aboutsummaryrefslogtreecommitdiffstats
path: root/kernel/futex/requeue.c
diff options
context:
space:
mode:
Diffstat (limited to 'kernel/futex/requeue.c')
-rw-r--r--kernel/futex/requeue.c897
1 files changed, 897 insertions, 0 deletions
diff --git a/kernel/futex/requeue.c b/kernel/futex/requeue.c
new file mode 100644
index 000000000000..cba8b1a6a4cc
--- /dev/null
+++ b/kernel/futex/requeue.c
@@ -0,0 +1,897 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+
+#include <linux/sched/signal.h>
+
+#include "futex.h"
+#include "../locking/rtmutex_common.h"
+
+/*
+ * On PREEMPT_RT, the hash bucket lock is a 'sleeping' spinlock with an
+ * underlying rtmutex. The task which is about to be requeued could have
+ * just woken up (timeout, signal). After the wake up the task has to
+ * acquire hash bucket lock, which is held by the requeue code. As a task
+ * can only be blocked on _ONE_ rtmutex at a time, the proxy lock blocking
+ * and the hash bucket lock blocking would collide and corrupt state.
+ *
+ * On !PREEMPT_RT this is not a problem and everything could be serialized
+ * on hash bucket lock, but aside of having the benefit of common code,
+ * this allows to avoid doing the requeue when the task is already on the
+ * way out and taking the hash bucket lock of the original uaddr1 when the
+ * requeue has been completed.
+ *
+ * The following state transitions are valid:
+ *
+ * On the waiter side:
+ * Q_REQUEUE_PI_NONE -> Q_REQUEUE_PI_IGNORE
+ * Q_REQUEUE_PI_IN_PROGRESS -> Q_REQUEUE_PI_WAIT
+ *
+ * On the requeue side:
+ * Q_REQUEUE_PI_NONE -> Q_REQUEUE_PI_INPROGRESS
+ * Q_REQUEUE_PI_IN_PROGRESS -> Q_REQUEUE_PI_DONE/LOCKED
+ * Q_REQUEUE_PI_IN_PROGRESS -> Q_REQUEUE_PI_NONE (requeue failed)
+ * Q_REQUEUE_PI_WAIT -> Q_REQUEUE_PI_DONE/LOCKED
+ * Q_REQUEUE_PI_WAIT -> Q_REQUEUE_PI_IGNORE (requeue failed)
+ *
+ * The requeue side ignores a waiter with state Q_REQUEUE_PI_IGNORE as this
+ * signals that the waiter is already on the way out. It also means that
+ * the waiter is still on the 'wait' futex, i.e. uaddr1.
+ *
+ * The waiter side signals early wakeup to the requeue side either through
+ * setting state to Q_REQUEUE_PI_IGNORE or to Q_REQUEUE_PI_WAIT depending
+ * on the current state. In case of Q_REQUEUE_PI_IGNORE it can immediately
+ * proceed to take the hash bucket lock of uaddr1. If it set state to WAIT,
+ * which means the wakeup is interleaving with a requeue in progress it has
+ * to wait for the requeue side to change the state. Either to DONE/LOCKED
+ * or to IGNORE. DONE/LOCKED means the waiter q is now on the uaddr2 futex
+ * and either blocked (DONE) or has acquired it (LOCKED). IGNORE is set by
+ * the requeue side when the requeue attempt failed via deadlock detection
+ * and therefore the waiter q is still on the uaddr1 futex.
+ */
+enum {
+ Q_REQUEUE_PI_NONE = 0,
+ Q_REQUEUE_PI_IGNORE,
+ Q_REQUEUE_PI_IN_PROGRESS,
+ Q_REQUEUE_PI_WAIT,
+ Q_REQUEUE_PI_DONE,
+ Q_REQUEUE_PI_LOCKED,
+};
+
+const struct futex_q futex_q_init = {
+ /* list gets initialized in futex_queue()*/
+ .key = FUTEX_KEY_INIT,
+ .bitset = FUTEX_BITSET_MATCH_ANY,
+ .requeue_state = ATOMIC_INIT(Q_REQUEUE_PI_NONE),
+};
+
+/**
+ * requeue_futex() - Requeue a futex_q from one hb to another
+ * @q: the futex_q to requeue
+ * @hb1: the source hash_bucket
+ * @hb2: the target hash_bucket
+ * @key2: the new key for the requeued futex_q
+ */
+static inline
+void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
+ struct futex_hash_bucket *hb2, union futex_key *key2)
+{
+
+ /*
+ * If key1 and key2 hash to the same bucket, no need to
+ * requeue.
