unencrypted(dev)) - *dma_handle = __phys_to_dma(dev, page_to_phys(page)); - else - *dma_handle = phys_to_dma(dev, page_to_phys(page)); + + *dma_handle = phys_to_dma_direct(dev, page_to_phys(page)); return ret; + +out_encrypt_pages: + if (dma_set_encrypted(dev, page_address(page), size)) + return NULL; +out_free_pages: + __dma_direct_free_pages(dev, page, size); + return NULL; } -void dma_direct_free_pages(struct device *dev, size_t size, void *cpu_addr, - dma_addr_t dma_addr, unsigned long attrs) +void dma_direct_free(struct device *dev, size_t size, + void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs) { unsigned int page_order = get_order(size); if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) && - !force_dma_unencrypted(dev)) { + !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev)) { /* cpu_addr is a struct page cookie, not a kernel address */ dma_free_contiguous(dev, cpu_addr, size); return; } - if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && - dma_free_from_pool(cpu_addr, PAGE_ALIGN(size))) + if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) && + !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && + !IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) && + !dev_is_dma_coherent(dev) && + !is_swiotlb_for_alloc(dev)) { + arch_dma_free(dev, size, cpu_addr, dma_addr, attrs); return; + } - if (force_dma_unencrypted(dev)) - set_memory_encrypted((unsigned long)cpu_addr, 1 << page_order); + if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) && + !dev_is_dma_coherent(dev)) { + if (!dma_release_from_global_coherent(page_order, cpu_addr)) + WARN_ON_ONCE(1); + return; + } + + /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */ + if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) && + dma_free_from_pool(dev, cpu_addr, PAGE_ALIGN(size))) + return; - if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) + if (is_vmalloc_addr(cpu_addr)) { vunmap(cpu_addr); + } else { + if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_CLEAR_UNCACHED)) + arch_dma_clear_uncached(cpu_addr, size); + if (dma_set_encrypted(dev, cpu_addr, size)) + return; + } - dma_free_contiguous(dev, dma_direct_to_page(dev, dma_addr), size); + __dma_direct_free_pages(dev, dma_direct_to_page(dev, dma_addr), size); } -void *dma_direct_alloc(struct device *dev, size_t size, - dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs) +struct page *dma_direct_alloc_pages(struct device *dev, size_t size, + dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp) { - if (!IS_ENABLED(CONFIG_ARCH_HAS_UNCACHED_SEGMENT) && - !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && - dma_alloc_need_uncached(dev, attrs)) - return arch_dma_alloc(dev, size, dma_handle, gfp, attrs); - return dma_direct_alloc_pages(dev, size, dma_handle, gfp, attrs); -} + struct page *page; + void *ret; -void dma_direct_free(struct device *dev, size_t size, - void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs) -{ - if (!IS_ENABLED(CONFIG_ARCH_HAS_UNCACHED_SEGMENT) && - !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && - dma_alloc_need_uncached(dev, attrs)) - arch_dma_free(dev, size, cpu_addr, dma_addr, attrs); - else - dma_direct_free_pages(dev, size, cpu_addr, dma_addr, attrs); + if (force_dma_unencrypted(dev) && dma_direct_use_pool(dev, gfp)) + return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp); + + page = __dma_direct_alloc_pages(dev, size, gfp, false); + if (!page) + return NULL; + + ret = page_address(page); + if (dma_set_decrypted(dev, ret, size)) + goto out_free_pages; + memset(ret, 0, size); + *dma_handle = phys_to_dma_direct(dev, page_to_phys(page)); + return page; +out_free_pages: + __dma_direct_free_pages(dev, page, size); + return NULL; } -#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \ - defined(CONFIG_SWIOTLB) -void dma_direct_sync_single_for_device(struct device *dev, - dma_addr_t addr, size_t size, enum dma_data_direction dir) +void dma_direct_free_pages(struct device *dev, size_t size, + struct page *page, dma_addr_t dma_addr, + enum dma_data_direction dir) { - phys_addr_t paddr = dma_to_phys(dev, addr); + void *vaddr = page_address(page); - if (unlikely(is_swiotlb_buffer(paddr))) - swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_DEVICE); + /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */ + if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) && + dma_free_from_pool(dev, vaddr, size)) + return; - if (!dev_is_dma_coherent(dev)) - arch_sync_dma_for_device(paddr, size, dir); + if (dma_set_encrypted(dev, vaddr, size)) + return; + __dma_direct_free_pages(dev, page, size); } -EXPORT_SYMBOL(dma_direct_sync_single_for_device); +#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \ + defined(CONFIG_SWIOTLB) void dma_direct_sync_sg_for_device(struct device *dev, struct scatterlist *sgl, int nents, enum dma_data_direction dir) { @@ -267,36 +415,20 @@ void dma_direct_sync_sg_for_device(struct device *dev, for_each_sg(sgl, sg, nents, i) { phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg)); - if (unlikely(is_swiotlb_buffer(paddr))) - swiotlb_tbl_sync_single(dev, paddr, sg->length, - dir, SYNC_FOR_DEVICE); + if (unlikely(is_swiotlb_buffer(dev, paddr))) + swiotlb_sync_single_for_device(dev, paddr, sg->length, + dir); if (!dev_is_dma_coherent(dev)) arch_sync_dma_for_device(paddr, sg->length, dir); } } -EXPORT_SYMBOL(dma_direct_sync_sg_for_device); #endif #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \ defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \ defined(CONFIG_SWIOTLB) -void dma_direct_sync_single_for_cpu(struct device *dev, - dma_addr_t addr, size_t size, enum dma_data_direction dir) -{ - phys_addr_t paddr = dma_to_phys(dev, addr); - - if (!dev_is_dma_coherent(dev)) { - arch_sync_dma_for_cpu(paddr, size, dir); - arch_sync_dma_for_cpu_all(); - } - - if (unlikely(is_swiotlb_buffer(paddr))) - swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_CPU); -} -EXPORT_SYMBOL(dma_direct_sync_single_for_cpu); - void dma_direct_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl, int nents, enum dma_data_direction dir) { @@ -309,79 +441,72 @@ void dma_direct_sync_sg_for_cpu(struct device *dev, if (!dev_is_dma_coherent(dev)) arch_sync_dma_for_cpu(paddr, sg->length, dir); - if (unlikely(is_swiotlb_buffer(paddr))) - swiotlb_tbl_sync_single(dev, paddr, sg->length, dir, - SYNC_FOR_CPU); + if (unlikely(is_swiotlb_buffer(dev, paddr))) + swiotlb_sync_single_for_cpu(dev, paddr, sg->length, + dir); + + if (dir == DMA_FROM_DEVICE) + arch_dma_mark_clean(paddr, sg->length); } if (!dev_is_dma_coherent(dev)) arch_sync_dma_for_cpu_all(); } -EXPORT_SYMBOL(dma_direct_sync_sg_for_cpu); - -void dma_direct_unmap_page(struct device *dev, dma_addr_t addr, - size_t size, enum dma_data_direction dir, unsigned long attrs) -{ - phys_addr_t phys = dma_to_phys(dev, addr); - - if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC)) - dma_direct_sync_single_for_cpu(dev, addr, size, dir); - - if (unlikely(is_swiotlb_buffer(phys))) - swiotlb_tbl_unmap_single(dev, phys, size, size, dir, attrs); -} -EXPORT_SYMBOL(dma_direct_unmap_page); +/* + * Unmaps segments, except for ones marked as pci_p2pdma which do not + * require any further action as they contain a bus address. + */ void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl, int nents, enum dma_data_direction dir, unsigned long attrs) { struct scatterlist *sg; int i; - for_each_sg(sgl, sg, nents, i) - dma_direct_unmap_page(dev, sg->dma_address, sg_dma_len(sg), dir, - attrs); -} -EXPORT_SYMBOL(dma_direct_unmap_sg); -#endif - -dma_addr_t dma_direct_map_page(struct device *dev, struct page *page, - unsigned long offset, size_t size, enum dma_data_direction dir, - unsigned long attrs) -{ - phys_addr_t phys = page_to_phys(page) + offset; - dma_addr_t dma_addr = phys_to_dma(dev, phys); - - if (unlikely(swiotlb_force == SWIOTLB_FORCE)) - return swiotlb_map(dev, phys, size, dir, attrs); - - if (unlikely(!dma_capable(dev, dma_addr, size, true))) { - if (swiotlb_force != SWIOTLB_NO_FORCE) - return swiotlb_map(dev, phys, size, dir, attrs); - - dev_WARN_ONCE(dev, 1, - "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n", - &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit); - return DMA_MAPPING_ERROR; + for_each_sg(sgl, sg, nents, i) { + if (sg_is_dma_bus_address(sg)) + sg_dma_unmark_bus_address(sg); + else + dma_direct_unmap_page(dev, sg->dma_address, + sg_dma_len(sg), dir, attrs); } - - if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) - arch_sync_dma_for_device(phys, size, dir); - return dma_addr; } -EXPORT_SYMBOL(dma_direct_map_page); +#endif int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents, enum dma_data_direction dir, unsigned long attrs) { - int i; + struct pci_p2pdma_map_state p2pdma_state = {}; + enum pci_p2pdma_map_type map; struct scatterlist *sg; + int i, ret; for_each_sg(sgl, sg, nents, i) { + if (is_pci_p2pdma_page(sg_page(sg))) { + map = pci_p2pdma_map_segment(&p2pdma_state, dev, sg); + switch (map) { + case PCI_P2PDMA_MAP_BUS_ADDR: + continue; + case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE: + /* + * Any P2P mapping that traverses the PCI + * host bridge must be mapped with CPU physical + * address and not PCI bus addresses. This is + * done with dma_direct_map_page() below. + */ + break; + default: + ret = -EREMOTEIO; + goto out_unmap; + } + } + sg->dma_address = dma_direct_map_page(dev, sg_page(sg), sg->offset, sg->length, dir, attrs); - if (sg->dma_address == DMA_MAPPING_ERROR) + if (sg->dma_address == DMA_MAPPING_ERROR) { + ret = -EIO; goto out_unmap; + } sg_dma_len(sg) = sg->length; } @@ -389,9 +514,8 @@ int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents, out_unmap: dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC); - return 0; + return ret; } -EXPORT_SYMBOL(dma_direct_map_sg); dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr, size_t size, enum dma_data_direction dir, unsigned long attrs) @@ -408,7 +532,6 @@ dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr, return dma_addr; } -EXPORT_SYMBOL(dma_direct_map_resource); int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt, void *cpu_addr, dma_addr_t dma_addr, size_t size, @@ -423,7 +546,6 @@ int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt, return ret; } -#ifdef CONFIG_MMU bool dma_direct_can_mmap(struct device *dev) { return dev_is_dma_coherent(dev) || @@ -440,28 +562,19 @@ int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma, int ret = -ENXIO; vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs); + if (force_dma_unencrypted(dev)) + vma->vm_page_prot = pgprot_decrypted(vma->vm_page_prot); if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret)) return ret; + if (dma_mmap_from_global_coherent(vma, cpu_addr, size, &ret)) + return ret; if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff) return -ENXIO; return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff, user_count << PAGE_SHIFT, vma->vm_page_prot); } -#else /* CONFIG_MMU */ -bool dma_direct_can_mmap(struct device *dev) -{ - return false; -} - -int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma, - void *cpu_addr, dma_addr_t dma_addr, size_t size, - unsigned long attrs) -{ - return -ENXIO; -} -#endif /* CONFIG_MMU */ int dma_direct_supported(struct device *dev, u64 mask) { @@ -477,20 +590,67 @@ int dma_direct_supported(struct device *dev, u64 mask) return 1; /* - * This check needs to be against the actual bit mask value, so - * use __phys_to_dma() here so that the SME encryption mask isn't + * This check needs to be against the actual bit mask value, so use + * phys_to_dma_unencrypted() here so that the SME encryption mask isn't * part of the check. */ if (IS_ENABLED(CONFIG_ZONE_DMA)) min_mask = min_t(u64, min_mask, DMA_BIT_MASK(zone_dma_bits)); - return mask >= __phys_to_dma(dev, min_mask); + return mask >= phys_to_dma_unencrypted(dev, min_mask); } size_t dma_direct_max_mapping_size(struct device *dev) { /* If SWIOTLB is active, use its maximum mapping size */ - if (is_swiotlb_active() && - (dma_addressing_limited(dev) || swiotlb_force == SWIOTLB_FORCE)) + if (is_swiotlb_active(dev) && + (dma_addressing_limited(dev) || is_swiotlb_force_bounce(dev))) return swiotlb_max_mapping_size(dev); return SIZE_MAX; } + +bool dma_direct_need_sync(struct device *dev, dma_addr_t dma_addr) +{ + return !dev_is_dma_coherent(dev) || + is_swiotlb_buffer(dev, dma_to_phys(dev, dma_addr)); +} + +/** + * dma_direct_set_offset - Assign scalar offset for a single DMA range. + * @dev: device pointer; needed to "own" the alloced memory. + * @cpu_start: beginning of memory region covered by this offset. + * @dma_start: beginning of DMA/PCI region covered by this offset. + * @size: size of the region. + * + * This is for the simple case of a uniform offset which cannot + * be discovered by "dma-ranges". + * + * It returns -ENOMEM if out of memory, -EINVAL if a map + * already exists, 0 otherwise. + * + * Note: any call to this from a driver is a bug. The mapping needs + * to be described by the device tree or other firmware interfaces. + */ +int dma_direct_set_offset(struct device *dev, phys_addr_t cpu_start, + dma_addr_t dma_start, u64 size) +{ + struct bus_dma_region *map; + u64 offset = (u64)cpu_start - (u64)dma_start; + + if (dev->dma_range_map) { + dev_err(dev, "attempt to add DMA range to existing map\n"); + return -EINVAL; + } + + if (!offset) + return 0; + + map = kcalloc(2, sizeof(*map), GFP_KERNEL); + if (!map) + return -ENOMEM; + map[0].cpu_start = cpu_start; + map[0].dma_start = dma_start; + map[0].offset = offset; + map[0].size = size; + dev->dma_range_map = map; + return 0; +} diff --git a/kernel/dma/direct.h b/kernel/dma/direct.h