+ */
+ if (likely(&hb1->chain != &hb2->chain)) {
+ plist_del(&q->list, &hb1->chain);
+ futex_hb_waiters_dec(hb1);
+ futex_hb_waiters_inc(hb2);
+ plist_add(&q->list, &hb2->chain);
+ q->lock_ptr = &hb2->lock;
+ }
+ q->key = *key2;
+}
+
+static inline bool futex_requeue_pi_prepare(struct futex_q *q,
+ struct futex_pi_state *pi_state)
+{
+ int old, new;
+
+ /*
+ * Set state to Q_REQUEUE_PI_IN_PROGRESS unless an early wakeup has
+ * already set Q_REQUEUE_PI_IGNORE to signal that requeue should
+ * ignore the waiter.
+ */
+ old = atomic_read_acquire(&q->requeue_state);
+ do {
+ if (old == Q_REQUEUE_PI_IGNORE)
+ return false;
+
+ /*
+ * futex_proxy_trylock_atomic() might have set it to
+ * IN_PROGRESS and a interleaved early wake to WAIT.
+ *
+ * It was considered to have an extra state for that
+ * trylock, but that would just add more conditionals
+ * all over the place for a dubious value.
+ */
+ if (old != Q_REQUEUE_PI_NONE)
+ break;
+
+ new = Q_REQUEUE_PI_IN_PROGRESS;
+ } while (!atomic_try_cmpxchg(&q->requeue_state, &old, new));
+
+ q->pi_state = pi_state;
+ return true;
+}
+
+static inline void futex_requeue_pi_complete(struct futex_q *q, int locked)
+{
+ int old, new;
+
+ old = atomic_read_acquire(&q->requeue_state);
+ do {
+ if (old == Q_REQUEUE_PI_IGNORE)
+ return;
+
+ if (locked >= 0) {
+ /* Requeue succeeded. Set DONE or LOCKED */
+ WARN_ON_ONCE(old != Q_REQUEUE_PI_IN_PROGRESS &&
+ old != Q_REQUEUE_PI_WAIT);
+ new = Q_REQUEUE_PI_DONE + locked;
+ } else if (old == Q_REQUEUE_PI_IN_PROGRESS) {
+ /* Deadlock, no early wakeup interleave */
+ new = Q_REQUEUE_PI_NONE;
+ } else {
+ /* Deadlock, early wakeup interleave. */
+ WARN_ON_ONCE(old != Q_REQUEUE_PI_WAIT);
+ new = Q_REQUEUE_PI_IGNORE;
+ }
+ } while (!atomic_try_cmpxchg(&q->requeue_state, &old, new));
+
+#ifdef CONFIG_PREEMPT_RT
+ /* If the waiter interleaved with the requeue let it know */
+ if (unlikely(old == Q_REQUEUE_PI_WAIT))
+ rcuwait_wake_up(&q->requeue_wait);
+#endif
+}
+
+static inline int futex_requeue_pi_wakeup_sync(struct futex_q *q)
+{
+ int old, new;
+
+ old = atomic_read_acquire(&q->requeue_state);
+ do {
+ /* Is requeue done already? */
+ if (old >= Q_REQUEUE_PI_DONE)
+ return old;
+
+ /*
+ * If not done, then tell the requeue code to either ignore
+ * the waiter or to wake it up once the requeue is done.
+ */
+ new = Q_REQUEUE_PI_WAIT;
+ if (old == Q_REQUEUE_PI_NONE)
+ new = Q_REQUEUE_PI_IGNORE;
+ } while (!atomic_try_cmpxchg(&q->requeue_state, &old, new));
+
+ /* If the requeue was in progress, wait for it to complete */
+ if (old == Q_REQUEUE_PI_IN_PROGRESS) {
+#ifdef CONFIG_PREEMPT_RT
+ rcuwait_wait_event(&q->requeue_wait,
+ atomic_read(&q->requeue_state) != Q_REQUEUE_PI_WAIT,
+ TASK_UNINTERRUPTIBLE);
+#else
+ (void)atomic_cond_read_relaxed(&q->requeue_state, VAL != Q_REQUEUE_PI_WAIT);
+#endif
+ }
+
+ /*
+ * Requeue is now either prohibited or complete. Reread state
+ * because during the wait above it might have changed. Nothing
+ * will modify q->requeue_state after this point.
+ */
+ return atomic_read(&q->requeue_state);
+}
+
+/**
+ * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
+ * @q: the futex_q
+ * @key: the key of the requeue target futex
+ * @hb: the hash_bucket of the requeue target futex
+ *
+ * During futex_requeue, with requeue_pi=1, it is possible to acquire the
+ * target futex if it is uncontended or via a lock steal.
+ *
+ * 1) Set @q::key to the requeue target futex key so the waiter can detect
+ * the wakeup on the right futex.
+ *
+ * 2) Dequeue @q from the hash bucket.
+ *
+ * 3) Set @q::rt_waiter to NULL so the woken up task can detect atomic lock
+ * acquisition.
+ *
+ * 4) Set the q->lock_ptr to the requeue target hb->lock for the case that
+ * the waiter has to fixup the pi state.
+ *
+ * 5) Complete the requeue state so the waiter can make progress. After
+ * this point the waiter task can return from the syscall immediately in
+ * case that the pi state does not have to be fixed up.
+ *
+ * 6) Wake the waiter task.
+ *
+ * Must be called with both q->lock_ptr and hb->lock held.
+ */
+static inline
+void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
+ struct futex_hash_bucket *hb)
+{
+ q->key = *key;
+
+ __futex_unqueue(q);
+
+ WARN_ON(!q->rt_waiter);
+ q->rt_waiter = NULL;
+
+ q->lock_ptr = &hb->lock;
+
+ /* Signal locked state to the waiter */
+ futex_requeue_pi_complete(q, 1);
+ wake_up_state(q->task, TASK_NORMAL);
+}
+
+/**
+ * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
+ * @pifutex: the user address of the to futex
+ * @hb1: the from futex hash bucket, must be locked by the caller
+ * @hb2: the to futex hash bucket, must be locked by the caller
+ * @key1: the from futex key
+ * @key2: the to futex key
+ * @ps: address to store the pi_state pointer
+ * @exiting: Pointer to store the task pointer of the owner task
+ * which is in the middle of exiting
+ * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
+ *
+ * Try and get the lock on behalf of the top waiter if we can do it atomically.
+ * Wake the top waiter if we succeed. If the caller specified set_waiters,
+ * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
+ * hb1 and hb2 must be held by the caller.
+ *
+ * @exiting is only set when the return value is -EBUSY. If so, this holds
+ * a refcount on the exiting task on return and the caller needs to drop it
+ * after waiting for the exit to complete.
+ *
+ * Return:
+ * - 0 - failed to acquire the lock atomically;
+ * - >0 - acquired the lock, return value is vpid of the top_waiter
+ * - <0 - error
+ */
+static int
+futex_proxy_trylock_atomic(u32 __user *pifutex, struct futex_hash_bucket *hb1,
+ struct futex_hash_bucket *hb2, union futex_key *key1,
+ union futex_key *key2, struct futex_pi_state **ps,
+ struct task_struct **exiting, int set_waiters)
+{
+ struct futex_q *top_waiter = NULL;
+ u32 curval;
+ int ret;
+
+ if (futex_get_value_locked(&curval, pifutex))
+ return -EFAULT;
+
+ if (unlikely(should_fail_futex(true)))
+ return -EFAULT;
+
+ /*
+ * Find the top_waiter and determine if there are additional waiters.
+ * If the caller intends to requeue more than 1 waiter to pifutex,
+ * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
+ * as we have means to handle the possible fault. If not, don't set
+ * the bit unnecessarily as it will force the subsequent unlock to enter
+ * the kernel.