new file mode 100644 index 000000000000..e38ffc5e6bdd --- /dev/null +++ b/kernel/dma/direct.h @@ -0,0 +1,126 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +/* + * Copyright (C) 2018 Christoph Hellwig. + * + * DMA operations that map physical memory directly without using an IOMMU. + */ +#ifndef _KERNEL_DMA_DIRECT_H +#define _KERNEL_DMA_DIRECT_H + +#include <linux/dma-direct.h> +#include <linux/memremap.h> + +int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt, + void *cpu_addr, dma_addr_t dma_addr, size_t size, + unsigned long attrs); +bool dma_direct_can_mmap(struct device *dev); +int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma, + void *cpu_addr, dma_addr_t dma_addr, size_t size, + unsigned long attrs); +bool dma_direct_need_sync(struct device *dev, dma_addr_t dma_addr); +int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents, + enum dma_data_direction dir, unsigned long attrs); +size_t dma_direct_max_mapping_size(struct device *dev); + +#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \ + defined(CONFIG_SWIOTLB) +void dma_direct_sync_sg_for_device(struct device *dev, struct scatterlist *sgl, + int nents, enum dma_data_direction dir); +#else +static inline void dma_direct_sync_sg_for_device(struct device *dev, + struct scatterlist *sgl, int nents, enum dma_data_direction dir) +{ +} +#endif + +#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \ + defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \ + defined(CONFIG_SWIOTLB) +void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl, + int nents, enum dma_data_direction dir, unsigned long attrs); +void dma_direct_sync_sg_for_cpu(struct device *dev, + struct scatterlist *sgl, int nents, enum dma_data_direction dir); +#else +static inline void dma_direct_unmap_sg(struct device *dev, + struct scatterlist *sgl, int nents, enum dma_data_direction dir, + unsigned long attrs) +{ +} +static inline void dma_direct_sync_sg_for_cpu(struct device *dev, + struct scatterlist *sgl, int nents, enum dma_data_direction dir) +{ +} +#endif + +static inline void dma_direct_sync_single_for_device(struct device *dev, + dma_addr_t addr, size_t size, enum dma_data_direction dir) +{ + phys_addr_t paddr = dma_to_phys(dev, addr); + + if (unlikely(is_swiotlb_buffer(dev, paddr))) + swiotlb_sync_single_for_device(dev, paddr, size, dir); + + if (!dev_is_dma_coherent(dev)) + arch_sync_dma_for_device(paddr, size, dir); +} + +static inline void dma_direct_sync_single_for_cpu(struct device *dev, + dma_addr_t addr, size_t size, enum dma_data_direction dir) +{ + phys_addr_t paddr = dma_to_phys(dev, addr); + + if (!dev_is_dma_coherent(dev)) { + arch_sync_dma_for_cpu(paddr, size, dir); + arch_sync_dma_for_cpu_all(); + } + + if (unlikely(is_swiotlb_buffer(dev, paddr))) + swiotlb_sync_single_for_cpu(dev, paddr, size, dir); + + if (dir == DMA_FROM_DEVICE) + arch_dma_mark_clean(paddr, size); +} + +static inline dma_addr_t dma_direct_map_page(struct device *dev, + struct page *page, unsigned long offset, size_t size, + enum dma_data_direction dir, unsigned long attrs) +{ + phys_addr_t phys = page_to_phys(page) + offset; + dma_addr_t dma_addr = phys_to_dma(dev, phys); + + if (is_swiotlb_force_bounce(dev)) { + if (is_pci_p2pdma_page(page)) + return DMA_MAPPING_ERROR; + return swiotlb_map(dev, phys, size, dir, attrs); + } + + if (unlikely(!dma_capable(dev, dma_addr, size, true))) { + if (is_pci_p2pdma_page(page)) + return DMA_MAPPING_ERROR; + if (is_swiotlb_active(dev)) + return swiotlb_map(dev, phys, size, dir, attrs); + + dev_WARN_ONCE(dev, 1, + "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n", + &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit); + return DMA_MAPPING_ERROR; + } + + if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) + arch_sync_dma_for_device(phys, size, dir); + return dma_addr; +} + +static inline void dma_direct_unmap_page(struct device *dev, dma_addr_t addr, + size_t size, enum dma_data_direction dir, unsigned long attrs) +{ + phys_addr_t phys = dma_to_phys(dev, addr); + + if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC)) + dma_direct_sync_single_for_cpu(dev, addr, size, dir); + + if (unlikely(is_swiotlb_buffer(dev, phys))) + swiotlb_tbl_unmap_single(dev, phys, size, dir, + attrs | DMA_ATTR_SKIP_CPU_SYNC); +} +#endif /* _KERNEL_DMA_DIRECT_H */ diff --git a/kernel/dma/dummy.c b/kernel/dma/dummy.c index 05607642c888..b492d59ac77e 100644 --- a/kernel/dma/dummy.c +++ b/kernel/dma/dummy.c @@ -2,7 +2,7 @@ /* * Dummy DMA ops that always fail. */ -#include <linux/dma-mapping.h> +#include <linux/dma-map-ops.h> static int dma_dummy_mmap(struct device *dev, struct vm_area_struct *vma, void *cpu_addr, dma_addr_t dma_addr, size_t size, @@ -22,7 +22,7 @@ static int dma_dummy_map_sg(struct device *dev, struct scatterlist *sgl, int nelems, enum dma_data_direction dir, unsigned long attrs) { - return 0; + return -EINVAL; } static int dma_dummy_supported(struct device *hwdev, u64 mask) @@ -36,4 +36,3 @@ const struct dma_map_ops dma_dummy_ops = { .map_sg = dma_dummy_map_sg, .dma_supported = dma_dummy_supported, }; -EXPORT_SYMBOL(dma_dummy_ops); diff --git a/kernel/dma/map_benchmark.c b/kernel/dma/map_benchmark.c new file mode 100644 index 000000000000..0520a8f4fb1d --- /dev/null +++ b/kernel/dma/map_benchmark.c @@ -0,0 +1,359 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright (C) 2020 HiSilicon Limited. + */ + +#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt + +#include <linux/debugfs.h> +#include <linux/delay.h> +#include <linux/device.h> +#include <linux/dma-mapping.h> +#include <linux/kernel.h> +#include <linux/kthread.h> +#include <linux/map_benchmark.h> +#include <linux/math64.h> +#include <linux/module.h> +#include <linux/pci.h> +#include <linux/platform_device.h> +#include <linux/slab.h> +#include <linux/timekeeping.h> + +struct map_benchmark_data { + struct map_benchmark bparam; + struct device *dev; + struct dentry *debugfs; + enum dma_data_direction dir; + atomic64_t sum_map_100ns; + atomic64_t sum_unmap_100ns; + atomic64_t sum_sq_map; + atomic64_t sum_sq_unmap; + atomic64_t loops; +}; + +static int map_benchmark_thread(void *data) +{ + void *buf; + dma_addr_t dma_addr; + struct map_benchmark_data *map = data; + int npages = map->bparam.granule; + u64 size = npages * PAGE_SIZE; + int ret = 0; + + buf = alloc_pages_exact(size, GFP_KERNEL); + if (!buf) + return -ENOMEM; + + while (!kthread_should_stop()) { + u64 map_100ns, unmap_100ns, map_sq, unmap_sq; + ktime_t map_stime, map_etime, unmap_stime, unmap_etime; + ktime_t map_delta, unmap_delta; + + /* + * for a non-coherent device, if we don't stain them in the + * cache, this will give an underestimate of the real-world + * overhead of BIDIRECTIONAL or TO_DEVICE mappings; + * 66 means evertything goes well! 66 is lucky. + */ + if (map->dir != DMA_FROM_DEVICE) + memset(buf, 0x66, size); + + map_stime = ktime_get(); + dma_addr = dma_map_single(map->dev, buf, size, map->dir); + if (unlikely(dma_mapping_error(map->dev, dma_addr))) { + pr_err("dma_map_single failed on %s\n", + dev_name(map->dev)); + ret = -ENOMEM; + goto out; + } + map_etime = ktime_get(); + map_delta = ktime_sub(map_etime, map_stime); + + /* Pretend DMA is transmitting */ + ndelay(map->bparam.dma_trans_ns); + + unmap_stime = ktime_get(); + dma_unmap_single(map->dev, dma_addr, size, map->dir); + unmap_etime = ktime_get(); + unmap_delta = ktime_sub(unmap_etime, unmap_stime); + + /* calculate sum and sum of squares */ + + map_100ns = div64_ul(map_delta, 100); + unmap_100ns = div64_ul(unmap_delta, 100); + map_sq = map_100ns * map_100ns; + unmap_sq = unmap_100ns * unmap_100ns; + + atomic64_add(map_100ns, &map->sum_map_100ns); + atomic64_add(unmap_100ns, &map->sum_unmap_100ns); + atomic64_add(map_sq, &map->sum_sq_map); + atomic64_add(unmap_sq, &map->sum_sq_unmap); + atomic64_inc(&map->loops); + } + +out: + free_pages_exact(buf, size); + return ret; +} + +static int do_map_benchmark(struct map_benchmark_data *map) +{ + struct task_struct **tsk; + int threads = map->bparam.threads; + int node = map->bparam.node; + const cpumask_t *cpu_mask = cpumask_of_node(node); + u64 loops; + int ret = 0; + int i; + + tsk = kmalloc_array(threads, sizeof(*tsk), GFP_KERNEL); + if (!tsk) + return -ENOMEM; + + get_device(map->dev); + + for (i = 0; i < threads; i++) { + tsk[i] = kthread_create_on_node(map_benchmark_thread, map, + map->bparam.node, "dma-map-benchmark/%d", i); + if (IS_ERR(tsk[i])) { + pr_err("create dma_map thread failed\n"); + ret = PTR_ERR(tsk[i]); + goto out; + } + + if (node != NUMA_NO_NODE) + kthread_bind_mask(tsk[i], cpu_mask); + } + + /* clear the old value in the previous benchmark */ + atomic64_set(&map->sum_map_100ns, 0); + atomic64_set(&map->sum_unmap_100ns, 0); + atomic64_set(&map->sum_sq_map, 0); + atomic64_set(&map->sum_sq_unmap, 0); + atomic64_set(&map->loops, 0); + + for (i = 0; i < threads; i++) { + get_task_struct(tsk[i]); + wake_up_process(tsk[i]); + } + + msleep_interruptible(map->bparam.seconds * 1000); + + /* wait for the completion of benchmark threads */ + for (i = 0; i < threads; i++) { + ret = kthread_stop(tsk[i]); + if (ret) + goto out; + } + + loops = atomic64_read(&map->loops); + if (likely(loops > 0)) { + u64 map_variance, unmap_variance; + u64 sum_map = atomic64_read(&map->sum_map_100ns); + u64 sum_unmap = atomic64_read(&map->sum_unmap_100ns); + u64 sum_sq_map = atomic64_read(&map->sum_sq_map); + u64 sum_sq_unmap = atomic64_read(&map->sum_sq_unmap); + + /* average latency */ + map->bparam.avg_map_100ns = div64_u64(sum_map, loops); + map->bparam.avg_unmap_100ns = div64_u64(sum_unmap, loops); + + /* standard deviation of latency */ + map_variance = div64_u64(sum_sq_map, loops) - + map->bparam.avg_map_100ns * + map->bparam.avg_map_100ns; + unmap_variance = div64_u64(sum_sq_unmap, loops) - + map->bparam.avg_unmap_100ns * + map->bparam.avg_unmap_100ns; + map->bparam.map_stddev = int_sqrt64(map_variance); + map->bparam.unmap_stddev = int_sqrt64(unmap_variance); + } + +out: + for (i = 0; i < threads; i++) + put_task_struct(tsk[i]); + put_device(map->dev); + kfree(tsk); + return ret; +} + +static long map_benchmark_ioctl(struct file *file, unsigned int cmd, + unsigned long arg) +{ + struct map_benchmark_data *map = file->private_data; + void __user *argp = (void __user *)arg; + u64 old_dma_mask; + int ret; + + if (copy_from_user(&map->bparam, argp, sizeof(map->bparam))) + return -EFAULT; + + switch (cmd) { + case DMA_MAP_BENCHMARK: + if (map->bparam.threads == 0 || + map->bparam.threads > DMA_MAP_MAX_THREADS) { + pr_err("invalid thread number\n"); + return -EINVAL; + } + + if (map->bparam.seconds == 0 || + map->bparam.seconds > DMA_MAP_MAX_SECONDS) { + pr_err("invalid duration seconds\n"); + return -EINVAL; + } + + if (map->bparam.dma_trans_ns > DMA_MAP_MAX_TRANS_DELAY) { + pr_err("invalid transmission delay\n"); + return -EINVAL; + } + + if (map->bparam.node != NUMA_NO_NODE && + !node_possible(map->bparam.node)) { + pr_err("invalid numa node\n"); + return -EINVAL; + } + + if (map->bparam.granule < 1 || map->bparam.granule > 1024) { + pr_err("invalid granule size\n"); + return -EINVAL; + } + + switch (map->bparam.dma_dir) { + case DMA_MAP_BIDIRECTIONAL: + map->dir = DMA_BIDIRECTIONAL; + break; + case DMA_MAP_FROM_DEVICE: + map->dir = DMA_FROM_DEVICE; + break; + case DMA_MAP_TO_DEVICE: + map->dir = DMA_TO_DEVICE; + break; + default: + pr_err("invalid DMA direction\n"); + return -EINVAL; + } + + old_dma_mask = dma_get_mask(map->dev); + + ret = dma_set_mask(map->dev, + DMA_BIT_MASK(map->bparam.dma_bits)); + if (ret) { + pr_err("failed to set dma_mask on device %s\n", + dev_name(map->dev)); + return -EINVAL; + } + + ret = do_map_benchmark(map); + + /* + * restore the original dma_mask as many devices' dma_mask are + * set by architectures, acpi, busses. When we bind them back + * to their original drivers, those drivers shouldn't see + * dma_mask changed by benchmark + */ + dma_set_mask(map->dev, old_dma_mask); + break; + default: + return -EINVAL; + } + + if (copy_to_user(argp, &map->bparam, sizeof(map->bparam))) + return -EFAULT; + + return ret; +} + +static const struct file_operations map_benchmark_fops = { + .open = simple_open, + .unlocked_ioctl = map_benchmark_ioctl, +}; + +static void map_benchmark_remove_debugfs(void *data) +{ + struct map_benchmark_data *map = (struct map_benchmark_data *)data; + + debugfs_remove(map->debugfs); +} + +static int __map_benchmark_probe(struct device *dev) +{ + struct dentry *entry; + struct map_benchmark_data *map; + int ret; + + map = devm_kzalloc(dev, sizeof(*map), GFP_KERNEL); + if (!map) + return -ENOMEM; + map->dev = dev; + + ret = devm_add_action(dev, map_benchmark_remove_debugfs, map); + if (ret) { + pr_err("Can't add debugfs remove action\n"); + return ret; + } + + /* + * we only permit a device bound with this driver, 2nd probe + * will fail + */ + entry = debugfs_create_file("dma_map_benchmark", 0600, NULL, map, + &map_benchmark_fops); + if (IS_ERR(entry)) + return PTR_ERR(entry); + map->debugfs = entry; + + return 0; +} + +static int map_benchmark_platform_probe(struct platform_device *pdev) +{ + return __map_benchmark_probe(&pdev->dev); +} + +static struct platform_driver map_benchmark_platform_driver = { + .driver = { + .name = "dma_map_benchmark", + }, + .probe = map_benchmark_platform_probe, +}; + +static int +map_benchmark_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id) +{ + return __map_benchmark_probe(&pdev->dev); +} + +static struct pci_driver map_benchmark_pci_driver = { + .name = "dma_map_benchmark", + .probe = map_benchmark_pci_probe, +}; + +static int __init map_benchmark_init(void) +{ + int ret; + + ret = pci_register_driver(&map_benchmark_pci_driver); + if (ret) + return ret; + + ret = platform_driver_register(&map_benchmark_platform_driver); + if (ret) { + pci_unregister_driver(&map_benchmark_pci_driver); + return ret; + } + + return 0; +} + +static void __exit map_benchmark_cleanup(void) +{ + platform_driver_unregister(&map_benchmark_platform_driver); + pci_unregister_driver(&map_benchmark_pci_driver); +} + +module_init(map_benchmark_init); +module_exit(map_benchmark_cleanup); + +MODULE_AUTHOR("Barry Song <song.bao.hua@hisilicon.com>"); +MODULE_DESCRIPTION("dma_map benchmark driver"); +MODULE_LICENSE("GPL"); diff --git a/kernel/dma/mapping.c b/kernel/dma/mapping.c index 12ff766ec1fa..33437d620644 100644 --- a/kernel/dma/mapping.c +++ b/kernel/dma/mapping.c @@ -7,13 +7,17 @@ */ #include <linux/memblock.h> /* for max_pfn */ #include <linux/acpi.h> -#include <linux/dma-direct.h> -#include <linux/dma-noncoherent.h> +#include <linux/dma-map-ops.h> #include <linux/export.h> #include <linux/gfp.h> +#include <linux/kmsan.h> #include <linux/of_device.h> #include <linux/slab.h> #include <linux/vmalloc.h> +#include "debug.h" +#include "direct.h" + +bool dma_default_coherent; /* * Managed DMA API @@ -105,21 +109,277 @@ void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle, } EXPORT_SYMBOL(dmam_alloc_attrs); +static bool dma_go_direct(struct device *dev, dma_addr_t mask, + const struct dma_map_ops *ops) +{ + if (likely(!ops)) + return true; +#ifdef CONFIG_DMA_OPS_BYPASS + if (dev->dma_ops_bypass) + return min_not_zero(mask, dev->bus_dma_limit) >= + dma_direct_get_required_mask(dev); +#endif + return false; +} + + /* - * Create scatter-list for the already allocated DMA buffer. + * Check if the devices uses a direct mapping for streaming DMA operations. + * This allows IOMMU drivers to set a bypass mode if the DMA mask is large + * enough. + */ +static inline bool dma_alloc_direct(struct device *dev, + const struct dma_map_ops *ops) +{ + return dma_go_direct(dev, dev->coherent_dma_mask, ops); +} + +static inline bool dma_map_direct(struct device *dev, + const struct dma_map_ops *ops) +{ + return dma_go_direct(dev, *dev->dma_mask, ops); +} + +dma_addr_t dma_map_page_attrs(struct device *dev, struct page *page, + size_t offset, size_t size, enum dma_data_direction dir, + unsigned long attrs) +{ + const struct dma_map_ops *ops = get_dma_ops(dev); + dma_addr_t addr; + + BUG_ON(!valid_dma_direction(dir)); + + if (WARN_ON_ONCE(!dev->dma_mask)) + return DMA_MAPPING_ERROR; + + if (dma_map_direct(dev, ops) || + arch_dma_map_page_direct(dev, page_to_phys(page) + offset + size)) + addr = dma_direct_map_page(dev, page, offset, size, dir, attrs); + else + addr = ops->map_page(dev, page, offset, size, dir, attrs); + kmsan_handle_dma(page, offset, size, dir); + debug_dma_map_page(dev, page, offset, size, dir, addr, attrs); + + return addr; +} +EXPORT_SYMBOL(dma_map_page_attrs); + +void dma_unmap_page_attrs(struct device *dev, dma_addr_t addr, size_t size, + enum dma_data_direction dir, unsigned long attrs) +{ + const struct dma_map_ops *ops = get_dma_ops(dev); + + BUG_ON(!valid_dma_direction(dir)); + if (dma_map_direct(dev, ops) || + arch_dma_unmap_page_direct(dev, addr + size)) + dma_direct_unmap_page(dev, addr, size, dir, attrs); + else if (ops->unmap_page) + ops->unmap_page(dev, addr, size, dir, attrs); + debug_dma_unmap_page(dev, addr, size, dir); +} +EXPORT_SYMBOL(dma_unmap_page_attrs); + +static int __dma_map_sg_attrs(struct device *dev, struct scatterlist *sg, + int nents, enum dma_data_direction dir, unsigned long attrs) +{ + const struct dma_map_ops *ops = get_dma_ops(dev); + int ents; + + BUG_ON(!valid_dma_direction(dir)); + + if (WARN_ON_ONCE(!dev->dma_mask)) + return 0; + + if (dma_map_direct(dev, ops) || + arch_dma_map_sg_direct(dev, sg, nents)) + ents = dma_direct_map_sg(dev, sg, nents, dir, attrs); + else + ents = ops->map_sg(dev, sg, nents, dir, attrs); + + if (ents > 0) { + kmsan_handle_dma_sg(sg, nents, dir); + debug_dma_map_sg(dev, sg, nents, ents, dir, attrs); + } else if (WARN_ON_ONCE(ents != -EINVAL && ents != -ENOMEM && + ents != -EIO && ents != -EREMOTEIO)) { + return -EIO; + } + + return ents; +} + +/** + * dma_map_sg_attrs - Map the given buffer for DMA + * @dev: The device for which to perform the DMA operation + * @sg: The sg_table object describing the buffer + * @nents: Number of entries to map + * @dir: DMA direction + * @attrs: Optional DMA attributes for the map operation + * + * Maps a buffer described by a scatterlist passed in the sg argument with + * nents segments for the @dir DMA operation by the @dev device. + * + * Returns the number of mapped entries (which can be less than nents) + * on success. Zero is returned for any error. + * + * dma_unmap_sg_attrs() should be used to unmap the buffer with the + * original sg and original nents (not the value returned by this funciton). */ -int dma_common_get_sgtable(struct device *dev, struct sg_table *sgt, - void *cpu_addr, dma_addr_t dma_addr, size_t size, - unsigned long attrs) +unsigned int dma_map_sg_attrs(struct device *dev, struct scatterlist *sg, + int nents, enum dma_data_direction dir, unsigned long attrs) { - struct page *page = virt_to_page(cpu_addr); int ret; - ret = sg_alloc_table(sgt, 1, GFP_KERNEL); - if (!ret) - sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0); + ret = __dma_map_sg_attrs(dev, sg, nents, dir, attrs); + if (ret < 0) + return 0; return ret; } +EXPORT_SYMBOL(dma_map_sg_attrs); + +/** + * dma_map_sgtable - Map the given buffer for DMA + * @dev: The device for which to perform the DMA operation + * @sgt: The sg_table object describing the buffer + * @dir: DMA direction + * @attrs: Optional DMA attributes for the map operation + * + * Maps a buffer described by a scatterlist stored in the given sg_table + * object for the @dir DMA operation by the @dev device. After success, the + * ownership for the buffer is transferred to the DMA domain. One has to + * call dma_sync_sgtable_for_cpu() or dma_unmap_sgtable() to move the + * ownership of the buffer back to the CPU domain before touching the + * buffer by the CPU. + * + * Returns 0 on success or a negative error code on error. The following + * error codes are supported with the given meaning: + * + * -EINVAL An invalid argument, unaligned access or other error + * in usage. Will not succeed if retried. + * -ENOMEM Insufficient resources (like memory or IOVA space) to + * complete the mapping. Should succeed if retried later. + * -EIO Legacy error code with an unknown meaning. eg. this is + * returned if a lower level call returned + * DMA_MAPPING_ERROR. + * -EREMOTEIO The DMA device cannot access P2PDMA memory specified + * in the sg_table. This will not succeed if retried. + */ +int dma_map_sgtable(struct device *dev, struct sg_table *sgt, + enum dma_data_direction dir, unsigned long attrs) +{ + int nents; + + nents = __dma_map_sg_attrs(dev, sgt->sgl, sgt->orig_nents, dir, attrs); + if (nents < 0) + return nents; + sgt->nents = nents; + return 0; +} +EXPORT_SYMBOL_GPL(dma_map_sgtable); + +void dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg, + int nents, enum dma_data_direction dir, + unsigned long attrs) +{ + const struct dma_map_ops *ops = get_dma_ops(dev); + + BUG_ON(!valid_dma_direction(dir)); + debug_dma_unmap_sg(dev, sg, nents, dir); + if (dma_map_direct(dev, ops) || + arch_dma_unmap_sg_direct(dev, sg, nents)) + dma_direct_unmap_sg(dev, sg, nents, dir, attrs); + else if (ops->unmap_sg) + ops->unmap_sg(dev, sg, nents, dir, attrs); +} +EXPORT_SYMBOL(dma_unmap_sg_attrs); + +dma_addr_t dma_map_resource(struct device *dev, phys_addr_t phys_addr, + size_t size, enum dma_data_direction dir, unsigned long attrs) +{ + const struct dma_map_ops *ops = get_dma_ops(dev); + dma_addr_t addr = DMA_MAPPING_ERROR; + + BUG_ON(!valid_dma_direction(dir)); + + if (WARN_ON_ONCE(!dev->dma_mask)) + return DMA_MAPPING_ERROR; + + if (dma_map_direct(dev, ops)) + addr = dma_direct_map_resource(dev, phys_addr, size, dir, attrs); + else if (ops->map_resource) + addr = ops->map_resource(dev, phys_addr, size, dir, attrs); + + debug_dma_map_resource(dev, phys_addr, size, dir, addr, attrs); + return addr; +} +EXPORT_SYMBOL(dma_map_resource); + +void dma_unmap_resource(struct device *dev, dma_addr_t addr, size_t size, + enum dma_data_direction dir, unsigned long attrs) +{ + const struct dma_map_ops *ops = get_dma_ops(dev); + + BUG_ON(!valid_dma_direction(dir)); + if (!dma_map_direct(dev, ops) && ops->unmap_resource) + ops->unmap_resource(dev, addr, size, dir, attrs); + debug_dma_unmap_resource(dev, addr, size, dir); +} +EXPORT_SYMBOL(dma_unmap_resource); + +void dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size, + enum dma_data_direction dir) +{ + const struct dma_map_ops *ops = get_dma_ops(dev); + + BUG_ON(!valid_dma_direction(dir)); + if (dma_map_direct(dev, ops)) + dma_direct_sync_single_for_cpu(dev, addr, size, dir); + else if (ops->sync_single_for_cpu) + ops->sync_single_for_cpu(dev, addr, size, dir); + debug_dma_sync_single_for_cpu(dev, addr, size, dir); +} +EXPORT_SYMBOL(dma_sync_single_for_cpu); + +void dma_sync_single_for_device(struct device *dev, dma_addr_t addr, + size_t size, enum dma_data_direction dir) +{ + const struct dma_map_ops *ops = get_dma_ops(dev); + + BUG_ON(!valid_dma_direction(dir)); + if (dma_map_direct(dev, ops)) + dma_direct_sync_single_for_device(dev, addr, size, dir); + else if (ops->sync_single_for_device) + ops->sync_single_for_device(dev, addr, size, dir); + debug_dma_sync_single_for_device(dev, addr, size, dir); +} +EXPORT_SYMBOL(dma_sync_single_for_device); + +void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, + int nelems, enum dma_data_direction dir) +{ + const struct dma_map_ops *ops = get_dma_ops(dev); + + BUG_ON(!valid_dma_direction(dir)); + if (dma_map_direct(dev, ops)) + dma_direct_sync_sg_for_cpu(dev, sg, nelems, dir); + else if (ops->sync_sg_for_cpu) + ops->sync_sg_for_cpu(dev, sg, nelems, dir); + debug_dma_sync_sg_for_cpu(dev, sg, nelems, dir); +} +EXPORT_SYMBOL(dma_sync_sg_for_cpu); + +void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, + int nelems, enum dma_data_direction dir) +{ + const struct dma_map_ops *ops = get_dma_ops(dev); + + BUG_ON(!valid_dma_direction(dir)); + if (dma_map_direct(dev, ops)) + dma_direct_sync_sg_for_device(dev, sg, nelems, dir); + else if (ops->sync_sg_for_device) + ops->sync_sg_for_device(dev, sg, nelems, dir); + debug_dma_sync_sg_for_device(dev, sg, nelems, dir); +} +EXPORT_SYMBOL(dma_sync_sg_for_device); /* * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems @@ -138,7 +398,7 @@ int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt, { const struct dma_map_ops *ops = get_dma_ops(dev); - if (dma_is_direct(ops)) + if (dma_alloc_direct(dev, ops)) return dma_direct_get_sgtable(dev, sgt, cpu_addr, dma_addr, size, attrs); if (!ops->get_sgtable) @@ -154,9 +414,7 @@ EXPORT_SYMBOL(dma_get_sgtable_attrs); */ pgprot_t dma_pgprot(struct device *dev, pgprot_t prot, unsigned long attrs) { - if (dev_is_dma_coherent(dev) || - (IS_ENABLED(CONFIG_DMA_NONCOHERENT_CACHE_SYNC) && - (attrs & DMA_ATTR_NON_CONSISTENT))) + if (dev_is_dma_coherent(dev)) return prot; #ifdef CONFIG_ARCH_HAS_DMA_WRITE_COMBINE if (attrs & DMA_ATTR_WRITE_COMBINE) @@ -166,35 +424,6 @@ pgprot_t dma_pgprot(struct device *dev, pgprot_t prot, unsigned long attrs) } #endif /* CONFIG_MMU */ -/* - * Create userspace mapping for the DMA-coherent memory. - */ -int dma_common_mmap(struct device *dev, struct vm_area_struct *vma, - void *cpu_addr, dma_addr_t dma_addr, size_t size, - unsigned long attrs) -{ -#ifdef CONFIG_MMU - unsigned long user_count = vma_pages(vma); - unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT; - unsigned long off = vma->vm_pgoff; - int ret = -ENXIO; - - vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs); - - if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret)) - return ret; - - if (off >= count || user_count > count - off) - return -ENXIO; - - return remap_pfn_range(vma, vma->vm_start, - page_to_pfn(virt_to_page(cpu_addr)) + vma->vm_pgoff, - user_count << PAGE_SHIFT, vma->vm_page_prot); -#else - return -ENXIO; -#endif /* CONFIG_MMU */ -} - /** * dma_can_mmap - check if a given device supports dma_mmap_* * @dev: device to check @@ -206,7 +435,7 @@ bool dma_can_mmap(struct device *dev) { const struct dma_map_ops *ops = get_dma_ops(dev); - if (dma_is_direct(ops)) + if (dma_alloc_direct(dev, ops)) return dma_direct_can_mmap(dev); return ops->mmap != NULL; } @@ -231,7 +460,7 @@ int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma, { const struct dma_map_ops *ops = get_dma_ops(dev); - if (dma_is_direct(ops)) + if (dma_alloc_direct(dev, ops)) return dma_direct_mmap(dev, vma, cpu_addr, dma_addr, size, attrs); if (!ops->mmap) @@ -244,7 +473,7 @@ u64 dma_get_required_mask(struct device *dev) { const struct dma_map_ops *ops = get_dma_ops(dev); - if (dma_is_direct(ops)) + if (dma_alloc_direct(dev, ops)) return dma_direct_get_required_mask(dev); if (ops->get_required_mask) return ops->get_required_mask(dev); @@ -275,14 +504,14 @@ void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle, /* let the implementation decide on the zone to allocate from: */ flag &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM); - if (dma_is_direct(ops)) + if (dma_alloc_direct(dev, ops)) cpu_addr = dma_direct_alloc(dev, size, dma_handle, flag, attrs); else if (ops->alloc) cpu_addr = ops->alloc(dev, size, dma_handle, flag, attrs); else return NULL; - debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr); + debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr, attrs); return cpu_addr; } EXPORT_SYMBOL(dma_alloc_attrs); @@ -307,24 +536,213 @@ void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr, return; debug_dma_free_coherent(dev, size, cpu_addr, dma_handle); - if (dma_is_direct(ops)) + if (dma_alloc_direct(dev, ops)) dma_direct_free(dev, size, cpu_addr, dma_handle, attrs); else if (ops->free) ops->free(dev, size, cpu_addr, dma_handle, attrs); } EXPORT_SYMBOL(dma_free_attrs); -int dma_supported(struct device *dev, u64 mask) +static struct page *__dma_alloc_pages(struct device *dev, size_t size, + dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp) +{ + const struct dma_map_ops *ops = get_dma_ops(dev); + + if (WARN_ON_ONCE(!dev->coherent_dma_mask)) + return NULL; + if (WARN_ON_ONCE(gfp & (__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM))) + return NULL; + + size = PAGE_ALIGN(size); + if (dma_alloc_direct(dev, ops)) + return dma_direct_alloc_pages(dev, size, dma_handle, dir, gfp); + if (!ops->alloc_pages) + return NULL; + return ops->alloc_pages(dev, size, dma_handle, dir, gfp); +} + +struct page *dma_alloc_pages(struct device *dev, size_t size, + dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp) +{ + struct page *page = __dma_alloc_pages(dev, size, dma_handle, dir, gfp); + + if (page) + debug_dma_map_page(dev, page, 0, size, dir, *dma_handle, 0); + return page; +} +EXPORT_SYMBOL_GPL(dma_alloc_pages); + +static void __dma_free_pages(struct device *dev, size_t size, struct page *page, + dma_addr_t dma_handle, enum dma_data_direction dir) +{ + const struct dma_map_ops *ops = get_dma_ops(dev); + + size = PAGE_ALIGN(size); + if (dma_alloc_direct(dev, ops)) + dma_direct_free_pages(dev, size, page, dma_handle, dir); + else if (ops->free_pages) + ops->free_pages(dev, size, page, dma_handle, dir); +} + +void dma_free_pages(struct device *dev, size_t size, struct page *page, + dma_addr_t dma_handle, enum dma_data_direction dir) +{ + debug_dma_unmap_page(dev, dma_handle, size, dir); + __dma_free_pages(dev, size, page, dma_handle, dir); +} +EXPORT_SYMBOL_GPL(dma_free_pages); + +int dma_mmap_pages(struct device *dev, struct vm_area_struct *vma, + size_t size, struct page *page) +{ + unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT; + + if (vma->vm_pgoff >= count || vma_pages(vma) > count - vma->vm_pgoff) + return -ENXIO; + return remap_pfn_range(vma, vma->vm_start, + page_to_pfn(page) + vma->vm_pgoff, + vma_pages(vma) << PAGE_SHIFT, vma->vm_page_prot); +} +EXPORT_SYMBOL_GPL(dma_mmap_pages); + +static struct sg_table *alloc_single_sgt(struct device *dev, size_t size, + enum dma_data_direction dir, gfp_t gfp) +{ + struct sg_table *sgt; + struct page *page; + + sgt = kmalloc(sizeof(*sgt), gfp); + if (!sgt) + return NULL; + if (sg_alloc_table(sgt, 1, gfp)) + goto out_free_sgt; + page = __dma_alloc_pages(dev, size, &sgt->sgl->dma_address, dir, gfp); + if (!page) + goto out_free_table; + sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0); + sg_dma_len(sgt->sgl) = sgt->sgl->length; + return sgt; +out_free_table: + sg_free_table(sgt); +out_free_sgt: + kfree(sgt); + return NULL; +} + +struct sg_table *dma_alloc_noncontiguous(struct device *dev, size_t size, + enum dma_data_direction dir, gfp_t gfp, unsigned long attrs) { const struct dma_map_ops *ops = get_dma_ops(dev); + struct sg_table *sgt; - if (dma_is_direct(ops)) + if (WARN_ON_ONCE(attrs & ~DMA_ATTR_ALLOC_SINGLE_PAGES)) + return NULL; + + if (ops && ops->alloc_noncontiguous) + sgt = ops->alloc_noncontiguous(dev, size, dir, gfp, attrs); + else + sgt = alloc_single_sgt(dev, size, dir, gfp); + + if (sgt) { + sgt->nents = 1; + debug_dma_map_sg(dev, sgt->sgl, sgt->orig_nents, 1, dir, attrs); + } + return sgt; +} +EXPORT_SYMBOL_GPL(dma_alloc_noncontiguous); + +static void free_single_sgt(struct device *dev, size_t size, + struct sg_table *sgt, enum dma_data_direction dir) +{ + __dma_free_pages(dev, size, sg_page(sgt->sgl), sgt->sgl->dma_address, + dir); + sg_free_table(sgt); + kfree(sgt); +} + +void dma_free_noncontiguous(struct device *dev, size_t size, + struct sg_table *sgt, enum dma_data_direction dir) +{ + const struct dma_map_ops *ops = get_dma_ops(dev); + + debug_dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir); + if (ops && ops->free_noncontiguous) + ops->free_noncontiguous(dev, size, sgt, dir); + else + free_single_sgt(dev, size, sgt, dir); +} +EXPORT_SYMBOL_GPL(dma_free_noncontiguous); + +void *dma_vmap_noncontiguous(struct device *dev, size_t size, + struct sg_table *sgt) +{ + const struct dma_map_ops *ops = get_dma_ops(dev); + unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT; + + if (ops && ops->alloc_noncontiguous) + return vmap(sgt_handle(sgt)->pages, count, VM_MAP, PAGE_KERNEL); + return page_address(sg_page(sgt->sgl)); +} +EXPORT_SYMBOL_GPL(dma_vmap_noncontiguous); + +void dma_vunmap_noncontiguous(struct device *dev, void *vaddr) +{ + const struct dma_map_ops *ops = get_dma_ops(dev); + + if (ops && ops->alloc_noncontiguous) + vunmap(vaddr); +} +EXPORT_SYMBOL_GPL(dma_vunmap_noncontiguous); + +int dma_mmap_noncontiguous(struct device *dev, struct vm_area_struct *vma, + size_t size, struct sg_table *sgt) +{ + const struct dma_map_ops *ops = get_dma_ops(dev); + + if (ops && ops->alloc_noncontiguous) { + unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT; + + if (vma->vm_pgoff >= count || + vma_pages(vma) > count - vma->vm_pgoff) + return -ENXIO; + return vm_map_pages(vma, sgt_handle(sgt)->pages, count); + } + return dma_mmap_pages(dev, vma, size, sg_page(sgt->sgl)); +} +EXPORT_SYMBOL_GPL(dma_mmap_noncontiguous); + +static int dma_supported(struct device *dev, u64 mask) +{ + const struct dma_map_ops *ops = get_dma_ops(dev); + + /* + * ->dma_supported sets the bypass flag, so we must always call + * into the method here unless the device is truly direct mapped. + */ + if (!ops) return dma_direct_supported(dev, mask); if (!ops->dma_supported) return 1; return ops->dma_supported(dev, mask); } -EXPORT_SYMBOL(dma_supported); + +bool dma_pci_p2pdma_supported(struct device *dev) +{ + const struct dma_map_ops *ops = get_dma_ops(dev); + + /* if ops is not set, dma direct will be used which supports P2PDMA */ + if (!ops) + return true; + + /* + * Note: dma_ops_bypass is not checked here because P2PDMA should + * not be used with dma mapping ops that do not have support even + * if the specific device is bypassing them. + */ + + return ops->flags & DMA_F_PCI_P2PDMA_SUPPORTED; +} +EXPORT_SYMBOL_GPL(dma_pci_p2pdma_supported); #ifdef CONFIG_ARCH_HAS_DMA_SET_MASK void arch_dma_set_mask(struct device *dev, u64 mask); @@ -349,7 +767,6 @@ int dma_set_mask(struct device *dev, u64 mask) } EXPORT_SYMBOL(dma_set_mask); -#ifndef CONFIG_ARCH_HAS_DMA_SET_COHERENT_MASK int dma_set_coherent_mask(struct device *dev, u64 mask) { /* @@ -365,28 +782,13 @@ int dma_set_coherent_mask(struct device *dev, u64 mask) return 0; } EXPORT_SYMBOL(dma_set_coherent_mask); -#endif - -void dma_cache_sync(struct device *dev, void *vaddr, size_t size, - enum dma_data_direction dir) -{ - const struct dma_map_ops *ops = get_dma_ops(dev); - - BUG_ON(!valid_dma_direction(dir)); - - if (dma_is_direct(ops)) - arch_dma_cache_sync(dev, vaddr, size, dir); - else if (ops->cache_sync) - ops->cache_sync(dev, vaddr, size, dir); -} -EXPORT_SYMBOL(dma_cache_sync); size_t dma_max_mapping_size(struct device *dev) { const struct dma_map_ops *ops = get_dma_ops(dev); size_t size = SIZE_MAX; - if (dma_is_direct(ops)) + if (dma_map_direct(dev, ops)) size = dma_direct_max_mapping_size(dev); else if (ops && ops->max_mapping_size) size = ops->max_mapping_size(dev); @@ -395,6 +797,28 @@ size_t dma_max_mapping_size(struct device *dev) } EXPORT_SYMBOL_GPL(dma_max_mapping_size); +size_t dma_opt_mapping_size(struct device *dev) +{ + const struct dma_map_ops *ops = get_dma_ops(dev); + size_t size = SIZE_MAX; + + if (ops && ops->opt_mapping_size) + size = ops->opt_mapping_size(); + + return min(dma_max_mapping_size(dev), size); +} +EXPORT_SYMBOL_GPL(dma_opt_mapping_size); + +bool dma_need_sync(struct device *dev, dma_addr_t dma_addr) +{ + const struct dma_map_ops *ops = get_dma_ops(dev); + + if (dma_map_direct(dev, ops)) + return dma_direct_need_sync(dev, dma_addr); + return ops->sync_single_for_cpu || ops->sync_single_for_device; +} +EXPORT_SYMBOL_GPL(dma_need_sync); + unsigned long dma_get_merge_boundary(struct device *dev) { const struct dma_map_ops *ops = get_dma_ops(dev); diff --git a/kernel/dma/ops_helpers.c b/kernel/dma/ops_helpers.c new file mode 100644 index 000000000000..af4a6ef48ce0 --- /dev/null +++ b/kernel/dma/ops_helpers.c @@ -0,0 +1,93 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Helpers for DMA ops implementations. These generally rely on the fact that + * the allocated memory contains normal pages in the direct kernel mapping. + */ +#include <linux/dma-map-ops.h> + +static struct page *dma_common_vaddr_to_page(void *cpu_addr) +{ + if (is_vmalloc_addr(cpu_addr)) + return vmalloc_to_page(cpu_addr); + return virt_to_page(cpu_addr); +} + +/* + * Create scatter-list for the already allocated DMA buffer. + */ +int dma_common_get_sgtable(struct device *dev, struct sg_table *sgt, + void *cpu_addr, dma_addr_t dma_addr, size_t size, + unsigned long attrs) +{ + struct page *page = dma_common_vaddr_to_page(cpu_addr); + int ret; + + ret = sg_alloc_table(sgt, 1, GFP_KERNEL); + if (!ret) + sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0); + return ret; +} + +/* + * Create userspace mapping for the DMA-coherent memory. + */ +int dma_common_mmap(struct device *dev, struct vm_area_struct *vma, + void *cpu_addr, dma_addr_t dma_addr, size_t size, + unsigned long attrs) +{ +#ifdef CONFIG_MMU + unsigned long user_count = vma_pages(vma); + unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT; + unsigned long off = vma->vm_pgoff; + struct page *page = dma_common_vaddr_to_page(cpu_addr); + int ret = -ENXIO; + + vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs); + + if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret)) + return ret; + + if (off >= count || user_count > count - off) + return -ENXIO; + + return remap_pfn_range(vma, vma->vm_start, + page_to_pfn(page) + vma->vm_pgoff, + user_count << PAGE_SHIFT, vma->vm_page_prot); +#else + return -ENXIO; +#endif /* CONFIG_MMU */ +} + +struct page *dma_common_alloc_pages(struct device *dev, size_t size, + dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp) +{ + const struct dma_map_ops *ops = get_dma_ops(dev); + struct page *page; + + page = dma_alloc_contiguous(dev, size, gfp); + if (!page) + page = alloc_pages_node(dev_to_node(dev), gfp, get_order(size)); + if (!page) + return NULL; + + *dma_handle = ops->map_page(dev, page, 0, size, dir, + DMA_ATTR_SKIP_CPU_SYNC); + if (*dma_handle == DMA_MAPPING_ERROR) { + dma_free_contiguous(dev, page, size); + return NULL; + } + + memset(page_address(page), 0, size); + return page; +} + +void dma_common_free_pages(struct device *dev, size_t size, struct page *page, + dma_addr_t dma_handle, enum dma_data_direction dir) +{ + const struct dma_map_ops *ops = get_dma_ops(dev); + + if (ops->unmap_page) + ops->unmap_page(dev, dma_handle, size, dir, + DMA_ATTR_SKIP_CPU_SYNC); + dma_free_contiguous(dev, page, size); +} diff --git a/kernel/dma/pool.c b/kernel/dma/pool.c new file mode 100644 index 000000000000..4d40dcce7604 --- /dev/null +++ b/kernel/dma/pool.c @@ -0,0 +1,295 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Copyright (C) 2012 ARM Ltd. + * Copyright (C) 2020 Google LLC + */ +#include <linux/cma.h> +#include <linux/debugfs.h> +#include <linux/dma-map-ops.h> +#include <linux/dma-direct.h> +#include <linux/init.h> +#include <linux/genalloc.h> +#include <linux/set_memory.h> +#include <linux/slab.h> +#include <linux/workqueue.h> + +static struct gen_pool *atomic_pool_dma __ro_after_init; +static unsigned long pool_size_dma; +static struct gen_pool *atomic_pool_dma32 __ro_after_init; +static unsigned long pool_size_dma32; +static struct gen_pool *atomic_pool_kernel __ro_after_init; +static unsigned long pool_size_kernel; + +/* Size can be defined by the coherent_pool command line */ +static size_t atomic_pool_size; + +/* Dynamic background expansion when the atomic pool is near capacity */ +static struct work_struct atomic_pool_work; + +static int __init early_coherent_pool(char *p) +{ + atomic_pool_size = memparse(p, &p); + return 0; +} +early_param("coherent_pool", early_coherent_pool); + +static void __init dma_atomic_pool_debugfs_init(void) +{ + struct dentry *root; + + root = debugfs_create_dir("dma_pools", NULL); + debugfs_create_ulong("pool_size_dma", 0400, root, &pool_size_dma); + debugfs_create_ulong("pool_size_dma32", 0400, root, &pool_size_dma32); + debugfs_create_ulong("pool_size_kernel", 0400, root, &pool_size_kernel); +} + +static void dma_atomic_pool_size_add(gfp_t gfp, size_t size) +{ + if (gfp & __GFP_DMA) + pool_size_dma += size; + else if (gfp & __GFP_DMA32) + pool_size_dma32 += size; + else + pool_size_kernel += size; +} + +static bool cma_in_zone(gfp_t gfp) +{ + unsigned long size; + phys_addr_t end; + struct cma *cma; + + cma = dev_get_cma_area(NULL); + if (!cma) + return false; + + size = cma_get_size(cma); + if (!size) + return false; + + /* CMA can't cross zone boundaries, see cma_activate_area() */ + end = cma_get_base(cma) + size - 1; + if (IS_ENABLED(CONFIG_ZONE_DMA) && (gfp & GFP_DMA)) + return end <= DMA_BIT_MASK(zone_dma_bits); + if (IS_ENABLED(CONFIG_ZONE_DMA32) && (gfp & GFP_DMA32)) + return end <= DMA_BIT_MASK(32); + return true; +} + +static int atomic_pool_expand(struct gen_pool *pool, size_t pool_size, + gfp_t gfp) +{ + unsigned int order; + struct page *page = NULL; + void *addr; + int ret = -ENOMEM; + + /* Cannot allocate larger than MAX_ORDER-1 */ + order = min(get_order(pool_size), MAX_ORDER-1); + + do { + pool_size = 1 << (PAGE_SHIFT + order); + if (cma_in_zone(gfp)) + page = dma_alloc_from_contiguous(NULL, 1 << order, + order, false); + if (!page) + page = alloc_pages(gfp, order); + } while (!page && order-- > 0); + if (!page) + goto out; + + arch_dma_prep_coherent(page, pool_size); + +#ifdef CONFIG_DMA_DIRECT_REMAP + addr = dma_common_contiguous_remap(page, pool_size, + pgprot_dmacoherent(PAGE_KERNEL), + __builtin_return_address(0)); + if (!addr) + goto free_page; +#else + addr = page_to_virt(page); +#endif + /* + * Memory in the atomic DMA pools must be unencrypted, the pools do not + * shrink so no re-encryption occurs in dma_direct_free(). + */ + ret = set_memory_decrypted((unsigned long)page_to_virt(page), + 1 << order); + if (ret) + goto remove_mapping; + ret = gen_pool_add_virt(pool, (unsigned long)addr, page_to_phys(page), + pool_size, NUMA_NO_NODE); + if (ret) + goto encrypt_mapping; + + dma_atomic_pool_size_add(gfp, pool_size); + return 0; + +encrypt_mapping: + ret = set_memory_encrypted((unsigned long)page_to_virt(page), + 1 << order); + if (WARN_ON_ONCE(ret)) { + /* Decrypt succeeded but encrypt failed, purposely leak */ + goto out; + } +remove_mapping: +#ifdef CONFIG_DMA_DIRECT_REMAP + dma_common_free_remap(addr, pool_size); +#endif +free_page: __maybe_unused + __free_pages(page, order); +out: + return ret; +} + +static void atomic_pool_resize(struct gen_pool *pool, gfp_t gfp) +{ + if (pool && gen_pool_avail(pool) < atomic_pool_size) + atomic_pool_expand(pool, gen_pool_size(pool), gfp); +} + +static void atomic_pool_work_fn(struct work_struct *work) +{ + if (IS_ENABLED(CONFIG_ZONE_DMA)) + atomic_pool_resize(atomic_pool_dma, + GFP_KERNEL | GFP_DMA); + if (IS_ENABLED(CONFIG_ZONE_DMA32)) + atomic_pool_resize(atomic_pool_dma32, + GFP_KERNEL | GFP_DMA32); + atomic_pool_resize(atomic_pool_kernel, GFP_KERNEL); +} + +static __init struct gen_pool *__dma_atomic_pool_init(size_t pool_size, + gfp_t gfp) +{ + struct gen_pool *pool; + int ret; + + pool = gen_pool_create(PAGE_SHIFT, NUMA_NO_NODE); + if (!pool) + return NULL; + + gen_pool_set_algo(pool, gen_pool_first_fit_order_align, NULL); + + ret = atomic_pool_expand(pool, pool_size, gfp); + if (ret) { + gen_pool_destroy(pool); + pr_err("DMA: failed to allocate %zu KiB %pGg pool for atomic allocation\n", + pool_size >> 10, &gfp); + return NULL; + } + + pr_info("DMA: preallocated %zu KiB %pGg pool for atomic allocations\n", + gen_pool_size(pool) >> 10, &gfp); + return pool; +} + +static int __init dma_atomic_pool_init(void) +{ + int ret = 0; + + /* + * If coherent_pool was not used on the command line, default the pool + * sizes to 128KB per 1GB of memory, min 128KB, max MAX_ORDER-1. + */ + if (!atomic_pool_size) { + unsigned long pages = totalram_pages() / (SZ_1G / SZ_128K); + pages = min_t(unsigned long, pages, MAX_ORDER_NR_PAGES); + atomic_pool_size = max_t(size_t, pages << PAGE_SHIFT, SZ_128K); + } + INIT_WORK(&atomic_pool_work, atomic_pool_work_fn); + + atomic_pool_kernel = __dma_atomic_pool_init(atomic_pool_size, + GFP_KERNEL); + if (!atomic_pool_kernel) + ret = -ENOMEM; + if (has_managed_dma()) { + atomic_pool_dma = __dma_atomic_pool_init(atomic_pool_size, + GFP_KERNEL | GFP_DMA); + if (!atomic_pool_dma) + ret = -ENOMEM; + } + if (IS_ENABLED(CONFIG_ZONE_DMA32)) { + atomic_pool_dma32 = __dma_atomic_pool_init(atomic_pool_size, + GFP_KERNEL | GFP_DMA32); + if (!atomic_pool_dma32) + ret = -ENOMEM; + } + + dma_atomic_pool_debugfs_init(); + return ret; +} +postcore_initcall(dma_atomic_pool_init); + +static inline struct gen_pool *dma_guess_pool(struct gen_pool *prev, gfp_t gfp) +{ + if (prev == NULL) { + if (IS_ENABLED(CONFIG_ZONE_DMA32) && (gfp & GFP_DMA32)) + return atomic_pool_dma32; + if (atomic_pool_dma && (gfp & GFP_DMA)) + return atomic_pool_dma; + return atomic_pool_kernel; + } + if (prev == atomic_pool_kernel) + return atomic_pool_dma32 ? atomic_pool_dma32 : atomic_pool_dma; + if (prev == atomic_pool_dma32) + return atomic_pool_dma; + return NULL; +} + +static struct page *__dma_alloc_from_pool(struct device *dev, size_t size, + struct gen_pool *pool, void **cpu_addr, + bool (*phys_addr_ok)(struct device *, phys_addr_t, size_t)) +{ + unsigned long addr; + phys_addr_t phys; + + addr = gen_pool_alloc(pool, size); + if (!addr) + return NULL; + + phys = gen_pool_virt_to_phys(pool, addr); + if (phys_addr_ok && !phys_addr_ok(dev, phys, size)) { + gen_pool_free(pool, addr, size); + return NULL; + } + + if (gen_pool_avail(pool) < atomic_pool_size) + schedule_work(&atomic_pool_work); + + *cpu_addr = (void *)addr; + memset(*cpu_addr, 0, size); + return pfn_to_page(__phys_to_pfn(phys)); +} + +struct page *dma_alloc_from_pool(struct device *dev, size_t size, + void **cpu_addr, gfp_t gfp, + bool (*phys_addr_ok)(struct device *, phys_addr_t, size_t)) +{ + struct gen_pool *pool = NULL; + struct page *page; + + while ((pool = dma_guess_pool(pool, gfp))) { + page = __dma_alloc_from_pool(dev, size, pool, cpu_addr, + phys_addr_ok); + if (page) + return page; + } + + WARN(1, "Failed to get suitable pool for %s\n", dev_name(dev)); + return NULL; +} + +bool dma_free_from_pool(struct device *dev, void *start, size_t size) +{ + struct gen_pool *pool = NULL; + + while ((pool = dma_guess_pool(pool, 0))) { + if (!gen_pool_has_addr(pool, (unsigned long)start, size)) + continue; + gen_pool_free(pool, (unsigned long)start, size); + return true; + } + + return false; +} diff --git a/kernel/dma/remap.c b/kernel/dma/remap.c index d14cbc83986a..b4526668072e 100644 --- a/kernel/dma/remap.c +++ b/kernel/dma/remap.c @@ -1,13 +1,8 @@ // SPDX-License-Identifier: GPL-2.0 /* - * Copyright (C) 2012 ARM Ltd. * Copyright (c) 2014 The Linux Foundation */ -#include <linux/dma-direct.h> -#include <linux/dma-noncoherent.h> -#include <linux/dma-contiguous.h> -#include <linux/init.h> -#include <linux/genalloc.h> +#include <linux/dma-map-ops.h> #include <linux/slab.h> #include <linux/vmalloc.h> @@ -20,23 +15,6 @@ struct page **dma_common_find_pages(void *cpu_addr) return area->pages; } -static struct vm_struct *__dma_common_pages_remap(struct page **pages, - size_t size, pgprot_t prot, const void *caller) -{ - struct vm_struct *area; - - area = get_vm_area_caller(size, VM_DMA_COHERENT, caller); - if (!area) - return NULL; - - if (map_vm_area(area, prot, pages)) { - vunmap(area->addr); - return NULL; - } - - return area; -} - /* * Remaps an array of PAGE_SIZE pages into another vm_area. * Cannot be used in non-sleeping contexts @@ -44,15 +22,13 @@ static struct vm_struct *__dma_common_pages_remap(struct page **pages, void *dma_common_pages_remap(struct page **pages, size_t size, pgprot_t prot, const void *caller) { - struct vm_struct *area; - - area = __dma_common_pages_remap(pages, size, prot, caller); - if (!area) - return NULL; + void *vaddr; - area->pages = pages; - - return area->addr; + vaddr = vmap(pages, PAGE_ALIGN(size) >> PAGE_SHIFT, + VM_DMA_COHERENT, prot); + if (vaddr) + find_vm_area(vaddr)->pages = pages; + return vaddr; } /* @@ -62,24 +38,20 @@ void *dma_common_pages_remap(struct page **pages, size_t size, void *dma_common_contiguous_remap(struct page *page, size_t size, pgprot_t prot, const void *caller) { - int i; + int count = PAGE_ALIGN(size) >> PAGE_SHIFT; struct page **pages; - struct vm_struct *area; + void *vaddr; + int i; - pages = kmalloc(sizeof(struct page *) << get_order(size), GFP_KERNEL); + pages = kmalloc_array(count, sizeof(struct page *), GFP_KERNEL); if (!pages) return NULL; - - for (i = 0; i < (size >> PAGE_SHIFT); i++) + for (i = 0; i < count; i++) pages[i] = nth_page(page, i); - - area = __dma_common_pages_remap(pages, size, prot, caller); - + vaddr = vmap(pages, count, VM_DMA_COHERENT, prot); kfree(pages); - if (!area) - return NULL; - return area->addr; + return vaddr; } /* @@ -94,120 +66,5 @@ void dma_common_free_remap(void *cpu_addr, size_t size) return; } - unmap_kernel_range((unsigned long)cpu_addr, PAGE_ALIGN(size)); vunmap(cpu_addr); } - -#ifdef CONFIG_DMA_DIRECT_REMAP -static struct gen_pool *atomic_pool __ro_after_init; - -#define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K -static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE; - -static int __init early_coherent_pool(char *p) -{ - atomic_pool_size = memparse(p, &p); - return 0; -} -early_param("coherent_pool", early_coherent_pool); - -static gfp_t dma_atomic_pool_gfp(void) -{ - if (IS_ENABLED(CONFIG_ZONE_DMA)) - return GFP_DMA; - if (IS_ENABLED(CONFIG_ZONE_DMA32)) - return GFP_DMA32; - return GFP_KERNEL; -} - -static int __init dma_atomic_pool_init(void) -{ - unsigned int pool_size_order = get_order(atomic_pool_size); - unsigned long nr_pages = atomic_pool_size >> PAGE_SHIFT; - struct page *page; - void *addr; - int ret; - - if (dev_get_cma_area(NULL)) - page = dma_alloc_from_contiguous(NULL, nr_pages, - pool_size_order, false); - else - page = alloc_pages(dma_atomic_pool_gfp(), pool_size_order); - if (!page) - goto out; - - arch_dma_prep_coherent(page, atomic_pool_size); - - atomic_pool = gen_pool_create(PAGE_SHIFT, -1); - if (!atomic_pool) - goto free_page; - - addr = dma_common_contiguous_remap(page, atomic_pool_size, - pgprot_dmacoherent(PAGE_KERNEL), - __builtin_return_address(0)); - if (!addr) - goto destroy_genpool; - - ret = gen_pool_add_virt(atomic_pool, (unsigned long)addr, - page_to_phys(page), atomic_pool_size, -1); - if (ret) - goto remove_mapping; - gen_pool_set_algo(atomic_pool, gen_pool_first_fit_order_align, NULL); - - pr_info("DMA: preallocated %zu KiB pool for atomic allocations\n", - atomic_pool_size / 1024); - return 0; - -remove_mapping: - dma_common_free_remap(addr, atomic_pool_size); -destroy_genpool: - gen_pool_destroy(atomic_pool); - atomic_pool = NULL; -free_page: - if (!dma_release_from_contiguous(NULL, page, nr_pages)) - __free_pages(page, pool_size_order); -out: - pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n", - atomic_pool_size / 1024); - return -ENOMEM; -} -postcore_initcall(dma_atomic_pool_init); - -bool dma_in_atomic_pool(void *start, size_t size) -{ - if (unlikely(!atomic_pool)) - return false; - - return gen_pool_has_addr(atomic_pool, (unsigned long)start, size); -} - -void *dma_alloc_from_pool(size_t size, struct page **ret_page, gfp_t flags) -{ - unsigned long val; - void *ptr = NULL; - - if (!atomic_pool) { - WARN(1, "coherent pool not initialised!\n"); - return NULL; - } - - val = gen_pool_alloc(atomic_pool, size); - if (val) { - phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val); - - *ret_page = pfn_to_page(__phys_to_pfn(phys)); - ptr = (void *)val; - memset(ptr, 0, size); - } - - return ptr; -} - -bool dma_free_from_pool(void *start, size_t size) -{ - if (!dma_in_atomic_pool(start, size)) - return false; - gen_pool_free(atomic_pool, (unsigned long)start, size); - return true; -} -#endif /* CONFIG_DMA_DIRECT_REMAP */ diff --git a/kernel/dma/swiotlb.c b/kernel/dma/swiotlb.c index c19379fabd20..339a990554e7 100644 --- a/kernel/dma/swiotlb.c +++ b/kernel/dma/swiotlb.c @@ -21,38 +21,36 @@ #define pr_fmt(fmt) "software IO TLB: " fmt #include <linux/cache.h> +#include <linux/cc_platform.h> +#include <linux/ctype.h> +#include <linux/debugfs.h> #include <linux/dma-direct.h> -#include <linux/dma-noncoherent.h> -#include <linux/mm.h> +#include <linux/dma-map-ops.h> #include <linux/export.h> +#include <linux/gfp.h> +#include <linux/highmem.h> +#include <linux/io.h> +#include <linux/iommu-helper.h> +#include <linux/init.h> +#include <linux/memblock.h> +#include <linux/mm.h> +#include <linux/pfn.h> +#include <linux/scatterlist.h> +#include <linux/set_memory.h> #include <linux/spinlock.h> #include <linux/string.h> #include <linux/swiotlb.h> -#include <linux/pfn.h> #include <linux/types.h> -#include <linux/ctype.h> -#include <linux/highmem.h> -#include <linux/gfp.h> -#include <linux/scatterlist.h> -#include <linux/mem_encrypt.h> -#include <linux/set_memory.h> -#ifdef CONFIG_DEBUG_FS -#include <linux/debugfs.h> +#ifdef CONFIG_DMA_RESTRICTED_POOL +#include <linux/of.h> +#include <linux/of_fdt.h> +#include <linux/of_reserved_mem.h> +#include <linux/slab.h> #endif -#include <asm/io.h> -#include <asm/dma.h> - -#include <linux/init.h> -#include <linux/memblock.h> -#include <linux/iommu-helper.h> - #define CREATE_TRACE_POINTS #include <trace/events/swiotlb.h> -#define OFFSET(val,align) ((unsigned long) \ - ( (val) & ( (align) - 1))) - #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT)) /* @@ -62,122 +60,183 @@ */ #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT) -enum swiotlb_force swiotlb_force; +#define INVALID_PHYS_ADDR (~(phys_addr_t)0) -/* - * Used to do a quick range check in swiotlb_tbl_unmap_single and - * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this - * API. - */ -phys_addr_t io_tlb_start, io_tlb_end; +struct io_tlb_slot { + phys_addr_t orig_addr; + size_t alloc_size; + unsigned int list; +}; -/* - * The number of IO TLB blocks (in groups of 64) between io_tlb_start and - * io_tlb_end. This is command line adjustable via setup_io_tlb_npages. - */ -static unsigned long io_tlb_nslabs; +static bool swiotlb_force_bounce; +static bool swiotlb_force_disable; -/* - * The number of used IO TLB block - */ -static unsigned long io_tlb_used; +struct io_tlb_mem io_tlb_default_mem; -/* - * This is a free list describing the number of free entries available from - * each index - */ -static unsigned int *io_tlb_list; -static unsigned int io_tlb_index; +phys_addr_t swiotlb_unencrypted_base; -/* - * Max segment that we can provide which (if pages are contingous) will - * not be bounced (unless SWIOTLB_FORCE is set). - */ -unsigned int max_segment; +static unsigned long default_nslabs = IO_TLB_DEFAULT_SIZE >> IO_TLB_SHIFT; +static unsigned long default_nareas; -/* - * We need to save away the original address corresponding to a mapped entry - * for the sync operations. +/** + * struct io_tlb_area - IO TLB memory area descriptor + * + * This is a single area with a single lock. + * + * @used: The number of used IO TLB block. + * @index: The slot index to start searching in this area for next round. + * @lock: The lock to protect the above data structures in the map and + * unmap calls. */ -#define INVALID_PHYS_ADDR (~(phys_addr_t)0) -static phys_addr_t *io_tlb_orig_addr; +struct io_tlb_area { + unsigned long used; + unsigned int index; + spinlock_t lock; +}; /* - * Protect the above data structures in the map and unmap calls + * Round up number of slabs to the next power of 2. The last area is going + * be smaller than the rest if default_nslabs is not power of two. + * The number of slot in an area should be a multiple of IO_TLB_SEGSIZE, + * otherwise a segment may span two or more areas. It conflicts with free + * contiguous slots tracking: free slots are treated contiguous no matter + * whether they cross an area boundary. + * + * Return true if default_nslabs is rounded up. */ -static DEFINE_SPINLOCK(io_tlb_lock); +static bool round_up_default_nslabs(void) +{ + if (!default_nareas) + return false; + + if (default_nslabs < IO_TLB_SEGSIZE * default_nareas) + default_nslabs = IO_TLB_SEGSIZE * default_nareas; + else if (is_power_of_2(default_nslabs)) + return false; + default_nslabs = roundup_pow_of_two(default_nslabs); + return true; +} -static int late_alloc; +static void swiotlb_adjust_nareas(unsigned int nareas) +{ + /* use a single area when non is specified */ + if (!nareas) + nareas = 1; + else if (!is_power_of_2(nareas)) + nareas = roundup_pow_of_two(nareas); + + default_nareas = nareas; + + pr_info("area num %d.