+ */
+ top_waiter = futex_top_waiter(hb1, key1);
+
+ /* There are no waiters, nothing for us to do. */
+ if (!top_waiter)
+ return 0;
+
+ /*
+ * Ensure that this is a waiter sitting in futex_wait_requeue_pi()
+ * and waiting on the 'waitqueue' futex which is always !PI.
+ */
+ if (!top_waiter->rt_waiter || top_waiter->pi_state)
+ return -EINVAL;
+
+ /* Ensure we requeue to the expected futex. */
+ if (!futex_match(top_waiter->requeue_pi_key, key2))
+ return -EINVAL;
+
+ /* Ensure that this does not race against an early wakeup */
+ if (!futex_requeue_pi_prepare(top_waiter, NULL))
+ return -EAGAIN;
+
+ /*
+ * Try to take the lock for top_waiter and set the FUTEX_WAITERS bit
+ * in the contended case or if @set_waiters is true.
+ *
+ * In the contended case PI state is attached to the lock owner. If
+ * the user space lock can be acquired then PI state is attached to
+ * the new owner (@top_waiter->task) when @set_waiters is true.
+ */
+ ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
+ exiting, set_waiters);
+ if (ret == 1) {
+ /*
+ * Lock was acquired in user space and PI state was
+ * attached to @top_waiter->task. That means state is fully
+ * consistent and the waiter can return to user space
+ * immediately after the wakeup.
+ */
+ requeue_pi_wake_futex(top_waiter, key2, hb2);
+ } else if (ret < 0) {
+ /* Rewind top_waiter::requeue_state */
+ futex_requeue_pi_complete(top_waiter, ret);
+ } else {
+ /*
+ * futex_lock_pi_atomic() did not acquire the user space
+ * futex, but managed to establish the proxy lock and pi
+ * state. top_waiter::requeue_state cannot be fixed up here
+ * because the waiter is not enqueued on the rtmutex
+ * yet. This is handled at the callsite depending on the
+ * result of rt_mutex_start_proxy_lock() which is
+ * guaranteed to be reached with this function returning 0.
+ */
+ }
+ return ret;
+}
+
+/**
+ * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
+ * @uaddr1: source futex user address
+ * @flags: futex flags (FLAGS_SHARED, etc.)
+ * @uaddr2: target futex user address
+ * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
+ * @nr_requeue: number of waiters to requeue (0-INT_MAX)
+ * @cmpval: @uaddr1 expected value (or %NULL)
+ * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
+ * pi futex (pi to pi requeue is not supported)
+ *
+ * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
+ * uaddr2 atomically on behalf of the top waiter.
+ *
+ * Return:
+ * - >=0 - on success, the number of tasks requeued or woken;
+ * - <0 - on error
+ */
+int futex_requeue(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
+ int nr_wake, int nr_requeue, u32 *cmpval, int requeue_pi)
+{
+ union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
+ int task_count = 0, ret;
+ struct futex_pi_state *pi_state = NULL;
+ struct futex_hash_bucket *hb1, *hb2;
+ struct futex_q *this, *next;
+ DEFINE_WAKE_Q(wake_q);
+
+ if (nr_wake < 0 || nr_requeue < 0)
+ return -EINVAL;
+
+ /*
+ * When PI not supported: return -ENOSYS if requeue_pi is true,
+ * consequently the compiler knows requeue_pi is always false past
+ * this point which will optimize away all the conditional code
+ * further down.
+ */
+ if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
+ return -ENOSYS;
+
+ if (requeue_pi) {
+ /*
+ * Requeue PI only works on two distinct uaddrs. This
+ * check is only valid for private futexes. See below.