\n", nareas); + if (round_up_default_nslabs()) + pr_info("SWIOTLB bounce buffer size roundup to %luMB", + (default_nslabs << IO_TLB_SHIFT) >> 20); +} static int __init setup_io_tlb_npages(char *str) { if (isdigit(*str)) { - io_tlb_nslabs = simple_strtoul(str, &str, 0); /* avoid tail segment of size < IO_TLB_SEGSIZE */ - io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE); + default_nslabs = + ALIGN(simple_strtoul(str, &str, 0), IO_TLB_SEGSIZE); } if (*str == ',') ++str; - if (!strcmp(str, "force")) { - swiotlb_force = SWIOTLB_FORCE; - } else if (!strcmp(str, "noforce")) { - swiotlb_force = SWIOTLB_NO_FORCE; - io_tlb_nslabs = 1; - } + if (isdigit(*str)) + swiotlb_adjust_nareas(simple_strtoul(str, &str, 0)); + if (*str == ',') + ++str; + if (!strcmp(str, "force")) + swiotlb_force_bounce = true; + else if (!strcmp(str, "noforce")) + swiotlb_force_disable = true; return 0; } early_param("swiotlb", setup_io_tlb_npages); -static bool no_iotlb_memory; - -unsigned long swiotlb_nr_tbl(void) -{ - return unlikely(no_iotlb_memory) ? 0 : io_tlb_nslabs; -} -EXPORT_SYMBOL_GPL(swiotlb_nr_tbl); - unsigned int swiotlb_max_segment(void) { - return unlikely(no_iotlb_memory) ? 0 : max_segment; + if (!io_tlb_default_mem.nslabs) + return 0; + return rounddown(io_tlb_default_mem.nslabs << IO_TLB_SHIFT, PAGE_SIZE); } EXPORT_SYMBOL_GPL(swiotlb_max_segment); -void swiotlb_set_max_segment(unsigned int val) +unsigned long swiotlb_size_or_default(void) { - if (swiotlb_force == SWIOTLB_FORCE) - max_segment = 1; - else - max_segment = rounddown(val, PAGE_SIZE); + return default_nslabs << IO_TLB_SHIFT; } -/* default to 64MB */ -#define IO_TLB_DEFAULT_SIZE (64UL<<20) -unsigned long swiotlb_size_or_default(void) +void __init swiotlb_adjust_size(unsigned long size) { - unsigned long size; - - size = io_tlb_nslabs << IO_TLB_SHIFT; + /* + * If swiotlb parameter has not been specified, give a chance to + * architectures such as those supporting memory encryption to + * adjust/expand SWIOTLB size for their use. + */ + if (default_nslabs != IO_TLB_DEFAULT_SIZE >> IO_TLB_SHIFT) + return; - return size ? size : (IO_TLB_DEFAULT_SIZE); + size = ALIGN(size, IO_TLB_SIZE); + default_nslabs = ALIGN(size >> IO_TLB_SHIFT, IO_TLB_SEGSIZE); + if (round_up_default_nslabs()) + size = default_nslabs << IO_TLB_SHIFT; + pr_info("SWIOTLB bounce buffer size adjusted to %luMB", size >> 20); } void swiotlb_print_info(void) { - unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT; + struct io_tlb_mem *mem = &io_tlb_default_mem; - if (no_iotlb_memory) { + if (!mem->nslabs) { pr_warn("No low mem\n"); return; } - pr_info("mapped [mem %#010llx-%#010llx] (%luMB)\n", - (unsigned long long)io_tlb_start, - (unsigned long long)io_tlb_end, - bytes >> 20); + pr_info("mapped [mem %pa-%pa] (%luMB)\n", &mem->start, &mem->end, + (mem->nslabs << IO_TLB_SHIFT) >> 20); } +static inline unsigned long io_tlb_offset(unsigned long val) +{ + return val & (IO_TLB_SEGSIZE - 1); +} + +static inline unsigned long nr_slots(u64 val) +{ + return DIV_ROUND_UP(val, IO_TLB_SIZE); +} + +/* + * Remap swioltb memory in the unencrypted physical address space + * when swiotlb_unencrypted_base is set. (e.g. for Hyper-V AMD SEV-SNP + * Isolation VMs). + */ +#ifdef CONFIG_HAS_IOMEM +static void *swiotlb_mem_remap(struct io_tlb_mem *mem, unsigned long bytes) +{ + void *vaddr = NULL; + + if (swiotlb_unencrypted_base) { + phys_addr_t paddr = mem->start + swiotlb_unencrypted_base; + + vaddr = memremap(paddr, bytes, MEMREMAP_WB); + if (!vaddr) + pr_err("Failed to map the unencrypted memory %pa size %lx.\n", + &paddr, bytes); + } + + return vaddr; +} +#else +static void *swiotlb_mem_remap(struct io_tlb_mem *mem, unsigned long bytes) +{ + return NULL; +} +#endif + /* * Early SWIOTLB allocation may be too early to allow an architecture to * perform the desired operations. This function allows the architecture to @@ -186,87 +245,139 @@ void swiotlb_print_info(void) */ void __init swiotlb_update_mem_attributes(void) { + struct io_tlb_mem *mem = &io_tlb_default_mem; void *vaddr; unsigned long bytes; - if (no_iotlb_memory || late_alloc) + if (!mem->nslabs || mem->late_alloc) return; - - vaddr = phys_to_virt(io_tlb_start); - bytes = PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT); + vaddr = phys_to_virt(mem->start); + bytes = PAGE_ALIGN(mem->nslabs << IO_TLB_SHIFT); set_memory_decrypted((unsigned long)vaddr, bytes >> PAGE_SHIFT); - memset(vaddr, 0, bytes); + + mem->vaddr = swiotlb_mem_remap(mem, bytes); + if (!mem->vaddr) + mem->vaddr = vaddr; } -int __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose) +static void swiotlb_init_io_tlb_mem(struct io_tlb_mem *mem, phys_addr_t start, + unsigned long nslabs, unsigned int flags, + bool late_alloc, unsigned int nareas) { - unsigned long i, bytes; - size_t alloc_size; - - bytes = nslabs << IO_TLB_SHIFT; + void *vaddr = phys_to_virt(start); + unsigned long bytes = nslabs << IO_TLB_SHIFT, i; + + mem->nslabs = nslabs; + mem->start = start; + mem->end = mem->start + bytes; + mem->late_alloc = late_alloc; + mem->nareas = nareas; + mem->area_nslabs = nslabs / mem->nareas; + + mem->force_bounce = swiotlb_force_bounce || (flags & SWIOTLB_FORCE); + + for (i = 0; i < mem->nareas; i++) { + spin_lock_init(&mem->areas[i].lock); + mem->areas[i].index = 0; + mem->areas[i].used = 0; + } - io_tlb_nslabs = nslabs; - io_tlb_start = __pa(tlb); - io_tlb_end = io_tlb_start + bytes; + for (i = 0; i < mem->nslabs; i++) { + mem->slots[i].list = IO_TLB_SEGSIZE - io_tlb_offset(i); + mem->slots[i].orig_addr = INVALID_PHYS_ADDR; + mem->slots[i].alloc_size = 0; + } /* - * Allocate and initialize the free list array. This array is used - * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE - * between io_tlb_start and io_tlb_end. + * If swiotlb_unencrypted_base is set, the bounce buffer memory will + * be remapped and cleared in swiotlb_update_mem_attributes. */ - alloc_size = PAGE_ALIGN(io_tlb_nslabs * sizeof(int)); - io_tlb_list = memblock_alloc(alloc_size, PAGE_SIZE); - if (!io_tlb_list) - panic("%s: Failed to allocate %zu bytes align=0x%lx\n", - __func__, alloc_size, PAGE_SIZE); - - alloc_size = PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)); - io_tlb_orig_addr = memblock_alloc(alloc_size, PAGE_SIZE); - if (!io_tlb_orig_addr) - panic("%s: Failed to allocate %zu bytes align=0x%lx\n", - __func__, alloc_size, PAGE_SIZE); - - for (i = 0; i < io_tlb_nslabs; i++) { - io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE); - io_tlb_orig_addr[i] = INVALID_PHYS_ADDR; - } - io_tlb_index = 0; - - if (verbose) - swiotlb_print_info(); + if (swiotlb_unencrypted_base) + return; - swiotlb_set_max_segment(io_tlb_nslabs << IO_TLB_SHIFT); - return 0; + memset(vaddr, 0, bytes); + mem->vaddr = vaddr; + return; } /* * Statically reserve bounce buffer space and initialize bounce buffer data * structures for the software IO TLB used to implement the DMA API. */ -void __init -swiotlb_init(int verbose) +void __init swiotlb_init_remap(bool addressing_limit, unsigned int flags, + int (*remap)(void *tlb, unsigned long nslabs)) { - size_t default_size = IO_TLB_DEFAULT_SIZE; - unsigned char *vstart; - unsigned long bytes; + struct io_tlb_mem *mem = &io_tlb_default_mem; + unsigned long nslabs; + size_t alloc_size; + size_t bytes; + void *tlb; + + if (!addressing_limit && !swiotlb_force_bounce) + return; + if (swiotlb_force_disable) + return; + + /* + * default_nslabs maybe changed when adjust area number. + * So allocate bounce buffer after adjusting area number. + */ + if (!default_nareas) + swiotlb_adjust_nareas(num_possible_cpus()); - if (!io_tlb_nslabs) { - io_tlb_nslabs = (default_size >> IO_TLB_SHIFT); - io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE); + nslabs = default_nslabs; + /* + * By default allocate the bounce buffer memory from low memory, but + * allow to pick a location everywhere for hypervisors with guest + * memory encryption. + */ +retry: + bytes = PAGE_ALIGN(nslabs << IO_TLB_SHIFT); + if (flags & SWIOTLB_ANY) + tlb = memblock_alloc(bytes, PAGE_SIZE); + else + tlb = memblock_alloc_low(bytes, PAGE_SIZE); + if (!tlb) { + pr_warn("%s: failed to allocate tlb structure\n", __func__); + return; + } + + if (remap && remap(tlb, nslabs) < 0) { + memblock_free(tlb, PAGE_ALIGN(bytes)); + + nslabs = ALIGN(nslabs >> 1, IO_TLB_SEGSIZE); + if (nslabs >= IO_TLB_MIN_SLABS) + goto retry; + + pr_warn("%s: Failed to remap %zu bytes\n", __func__, bytes); + return; } - bytes = io_tlb_nslabs << IO_TLB_SHIFT; + alloc_size = PAGE_ALIGN(array_size(sizeof(*mem->slots), nslabs)); + mem->slots = memblock_alloc(alloc_size, PAGE_SIZE); + if (!mem->slots) { + pr_warn("%s: Failed to allocate %zu bytes align=0x%lx\n", + __func__, alloc_size, PAGE_SIZE); + return; + } - /* Get IO TLB memory from the low pages */ - vstart = memblock_alloc_low(PAGE_ALIGN(bytes), PAGE_SIZE); - if (vstart && !swiotlb_init_with_tbl(vstart, io_tlb_nslabs, verbose)) + mem->areas = memblock_alloc(array_size(sizeof(struct io_tlb_area), + default_nareas), SMP_CACHE_BYTES); + if (!mem->areas) { + pr_warn("%s: Failed to allocate mem->areas.\n", __func__); return; + } + + swiotlb_init_io_tlb_mem(mem, __pa(tlb), nslabs, flags, false, + default_nareas); - if (io_tlb_start) - memblock_free_early(io_tlb_start, - PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT)); - pr_warn("Cannot allocate buffer"); - no_iotlb_memory = true; + if (flags & SWIOTLB_VERBOSE) + swiotlb_print_info(); +} + +void __init swiotlb_init(bool addressing_limit, unsigned int flags) +{ + swiotlb_init_remap(addressing_limit, flags, NULL); } /* @@ -274,148 +385,173 @@ swiotlb_init(int verbose) * initialize the swiotlb later using the slab allocator if needed. * This should be just like above, but with some error catching. */ -int -swiotlb_late_init_with_default_size(size_t default_size) +int swiotlb_init_late(size_t size, gfp_t gfp_mask, + int (*remap)(void *tlb, unsigned long nslabs)) { - unsigned long bytes, req_nslabs = io_tlb_nslabs; + struct io_tlb_mem *mem = &io_tlb_default_mem; + unsigned long nslabs = ALIGN(size >> IO_TLB_SHIFT, IO_TLB_SEGSIZE); unsigned char *vstart = NULL; - unsigned int order; + unsigned int order, area_order; + bool retried = false; int rc = 0; - if (!io_tlb_nslabs) { - io_tlb_nslabs = (default_size >> IO_TLB_SHIFT); - io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE); - } + if (swiotlb_force_disable) + return 0; - /* - * Get IO TLB memory from the low pages - */ - order = get_order(io_tlb_nslabs << IO_TLB_SHIFT); - io_tlb_nslabs = SLABS_PER_PAGE << order; - bytes = io_tlb_nslabs << IO_TLB_SHIFT; +retry: + order = get_order(nslabs << IO_TLB_SHIFT); + nslabs = SLABS_PER_PAGE << order; while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) { - vstart = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN, + vstart = (void *)__get_free_pages(gfp_mask | __GFP_NOWARN, order); if (vstart) break; order--; + nslabs = SLABS_PER_PAGE << order; + retried = true; } - if (!vstart) { - io_tlb_nslabs = req_nslabs; + if (!vstart) return -ENOMEM; + + if (remap) + rc = remap(vstart, nslabs); + if (rc) { + free_pages((unsigned long)vstart, order); + + nslabs = ALIGN(nslabs >> 1, IO_TLB_SEGSIZE); + if (nslabs < IO_TLB_MIN_SLABS) + return rc; + retried = true; + goto retry; } - if (order != get_order(bytes)) { + + if (retried) { pr_warn("only able to allocate %ld MB\n", (PAGE_SIZE << order) >> 20); - io_tlb_nslabs = SLABS_PER_PAGE << order; } - rc = swiotlb_late_init_with_tbl(vstart, io_tlb_nslabs); - if (rc) - free_pages((unsigned long)vstart, order); - return rc; -} + if (!default_nareas) + swiotlb_adjust_nareas(num_possible_cpus()); -static void swiotlb_cleanup(void) -{ - io_tlb_end = 0; - io_tlb_start = 0; - io_tlb_nslabs = 0; - max_segment = 0; -} + area_order = get_order(array_size(sizeof(*mem->areas), + default_nareas)); + mem->areas = (struct io_tlb_area *) + __get_free_pages(GFP_KERNEL | __GFP_ZERO, area_order); + if (!mem->areas) + goto error_area; -int -swiotlb_late_init_with_tbl(char *tlb, unsigned long nslabs) -{ - unsigned long i, bytes; + mem->slots = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, + get_order(array_size(sizeof(*mem->slots), nslabs))); + if (!mem->slots) + goto error_slots; - bytes = nslabs << IO_TLB_SHIFT; - - io_tlb_nslabs = nslabs; - io_tlb_start = virt_to_phys(tlb); - io_tlb_end = io_tlb_start + bytes; - - set_memory_decrypted((unsigned long)tlb, bytes >> PAGE_SHIFT); - memset(tlb, 0, bytes); - - /* - * Allocate and initialize the free list array. This array is used - * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE - * between io_tlb_start and io_tlb_end. - */ - io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL, - get_order(io_tlb_nslabs * sizeof(int))); - if (!io_tlb_list) - goto cleanup3; - - io_tlb_orig_addr = (phys_addr_t *) - __get_free_pages(GFP_KERNEL, - get_order(io_tlb_nslabs * - sizeof(phys_addr_t))); - if (!io_tlb_orig_addr) - goto cleanup4; - - for (i = 0; i < io_tlb_nslabs; i++) { - io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE); - io_tlb_orig_addr[i] = INVALID_PHYS_ADDR; - } - io_tlb_index = 0; + set_memory_decrypted((unsigned long)vstart, + (nslabs << IO_TLB_SHIFT) >> PAGE_SHIFT); + swiotlb_init_io_tlb_mem(mem, virt_to_phys(vstart), nslabs, 0, true, + default_nareas); swiotlb_print_info(); - - late_alloc = 1; - - swiotlb_set_max_segment(io_tlb_nslabs << IO_TLB_SHIFT); - return 0; -cleanup4: - free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs * - sizeof(int))); - io_tlb_list = NULL; -cleanup3: - swiotlb_cleanup(); +error_slots: + free_pages((unsigned long)mem->areas, area_order); +error_area: + free_pages((unsigned long)vstart, order); return -ENOMEM; } void __init swiotlb_exit(void) { - if (!io_tlb_orig_addr) + struct io_tlb_mem *mem = &io_tlb_default_mem; + unsigned long tbl_vaddr; + size_t tbl_size, slots_size; + unsigned int area_order; + + if (swiotlb_force_bounce) return; - if (late_alloc) { - free_pages((unsigned long)io_tlb_orig_addr, - get_order(io_tlb_nslabs * sizeof(phys_addr_t))); - free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs * - sizeof(int))); - free_pages((unsigned long)phys_to_virt(io_tlb_start), - get_order(io_tlb_nslabs << IO_TLB_SHIFT)); + if (!mem->nslabs) + return; + + pr_info("tearing down default memory pool\n"); + tbl_vaddr = (unsigned long)phys_to_virt(mem->start); + tbl_size = PAGE_ALIGN(mem->end - mem->start); + slots_size = PAGE_ALIGN(array_size(sizeof(*mem->slots), mem->nslabs)); + + set_memory_encrypted(tbl_vaddr, tbl_size >> PAGE_SHIFT); + if (mem->late_alloc) { + area_order = get_order(array_size(sizeof(*mem->areas), + mem->nareas)); + free_pages((unsigned long)mem->areas, area_order); + free_pages(tbl_vaddr, get_order(tbl_size)); + free_pages((unsigned long)mem->slots, get_order(slots_size)); } else { - memblock_free_late(__pa(io_tlb_orig_addr), - PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t))); - memblock_free_late(__pa(io_tlb_list), - PAGE_ALIGN(io_tlb_nslabs * sizeof(int))); - memblock_free_late(io_tlb_start, - PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT)); + memblock_free_late(__pa(mem->areas), + array_size(sizeof(*mem->areas), mem->nareas)); + memblock_free_late(mem->start, tbl_size); + memblock_free_late(__pa(mem->slots), slots_size); } - swiotlb_cleanup(); + + memset(mem, 0, sizeof(*mem)); +} + +/* + * Return the offset into a iotlb slot required to keep the device happy. + */ +static unsigned int swiotlb_align_offset(struct device *dev, u64 addr) +{ + return addr & dma_get_min_align_mask(dev) & (IO_TLB_SIZE - 1); } /* * Bounce: copy the swiotlb buffer from or back to the original dma location */ -static void swiotlb_bounce(phys_addr_t orig_addr, phys_addr_t tlb_addr, - size_t size, enum dma_data_direction dir) +static void swiotlb_bounce(struct device *dev, phys_addr_t tlb_addr, size_t size, + enum dma_data_direction dir) { + struct io_tlb_mem *mem = dev->dma_io_tlb_mem; + int index = (tlb_addr - mem->start) >> IO_TLB_SHIFT; + phys_addr_t orig_addr = mem->slots[index].orig_addr; + size_t alloc_size = mem->slots[index].alloc_size; unsigned long pfn = PFN_DOWN(orig_addr); - unsigned char *vaddr = phys_to_virt(tlb_addr); + unsigned char *vaddr = mem->vaddr + tlb_addr - mem->start; + unsigned int tlb_offset, orig_addr_offset; + + if (orig_addr == INVALID_PHYS_ADDR) + return; + + tlb_offset = tlb_addr & (IO_TLB_SIZE - 1); + orig_addr_offset = swiotlb_align_offset(dev, orig_addr); + if (tlb_offset < orig_addr_offset) { + dev_WARN_ONCE(dev, 1, + "Access before mapping start detected. orig offset %u, requested offset %u.\n", + orig_addr_offset, tlb_offset); + return; + } + + tlb_offset -= orig_addr_offset; + if (tlb_offset > alloc_size) { + dev_WARN_ONCE(dev, 1, + "Buffer overflow detected. Allocation size: %zu. Mapping size: %zu+%u.\n", + alloc_size, size, tlb_offset); + return; + } + + orig_addr += tlb_offset; + alloc_size -= tlb_offset; + + if (size > alloc_size) { + dev_WARN_ONCE(dev, 1, + "Buffer overflow detected. Allocation size: %zu. Mapping size: %zu.\n", + alloc_size, size); + size = alloc_size; + } if (PageHighMem(pfn_to_page(pfn))) { - /* The buffer does not have a mapping. Map it in and copy */ unsigned int offset = orig_addr & ~PAGE_MASK; - char *buffer; + struct page *page; unsigned int sz = 0; unsigned long flags; @@ -423,12 +559,11 @@ static void swiotlb_bounce(phys_addr_t orig_addr, phys_addr_t tlb_addr, sz = min_t(size_t, PAGE_SIZE - offset, size); local_irq_save(flags); - buffer = kmap_atomic(pfn_to_page(pfn)); + page = pfn_to_page(pfn); if (dir == DMA_TO_DEVICE) - memcpy(vaddr, buffer + offset, sz); + memcpy_from_page(vaddr, page, offset, sz); else - memcpy(buffer + offset, vaddr, sz); - kunmap_atomic(buffer); + memcpy_to_page(page, offset, vaddr, sz); local_irq_restore(flags); size -= sz; @@ -443,82 +578,79 @@ static void swiotlb_bounce(phys_addr_t orig_addr, phys_addr_t tlb_addr, } } -phys_addr_t swiotlb_tbl_map_single(struct device *hwdev, - dma_addr_t tbl_dma_addr, - phys_addr_t orig_addr, - size_t mapping_size, - size_t alloc_size, - enum dma_data_direction dir, - unsigned long attrs) +static inline phys_addr_t slot_addr(phys_addr_t start, phys_addr_t idx) { - unsigned long flags; - phys_addr_t tlb_addr; - unsigned int nslots, stride, index, wrap; - int i; - unsigned long mask; - unsigned long offset_slots; - unsigned long max_slots; - unsigned long tmp_io_tlb_used; - - if (no_iotlb_memory) - panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer"); - - if (mem_encrypt_active()) - pr_warn_once("Memory encryption is active and system is using DMA bounce buffers\n"); - - if (mapping_size > alloc_size) { - dev_warn_once(hwdev, "Invalid sizes (mapping: %zd bytes, alloc: %zd bytes)", - mapping_size, alloc_size); - return (phys_addr_t)DMA_MAPPING_ERROR; - } - - mask = dma_get_seg_boundary(hwdev); - - tbl_dma_addr &= mask; + return start + (idx << IO_TLB_SHIFT); +} - offset_slots = ALIGN(tbl_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT; +/* + * Carefully handle integer overflow which can occur when boundary_mask == ~0UL. + */ +static inline unsigned long get_max_slots(unsigned long boundary_mask) +{ + if (boundary_mask == ~0UL) + return 1UL << (BITS_PER_LONG - IO_TLB_SHIFT); + return nr_slots(boundary_mask + 1); +} - /* - * Carefully handle integer overflow which can occur when mask == ~0UL. - */ - max_slots = mask + 1 - ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT - : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT); +static unsigned int wrap_area_index(struct io_tlb_mem *mem, unsigned int index) +{ + if (index >= mem->area_nslabs) + return 0; + return index; +} - /* - * For mappings greater than or equal to a page, we limit the stride - * (and hence alignment) to a page size. - */ - nslots = ALIGN(alloc_size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT; - if (alloc_size >= PAGE_SIZE) - stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT)); - else - stride = 1; +/* + * Find a suitable number of IO TLB entries size that will fit this request and + * allocate a buffer from that IO TLB pool. + */ +static int swiotlb_do_find_slots(struct device *dev, int area_index, + phys_addr_t orig_addr, size_t alloc_size, + unsigned int alloc_align_mask) +{ + struct io_tlb_mem *mem = dev->dma_io_tlb_mem; + struct io_tlb_area *area = mem->areas + area_index; + unsigned long boundary_mask = dma_get_seg_boundary(dev); + dma_addr_t tbl_dma_addr = + phys_to_dma_unencrypted(dev, mem->start) & boundary_mask; + unsigned long max_slots = get_max_slots(boundary_mask); + unsigned int iotlb_align_mask = + dma_get_min_align_mask(dev) & ~(IO_TLB_SIZE - 1); + unsigned int nslots = nr_slots(alloc_size), stride; + unsigned int index, wrap, count = 0, i; + unsigned int offset = swiotlb_align_offset(dev, orig_addr); + unsigned long flags; + unsigned int slot_base; + unsigned int slot_index; BUG_ON(!nslots); + BUG_ON(area_index >= mem->nareas); /* - * Find suitable number of IO TLB entries size that will fit this - * request and allocate a buffer from that IO TLB pool. + * For mappings with an alignment requirement don't bother looping to + * unaligned slots once we found an aligned one. For allocations of + * PAGE_SIZE or larger only look for page aligned allocations. */ - spin_lock_irqsave(&io_tlb_lock, flags); + stride = (iotlb_align_mask >> IO_TLB_SHIFT) + 1; + if (alloc_size >= PAGE_SIZE) + stride = max(stride, stride << (PAGE_SHIFT - IO_TLB_SHIFT)); + stride = max(stride, (alloc_align_mask >> IO_TLB_SHIFT) + 1); - if (unlikely(nslots > io_tlb_nslabs - io_tlb_used)) + spin_lock_irqsave(&area->lock, flags); + if (unlikely(nslots > mem->area_nslabs - area->used)) goto not_found; - index = ALIGN(io_tlb_index, stride); - if (index >= io_tlb_nslabs) - index = 0; - wrap = index; + slot_base = area_index * mem->area_nslabs; + index = wrap = wrap_area_index(mem, ALIGN(area->index, stride)); do { - while (iommu_is_span_boundary(index, nslots, offset_slots, - max_slots)) { - index += stride; - if (index >= io_tlb_nslabs) - index = 0; - if (index == wrap) - goto not_found; + slot_index = slot_base + index; + + if (orig_addr && + (slot_addr(tbl_dma_addr, slot_index) & + iotlb_align_mask) != (orig_addr & iotlb_align_mask)) { + index = wrap_area_index(mem, index + 1); + continue; } /* @@ -526,74 +658,136 @@ phys_addr_t swiotlb_tbl_map_single(struct device *hwdev, * contiguous buffers, we allocate the buffers from that slot * and mark the entries as '0' indicating unavailable. */ - if (io_tlb_list[index] >= nslots) { - int count = 0; - - for (i = index; i < (int) (index + nslots); i++) - io_tlb_list[i] = 0; - for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--) - io_tlb_list[i] = ++count; - tlb_addr = io_tlb_start + (index << IO_TLB_SHIFT); - - /* - * Update the indices to avoid searching in the next - * round. - */ - io_tlb_index = ((index + nslots) < io_tlb_nslabs - ? (index + nslots) : 0); - - goto found; + if (!iommu_is_span_boundary(slot_index, nslots, + nr_slots(tbl_dma_addr), + max_slots)) { + if (mem->slots[slot_index].list >= nslots) + goto found; } - index += stride; - if (index >= io_tlb_nslabs) - index = 0; + index = wrap_area_index(mem, index + stride); } while (index != wrap); not_found: - tmp_io_tlb_used = io_tlb_used; + spin_unlock_irqrestore(&area->lock, flags); + return -1; - spin_unlock_irqrestore(&io_tlb_lock, flags); - if (!(attrs & DMA_ATTR_NO_WARN) && printk_ratelimit()) - dev_warn(hwdev, "swiotlb buffer is full (sz: %zd bytes), total %lu (slots), used %lu (slots)\n", - alloc_size, io_tlb_nslabs, tmp_io_tlb_used); - return (phys_addr_t)DMA_MAPPING_ERROR; found: - io_tlb_used += nslots; - spin_unlock_irqrestore(&io_tlb_lock, flags); + for (i = slot_index; i < slot_index + nslots; i++) { + mem->slots[i].list = 0; + mem->slots[i].alloc_size = alloc_size - (offset + + ((i - slot_index) << IO_TLB_SHIFT)); + } + for (i = slot_index - 1; + io_tlb_offset(i) != IO_TLB_SEGSIZE - 1 && + mem->slots[i].list; i--) + mem->slots[i].list = ++count; + + /* + * Update the indices to avoid searching in the next round. + */ + if (index + nslots < mem->area_nslabs) + area->index = index + nslots; + else + area->index = 0; + area->used += nslots; + spin_unlock_irqrestore(&area->lock, flags); + return slot_index; +} + +static int swiotlb_find_slots(struct device *dev, phys_addr_t orig_addr, + size_t alloc_size, unsigned int alloc_align_mask) +{ + struct io_tlb_mem *mem = dev->dma_io_tlb_mem; + int start = raw_smp_processor_id() & (mem->nareas - 1); + int i = start, index; + + do { + index = swiotlb_do_find_slots(dev, i, orig_addr, alloc_size, + alloc_align_mask); + if (index >= 0) + return index; + if (++i >= mem->nareas) + i = 0; + } while (i != start); + + return -1; +} + +static unsigned long mem_used(struct io_tlb_mem *mem) +{ + int i; + unsigned long used = 0; + + for (i = 0; i < mem->nareas; i++) + used += mem->areas[i].used; + return used; +} + +phys_addr_t swiotlb_tbl_map_single(struct device *dev, phys_addr_t orig_addr, + size_t mapping_size, size_t alloc_size, + unsigned int alloc_align_mask, enum dma_data_direction dir, + unsigned long attrs) +{ + struct io_tlb_mem *mem = dev->dma_io_tlb_mem; + unsigned int offset = swiotlb_align_offset(dev, orig_addr); + unsigned int i; + int index; + phys_addr_t tlb_addr; + + if (!mem || !mem->nslabs) { + dev_warn_ratelimited(dev, + "Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer"); + return (phys_addr_t)DMA_MAPPING_ERROR; + } + + if (cc_platform_has(CC_ATTR_MEM_ENCRYPT)) + pr_warn_once("Memory encryption is active and system is using DMA bounce buffers\n"); + + if (mapping_size > alloc_size) { + dev_warn_once(dev, "Invalid sizes (mapping: %zd bytes, alloc: %zd bytes)", + mapping_size, alloc_size); + return (phys_addr_t)DMA_MAPPING_ERROR; + } + + index = swiotlb_find_slots(dev, orig_addr, + alloc_size + offset, alloc_align_mask); + if (index == -1) { + if (!