+ */
+ if (uaddr1 == uaddr2)
+ return -EINVAL;
+
+ /*
+ * futex_requeue() allows the caller to define the number
+ * of waiters to wake up via the @nr_wake argument. With
+ * REQUEUE_PI, waking up more than one waiter is creating
+ * more problems than it solves. Waking up a waiter makes
+ * only sense if the PI futex @uaddr2 is uncontended as
+ * this allows the requeue code to acquire the futex
+ * @uaddr2 before waking the waiter. The waiter can then
+ * return to user space without further action. A secondary
+ * wakeup would just make the futex_wait_requeue_pi()
+ * handling more complex, because that code would have to
+ * look up pi_state and do more or less all the handling
+ * which the requeue code has to do for the to be requeued
+ * waiters. So restrict the number of waiters to wake to
+ * one, and only wake it up when the PI futex is
+ * uncontended. Otherwise requeue it and let the unlock of
+ * the PI futex handle the wakeup.
+ *
+ * All REQUEUE_PI users, e.g. pthread_cond_signal() and
+ * pthread_cond_broadcast() must use nr_wake=1.
+ */
+ if (nr_wake != 1)
+ return -EINVAL;
+
+ /*
+ * requeue_pi requires a pi_state, try to allocate it now
+ * without any locks in case it fails.
+ */
+ if (refill_pi_state_cache())
+ return -ENOMEM;
+ }
+
+retry:
+ ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
+ if (unlikely(ret != 0))
+ return ret;
+ ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
+ requeue_pi ? FUTEX_WRITE : FUTEX_READ);
+ if (unlikely(ret != 0))
+ return ret;
+
+ /*
+ * The check above which compares uaddrs is not sufficient for
+ * shared futexes. We need to compare the keys:
+ */
+ if (requeue_pi && futex_match(&key1, &key2))
+ return -EINVAL;
+
+ hb1 = futex_hash(&key1);
+ hb2 = futex_hash(&key2);
+
+retry_private:
+ futex_hb_waiters_inc(hb2);
+ double_lock_hb(hb1, hb2);
+
+ if (likely(cmpval != NULL)) {
+ u32 curval;
+
+ ret = futex_get_value_locked(&curval, uaddr1);
+
+ if (unlikely(ret)) {
+ double_unlock_hb(hb1, hb2);
+ futex_hb_waiters_dec(hb2);
+
+ ret = get_user(curval, uaddr1);
+ if (ret)
+ return ret;
+
+ if (!(flags & FLAGS_SHARED))
+ goto retry_private;
+
+ goto retry;
+ }
+ if (curval != *cmpval) {
+ ret = -EAGAIN;
+ goto out_unlock;
+ }
+ }
+
+ if (requeue_pi) {
+ struct task_struct *exiting = NULL;
+
+ /*
+ * Attempt to acquire uaddr2 and wake the top waiter. If we
+ * intend to requeue waiters, force setting the FUTEX_WAITERS
+ * bit. We force this here where we are able to easily handle
+ * faults rather in the requeue loop below.
+ *
+ * Updates topwaiter::requeue_state if a top waiter exists.
+ */
+ ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
+ &key2, &pi_state,
+ &exiting, nr_requeue);
+
+ /*
+ * At this point the top_waiter has either taken uaddr2 or
+ * is waiting on it. In both cases pi_state has been
+ * established and an initial refcount on it. In case of an
+ * error there's nothing.
+ *
+ * The top waiter's requeue_state is up to date:
+ *
+ * - If the lock was acquired atomically (ret == 1), then
+ * the state is Q_REQUEUE_PI_LOCKED.
+ *
+ * The top waiter has been dequeued and woken up and can
+ * return to user space immediately. The kernel/user
+ * space state is consistent. In case that there must be
+ * more waiters requeued the WAITERS bit in the user
+ * space futex is set so the top waiter task has to go
+ * into the syscall slowpath to unlock the futex. This
+ * will block until this requeue operation has been
+ * completed and the hash bucket locks have been
+ * dropped.
+ *
+ * - If the trylock failed with an error (ret < 0) then
+ * the state is either Q_REQUEUE_PI_NONE, i.e. "nothing
+ * happened", or Q_REQUEUE_PI_IGNORE when there was an
+ * interleaved early wakeup.
+ *
+ * - If the trylock did not succeed (ret == 0) then the
+ * state is either Q_REQUEUE_PI_IN_PROGRESS or
+ * Q_REQUEUE_PI_WAIT if an early wakeup interleaved.