(attrs & DMA_ATTR_NO_WARN)) + dev_warn_ratelimited(dev, + "swiotlb buffer is full (sz: %zd bytes), total %lu (slots), used %lu (slots)\n", + alloc_size, mem->nslabs, mem_used(mem)); + return (phys_addr_t)DMA_MAPPING_ERROR; + } /* * Save away the mapping from the original address to the DMA address. * This is needed when we sync the memory. Then we sync the buffer if * needed. */ - for (i = 0; i < nslots; i++) - io_tlb_orig_addr[index+i] = orig_addr + (i << IO_TLB_SHIFT); - if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && - (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)) - swiotlb_bounce(orig_addr, tlb_addr, mapping_size, DMA_TO_DEVICE); - + for (i = 0; i < nr_slots(alloc_size + offset); i++) + mem->slots[index + i].orig_addr = slot_addr(orig_addr, i); + tlb_addr = slot_addr(mem->start, index) + offset; + /* + * When dir == DMA_FROM_DEVICE we could omit the copy from the orig + * to the tlb buffer, if we knew for sure the device will + * overwrite the entire current content. But we don't. Thus + * unconditional bounce may prevent leaking swiotlb content (i.e. + * kernel memory) to user-space. + */ + swiotlb_bounce(dev, tlb_addr, mapping_size, DMA_TO_DEVICE); return tlb_addr; } -/* - * tlb_addr is the physical address of the bounce buffer to unmap. - */ -void swiotlb_tbl_unmap_single(struct device *hwdev, phys_addr_t tlb_addr, - size_t mapping_size, size_t alloc_size, - enum dma_data_direction dir, unsigned long attrs) +static void swiotlb_release_slots(struct device *dev, phys_addr_t tlb_addr) { + struct io_tlb_mem *mem = dev->dma_io_tlb_mem; unsigned long flags; - int i, count, nslots = ALIGN(alloc_size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT; - int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT; - phys_addr_t orig_addr = io_tlb_orig_addr[index]; - - /* - * First, sync the memory before unmapping the entry - */ - if (orig_addr != INVALID_PHYS_ADDR && - !(attrs & DMA_ATTR_SKIP_CPU_SYNC) && - ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL))) - swiotlb_bounce(orig_addr, tlb_addr, mapping_size, DMA_FROM_DEVICE); + unsigned int offset = swiotlb_align_offset(dev, tlb_addr); + int index = (tlb_addr - offset - mem->start) >> IO_TLB_SHIFT; + int nslots = nr_slots(mem->slots[index].alloc_size + offset); + int aindex = index / mem->area_nslabs; + struct io_tlb_area *area = &mem->areas[aindex]; + int count, i; /* * Return the buffer to the free list by setting the corresponding @@ -601,59 +795,69 @@ void swiotlb_tbl_unmap_single(struct device *hwdev, phys_addr_t tlb_addr, * While returning the entries to the free list, we merge the entries * with slots below and above the pool being returned. */ - spin_lock_irqsave(&io_tlb_lock, flags); - { - count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ? - io_tlb_list[index + nslots] : 0); - /* - * Step 1: return the slots to the free list, merging the - * slots with superceeding slots - */ - for (i = index + nslots - 1; i >= index; i--) { - io_tlb_list[i] = ++count; - io_tlb_orig_addr[i] = INVALID_PHYS_ADDR; - } - /* - * Step 2: merge the returned slots with the preceding slots, - * if available (non zero) - */ - for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--) - io_tlb_list[i] = ++count; + BUG_ON(aindex >= mem->nareas); + + spin_lock_irqsave(&area->lock, flags); + if (index + nslots < ALIGN(index + 1, IO_TLB_SEGSIZE)) + count = mem->slots[index + nslots].list; + else + count = 0; - io_tlb_used -= nslots; + /* + * Step 1: return the slots to the free list, merging the slots with + * superceeding slots + */ + for (i = index + nslots - 1; i >= index; i--) { + mem->slots[i].list = ++count; + mem->slots[i].orig_addr = INVALID_PHYS_ADDR; + mem->slots[i].alloc_size = 0; } - spin_unlock_irqrestore(&io_tlb_lock, flags); + + /* + * Step 2: merge the returned slots with the preceding slots, if + * available (non zero) + */ + for (i = index - 1; + io_tlb_offset(i) != IO_TLB_SEGSIZE - 1 && mem->slots[i].list; + i--) + mem->slots[i].list = ++count; + area->used -= nslots; + spin_unlock_irqrestore(&area->lock, flags); } -void swiotlb_tbl_sync_single(struct device *hwdev, phys_addr_t tlb_addr, - size_t size, enum dma_data_direction dir, - enum dma_sync_target target) +/* + * tlb_addr is the physical address of the bounce buffer to unmap. + */ +void swiotlb_tbl_unmap_single(struct device *dev, phys_addr_t tlb_addr, + size_t mapping_size, enum dma_data_direction dir, + unsigned long attrs) { - int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT; - phys_addr_t orig_addr = io_tlb_orig_addr[index]; + /* + * First, sync the memory before unmapping the entry + */ + if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && + (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)) + swiotlb_bounce(dev, tlb_addr, mapping_size, DMA_FROM_DEVICE); - if (orig_addr == INVALID_PHYS_ADDR) - return; - orig_addr += (unsigned long)tlb_addr & ((1 << IO_TLB_SHIFT) - 1); - - switch (target) { - case SYNC_FOR_CPU: - if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)) - swiotlb_bounce(orig_addr, tlb_addr, - size, DMA_FROM_DEVICE); - else - BUG_ON(dir != DMA_TO_DEVICE); - break; - case SYNC_FOR_DEVICE: - if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)) - swiotlb_bounce(orig_addr, tlb_addr, - size, DMA_TO_DEVICE); - else - BUG_ON(dir != DMA_FROM_DEVICE); - break; - default: - BUG(); - } + swiotlb_release_slots(dev, tlb_addr); +} + +void swiotlb_sync_single_for_device(struct device *dev, phys_addr_t tlb_addr, + size_t size, enum dma_data_direction dir) +{ + if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL) + swiotlb_bounce(dev, tlb_addr, size, DMA_TO_DEVICE); + else + BUG_ON(dir != DMA_FROM_DEVICE); +} + +void swiotlb_sync_single_for_cpu(struct device *dev, phys_addr_t tlb_addr, + size_t size, enum dma_data_direction dir) +{ + if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL) + swiotlb_bounce(dev, tlb_addr, size, DMA_FROM_DEVICE); + else + BUG_ON(dir != DMA_TO_DEVICE); } /* @@ -666,19 +870,17 @@ dma_addr_t swiotlb_map(struct device *dev, phys_addr_t paddr, size_t size, phys_addr_t swiotlb_addr; dma_addr_t dma_addr; - trace_swiotlb_bounced(dev, phys_to_dma(dev, paddr), size, - swiotlb_force); + trace_swiotlb_bounced(dev, phys_to_dma(dev, paddr), size); - swiotlb_addr = swiotlb_tbl_map_single(dev, - __phys_to_dma(dev, io_tlb_start), - paddr, size, size, dir, attrs); + swiotlb_addr = swiotlb_tbl_map_single(dev, paddr, size, size, 0, dir, + attrs); if (swiotlb_addr == (phys_addr_t)DMA_MAPPING_ERROR) return DMA_MAPPING_ERROR; /* Ensure that the address returned is DMA'ble */ - dma_addr = __phys_to_dma(dev, swiotlb_addr); + dma_addr = phys_to_dma_unencrypted(dev, swiotlb_addr); if (unlikely(!dma_capable(dev, dma_addr, size, true))) { - swiotlb_tbl_unmap_single(dev, swiotlb_addr, size, size, dir, + swiotlb_tbl_unmap_single(dev, swiotlb_addr, size, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC); dev_WARN_ONCE(dev, 1, "swiotlb addr %pad+%zu overflow (mask %llx, bus limit %llx).\n", @@ -693,30 +895,169 @@ dma_addr_t swiotlb_map(struct device *dev, phys_addr_t paddr, size_t size, size_t swiotlb_max_mapping_size(struct device *dev) { - return ((size_t)1 << IO_TLB_SHIFT) * IO_TLB_SEGSIZE; -} + int min_align_mask = dma_get_min_align_mask(dev); + int min_align = 0; -bool is_swiotlb_active(void) -{ /* - * When SWIOTLB is initialized, even if io_tlb_start points to physical - * address zero, io_tlb_end surely doesn't. + * swiotlb_find_slots() skips slots according to + * min align mask. This affects max mapping size. + * Take it into acount here. */ - return io_tlb_end != 0; + if (min_align_mask) + min_align = roundup(min_align_mask, IO_TLB_SIZE); + + return ((size_t)IO_TLB_SIZE) * IO_TLB_SEGSIZE - min_align; +} + +bool is_swiotlb_active(struct device *dev) +{ + struct io_tlb_mem *mem = dev->dma_io_tlb_mem; + + return mem && mem->nslabs; +} +EXPORT_SYMBOL_GPL(is_swiotlb_active); + +static int io_tlb_used_get(void *data, u64 *val) +{ + *val = mem_used(&io_tlb_default_mem); + return 0; +} +DEFINE_DEBUGFS_ATTRIBUTE(fops_io_tlb_used, io_tlb_used_get, NULL, "%llu\n"); + +static void swiotlb_create_debugfs_files(struct io_tlb_mem *mem, + const char *dirname) +{ + mem->debugfs = debugfs_create_dir(dirname, io_tlb_default_mem.debugfs); + if (!mem->nslabs) + return; + + debugfs_create_ulong("io_tlb_nslabs", 0400, mem->debugfs, &mem->nslabs); + debugfs_create_file("io_tlb_used", 0400, mem->debugfs, NULL, + &fops_io_tlb_used); +} + +static int __init __maybe_unused swiotlb_create_default_debugfs(void) +{ + swiotlb_create_debugfs_files(&io_tlb_default_mem, "swiotlb"); + return 0; } #ifdef CONFIG_DEBUG_FS +late_initcall(swiotlb_create_default_debugfs); +#endif + +#ifdef CONFIG_DMA_RESTRICTED_POOL + +struct page *swiotlb_alloc(struct device *dev, size_t size) +{ + struct io_tlb_mem *mem = dev->dma_io_tlb_mem; + phys_addr_t tlb_addr; + int index; + + if (!mem) + return NULL; + + index = swiotlb_find_slots(dev, 0, size, 0); + if (index == -1) + return NULL; + + tlb_addr = slot_addr(mem->start, index); + + return pfn_to_page(PFN_DOWN(tlb_addr)); +} -static int __init swiotlb_create_debugfs(void) +bool swiotlb_free(struct device *dev, struct page *page, size_t size) { - struct dentry *root; + phys_addr_t tlb_addr = page_to_phys(page); + + if (!is_swiotlb_buffer(dev, tlb_addr)) + return false; + + swiotlb_release_slots(dev, tlb_addr); + + return true; +} + +static int rmem_swiotlb_device_init(struct reserved_mem *rmem, + struct device *dev) +{ + struct io_tlb_mem *mem = rmem->priv; + unsigned long nslabs = rmem->size >> IO_TLB_SHIFT; + + /* Set Per-device io tlb area to one */ + unsigned int nareas = 1; + + /* + * Since multiple devices can share the same pool, the private data, + * io_tlb_mem struct, will be initialized by the first device attached + * to it. + */ + if (!mem) { + mem = kzalloc(sizeof(*mem), GFP_KERNEL); + if (!mem) + return -ENOMEM; + + mem->slots = kcalloc(nslabs, sizeof(*mem->slots), GFP_KERNEL); + if (!mem->slots) { + kfree(mem); + return -ENOMEM; + } + + mem->areas = kcalloc(nareas, sizeof(*mem->areas), + GFP_KERNEL); + if (!mem->areas) { + kfree(mem->slots); + kfree(mem); + return -ENOMEM; + } + + set_memory_decrypted((unsigned long)phys_to_virt(rmem->base), + rmem->size >> PAGE_SHIFT); + swiotlb_init_io_tlb_mem(mem, rmem->base, nslabs, SWIOTLB_FORCE, + false, nareas); + mem->for_alloc = true; + + rmem->priv = mem; + + swiotlb_create_debugfs_files(mem, rmem->name); + } + + dev->dma_io_tlb_mem = mem; - root = debugfs_create_dir("swiotlb", NULL); - debugfs_create_ulong("io_tlb_nslabs", 0400, root, &io_tlb_nslabs); - debugfs_create_ulong("io_tlb_used", 0400, root, &io_tlb_used); return 0; } -late_initcall(swiotlb_create_debugfs); +static void rmem_swiotlb_device_release(struct reserved_mem *rmem, + struct device *dev) +{ + dev->dma_io_tlb_mem = &io_tlb_default_mem; +} + +static const struct reserved_mem_ops rmem_swiotlb_ops = { + .device_init = rmem_swiotlb_device_init, + .device_release = rmem_swiotlb_device_release, +}; -#endif +static int __init rmem_swiotlb_setup(struct reserved_mem *rmem) +{ + unsigned long node = rmem->fdt_node; + + if (of_get_flat_dt_prop(node, "reusable", NULL) || + of_get_flat_dt_prop(node, "linux,cma-default", NULL) || + of_get_flat_dt_prop(node, "linux,dma-default", NULL) || + of_get_flat_dt_prop(node, "no-map", NULL)) + return -EINVAL; + + if (PageHighMem(pfn_to_page(PHYS_PFN(rmem->base)))) { + pr_err("Restricted DMA pool must be accessible within the linear mapping."); + return -EINVAL; + } + + rmem->ops = &rmem_swiotlb_ops; + pr_info("Reserved memory: created restricted DMA pool at %pa, size %ld MiB\n", + &rmem->base, (unsigned long)rmem->size / SZ_1M); + return 0; +} + +RESERVEDMEM_OF_DECLARE(dma, "restricted-dma-pool", rmem_swiotlb_setup); +#endif /* CONFIG_DMA_RESTRICTED_POOL */ diff --git a/kernel/dma/virt.c b/kernel/dma/virt.c deleted file mode 100644 index ebe128833af7..000000000000 --- a/kernel/dma/virt.c +++ /dev/null @@ -1,59 +0,0 @@ -// SPDX-License-Identifier: GPL-2.0 -/* - * DMA operations that map to virtual addresses without flushing memory. - */ -#include <linux/export.h> -#include <linux/mm.h> -#include <linux/dma-mapping.h> -#include <linux/scatterlist.h> - -static void *dma_virt_alloc(struct device *dev, size_t size, - dma_addr_t *dma_handle, gfp_t gfp, - unsigned long attrs) -{ - void *ret; - - ret = (void *)__get_free_pages(gfp | __GFP_ZERO, get_order(size)); - if (ret) - *dma_handle = (uintptr_t)ret; - return ret; -} - -static void dma_virt_free(struct device *dev, size_t size, - void *cpu_addr, dma_addr_t dma_addr, - unsigned long attrs) -{ - free_pages((unsigned long)cpu_addr, get_order(size)); -} - -static dma_addr_t dma_virt_map_page(struct device *dev, struct page *page, - unsigned long offset, size_t size, - enum dma_data_direction dir, - unsigned long attrs) -{ - return (uintptr_t)(page_address(page) + offset); -} - -static int dma_virt_map_sg(struct device *dev, struct scatterlist *sgl, - int nents, enum dma_data_direction dir, - unsigned long attrs) -{ - int i; - struct scatterlist *sg; - - for_each_sg(sgl, sg, nents, i) { - BUG_ON(!sg_page(sg)); - sg_dma_address(sg) = (uintptr_t)sg_virt(sg); - sg_dma_len(sg) = sg->length; - } - - return nents; -} - -const struct dma_map_ops dma_virt_ops = { - .alloc = dma_virt_alloc, - .free = dma_virt_free, - .map_page = dma_virt_map_page, - .map_sg = dma_virt_map_sg, -}; -EXPORT_SYMBOL(dma_virt_ops); |