+ * This will be cleaned up in the loop below, which
+ * cannot fail because futex_proxy_trylock_atomic() did
+ * the same sanity checks for requeue_pi as the loop
+ * below does.
+ */
+ switch (ret) {
+ case 0:
+ /* We hold a reference on the pi state. */
+ break;
+
+ case 1:
+ /*
+ * futex_proxy_trylock_atomic() acquired the user space
+ * futex. Adjust task_count.
+ */
+ task_count++;
+ ret = 0;
+ break;
+
+ /*
+ * If the above failed, then pi_state is NULL and
+ * waiter::requeue_state is correct.
+ */
+ case -EFAULT:
+ double_unlock_hb(hb1, hb2);
+ futex_hb_waiters_dec(hb2);
+ ret = fault_in_user_writeable(uaddr2);
+ if (!ret)
+ goto retry;
+ return ret;
+ case -EBUSY:
+ case -EAGAIN:
+ /*
+ * Two reasons for this:
+ * - EBUSY: Owner is exiting and we just wait for the
+ * exit to complete.
+ * - EAGAIN: The user space value changed.
+ */
+ double_unlock_hb(hb1, hb2);
+ futex_hb_waiters_dec(hb2);
+ /*
+ * Handle the case where the owner is in the middle of
+ * exiting. Wait for the exit to complete otherwise
+ * this task might loop forever, aka. live lock.
+ */
+ wait_for_owner_exiting(ret, exiting);
+ cond_resched();
+ goto retry;
+ default:
+ goto out_unlock;
+ }
+ }
+
+ plist_for_each_entry_safe(this, next, &hb1->chain, list) {
+ if (task_count - nr_wake >= nr_requeue)
+ break;
+
+ if (!futex_match(&this->key, &key1))
+ continue;
+
+ /*
+ * FUTEX_WAIT_REQUEUE_PI and FUTEX_CMP_REQUEUE_PI should always
+ * be paired with each other and no other futex ops.
+ *
+ * We should never be requeueing a futex_q with a pi_state,
+ * which is awaiting a futex_unlock_pi().
+ */
+ if ((requeue_pi && !this->rt_waiter) ||
+ (!requeue_pi && this->rt_waiter) ||
+ this->pi_state) {
+ ret = -EINVAL;
+ break;
+ }
+
+ /* Plain futexes just wake or requeue and are done */
+ if (!requeue_pi) {
+ if (++task_count <= nr_wake)
+ futex_wake_mark(&wake_q, this);
+ else
+ requeue_futex(this, hb1, hb2, &key2);
+ continue;
+ }
+
+ /* Ensure we requeue to the expected futex for requeue_pi. */
+ if (!futex_match(this->requeue_pi_key, &key2)) {
+ ret = -EINVAL;
+ break;
+ }
+
+ /*
+ * Requeue nr_requeue waiters and possibly one more in the case
+ * of requeue_pi if we couldn't acquire the lock atomically.
+ *
+ * Prepare the waiter to take the rt_mutex. Take a refcount
+ * on the pi_state and store the pointer in the futex_q
+ * object of the waiter.
+ */
+ get_pi_state(pi_state);
+
+ /* Don't requeue when the waiter is already on the way out. */
+ if (!futex_requeue_pi_prepare(this, pi_state)) {
+ /*
+ * Early woken waiter signaled that it is on the
+ * way out. Drop the pi_state reference and try the
+ * next waiter. @this->pi_state is still NULL.
+ */
+ put_pi_state(pi_state);
+ continue;
+ }
+
+ ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
+ this->rt_waiter,
+ this->task);
+
+ if (ret == 1) {
+ /*
+ * We got the lock. We do neither drop the refcount
+ * on pi_state nor clear this->pi_state because the
+ * waiter needs the pi_state for cleaning up the
+ * user space value. It will drop the refcount
+ * after doing so. this::requeue_state is updated
+ * in the wakeup as well.
+ */
+ requeue_pi_wake_futex(this, &key2, hb2);
+ task_count++;
+ } else if (!ret) {
+ /* Waiter is queued, move it to hb2 */
+ requeue_futex(this, hb1, hb2, &key2);
+ futex_requeue_pi_complete(this, 0);
+ task_count++;
+ } else {
+ /*
+ * rt_mutex_start_proxy_lock() detected a potential
+ * deadlock when we tried to queue that waiter.
+ * Drop the pi_state reference which we took above
+ * and remove the pointer to the state from the
+ * waiters futex_q object.
+ */
+ this->pi_state = NULL;
+ put_pi_state(pi_state);
+ futex_requeue_pi_complete(this, ret);
+ /*
+ * We stop queueing more waiters and let user space
+ * deal with the mess.
+ */
+ break;
+ }
+ }
+
+ /*
+ * We took an extra initial reference to the pi_state in
+ * futex_proxy_trylock_atomic(). We need to drop it here again.
+ */
+ put_pi_state(pi_state);
+
+out_unlock:
+ double_unlock_hb(hb1, hb2);
+ wake_up_q(&wake_q);
+ futex_hb_waiters_dec(hb2);
+ return ret ? ret : task_count;
+}
+
+/**
+ * handle_early_requeue_pi_wakeup() - Handle early wakeup on the initial futex
+ * @hb: the hash_bucket futex_q was original enqueued on
+ * @q: the futex_q woken while waiting to be requeued
+ * @timeout: the timeout associated with the wait (NULL if none)
+ *
+ * Determine the cause for the early wakeup.
+ *
+ * Return:
+ * -EWOULDBLOCK or -ETIMEDOUT or -ERESTARTNOINTR
+ */
+static inline
+int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
+ struct futex_q *q,
+ struct hrtimer_sleeper *timeout)
+{
+ int ret;
+
+ /*
+ * With the hb lock held, we avoid races while we process the wakeup.
+ * We only need to hold hb (and not hb2) to ensure atomicity as the
+ * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
+ * It can't be requeued from uaddr2 to something else since we don't
+ * support a PI aware source futex for requeue.
+ */
+ WARN_ON_ONCE(&hb->lock != q->lock_ptr);
+
+ /*
+ * We were woken prior to requeue by a timeout or a signal.
+ * Unqueue the futex_q and determine which it was.
+ */
+ plist_del(&q->list, &hb->chain);
+ futex_hb_waiters_dec(hb);
+
+ /* Handle spurious wakeups gracefully */
+ ret = -EWOULDBLOCK;
+ if (timeout && !timeout->task)
+ ret = -ETIMEDOUT;
+ else if (signal_pending(current))
+ ret = -ERESTARTNOINTR;
+ return ret;
+}
+
+/**
+ * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
+ * @uaddr: the futex we initially wait on (non-pi)
+ * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
+ * the same type, no requeueing from private to shared, etc.
+ * @val: the expected value of uaddr
+ * @abs_time: absolute timeout
+ * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
+ * @uaddr2: the pi futex we will take prior to returning to user-space
+ *
+ * The caller will wait on uaddr and will be requeued by futex_requeue() to
+ * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
+ * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
+ * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
+ * without one, the pi logic would not know which task to boost/deboost, if
+ * there was a need to.
+ *
+ * We call schedule in futex_wait_queue() when we enqueue and return there
+ * via the following--
+ * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
+ * 2) wakeup on uaddr2 after a requeue
+ * 3) signal
+ * 4) timeout
+ *
+ * If 3, cleanup and return -ERESTARTNOINTR.
+ *
+ * If 2, we may then block on trying to take the rt_mutex and return via:
+ * 5) successful lock
+ * 6) signal
+ * 7) timeout
+ * 8) other lock acquisition failure
+ *
+ * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
+ *
+ * If 4 or 7, we cleanup and return with -ETIMEDOUT.
+ *
+ * Return:
+ * - 0 - On success;
+ * - <0 - On error
+ */
+int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
+ u32 val, ktime_t *abs_time, u32 bitset,
+ u32 __user *uaddr2)
+{
+ struct hrtimer_sleeper timeout, *to;
+ struct rt_mutex_waiter rt_waiter;
+ struct futex_hash_bucket *hb;
+ union futex_key key2 = FUTEX_KEY_INIT;
+ struct futex_q q = futex_q_init;
+ struct rt_mutex_base *pi_mutex;
+ int res, ret;
+
+ if (!IS_ENABLED(CONFIG_FUTEX_PI))
+ return -ENOSYS;
+
+ if (uaddr == uaddr2)
+ return -EINVAL;
+
+ if (!bitset)
+ return -EINVAL;
+
+ to = futex_setup_timer(abs_time, &timeout, flags,
+ current->timer_slack_ns);
+
+ /*
+ * The waiter is allocated on our stack, manipulated by the requeue
+ * code while we sleep on uaddr.
+ */
+ rt_mutex_init_waiter(&rt_waiter);
+
+ ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
+ if (unlikely(ret != 0))
+ goto out;
+
+ q.bitset = bitset;
+ q.rt_waiter = &rt_waiter;
+ q.requeue_pi_key = &key2;
+
+ /*
+ * Prepare to wait on uaddr. On success, it holds hb->lock and q
+ * is initialized.
+ */
+ ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
+ if (ret)
+ goto out;
+
+ /*
+ * The check above which compares uaddrs is not sufficient for
+ * shared futexes. We need to compare the keys:
+ */
+ if (futex_match(&q.key, &key2)) {
+ futex_q_unlock(hb);
+ ret = -EINVAL;
+ goto out;
+ }
+
+ /* Queue the futex_q, drop the hb lock, wait for wakeup. */
+ futex_wait_queue(hb, &q, to);
+
+ switch (futex_requeue_pi_wakeup_sync(&q)) {
+ case Q_REQUEUE_PI_IGNORE:
+ /* The waiter is still on uaddr1 */
+ spin_lock(&hb->lock);
+ ret = handle_early_requeue_pi_wakeup(hb, &q, to);
+ spin_unlock(&hb->lock);
+ break;
+
+ case Q_REQUEUE_PI_LOCKED:
+ /* The requeue acquired the lock */
+ if (q.pi_state && (q.pi_state->owner != current)) {
+ spin_lock(q.lock_ptr);
+ ret = fixup_pi_owner(uaddr2, &q, true);
+ /*
+ * Drop the reference to the pi state which the
+ * requeue_pi() code acquired for us.
+ */
+ put_pi_state(q.pi_state);
+ spin_unlock(q.lock_ptr);
+ /*
+ * Adjust the return value. It's either -EFAULT or
+ * success (1) but the caller expects 0 for success.
+ */
+ ret = ret < 0 ? ret : 0;
+ }
+ break;
+
+ case Q_REQUEUE_PI_DONE:
+ /* Requeue completed. Current is 'pi_blocked_on' the rtmutex */
+ pi_mutex = &q.pi_state->pi_mutex;
+ ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
+
+ /* Current is not longer pi_blocked_on */
+ spin_lock(q.lock_ptr);
+ if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
+ ret = 0;
+
+ debug_rt_mutex_free_waiter(&rt_waiter);
+ /*
+ * Fixup the pi_state owner and possibly acquire the lock if we
+ * haven't already.
+ */
+ res = fixup_pi_owner(uaddr2, &q, !ret);
+ /*
+ * If fixup_pi_owner() returned an error, propagate that. If it
+ * acquired the lock, clear -ETIMEDOUT or -EINTR.
+ */
+ if (res)
+ ret = (res < 0) ? res : 0;
+
+ futex_unqueue_pi(&q);
+ spin_unlock(q.lock_ptr);
+
+ if (ret == -EINTR) {
+ /*
+ * We've already been requeued, but cannot restart
+ * by calling futex_lock_pi() directly. We could
+ * restart this syscall, but it would detect that
+ * the user space "val" changed and return
+ * -EWOULDBLOCK. Save the overhead of the restart
+ * and return -EWOULDBLOCK directly.
+ */
+ ret = -EWOULDBLOCK;
+ }
+ break;
+ default:
+ BUG();
+ }
+
+out:
+ if (to) {
+ hrtimer_cancel(&to->timer);
+ destroy_hrtimer_on_stack(&to->timer);
+ }
+ return ret;
+}
+