aboutsummaryrefslogtreecommitdiffstats
path: root/kernel/kprobes.c
diff options
context:
space:
mode:
Diffstat (limited to 'kernel/kprobes.c')
-rw-r--r--kernel/kprobes.c98
1 files changed, 98 insertions, 0 deletions
diff --git a/kernel/kprobes.c b/kernel/kprobes.c
index 287b263c9cb9..a0afaa79024e 100644
--- a/kernel/kprobes.c
+++ b/kernel/kprobes.c
@@ -1927,6 +1927,104 @@ unsigned long __weak arch_deref_entry_point(void *entry)
}
#ifdef CONFIG_KRETPROBES
+
+unsigned long __kretprobe_trampoline_handler(struct pt_regs *regs,
+ void *trampoline_address,
+ void *frame_pointer)
+{
+ struct kretprobe_instance *ri = NULL, *last = NULL;
+ struct hlist_head *head, empty_rp;
+ struct hlist_node *tmp;
+ unsigned long flags;
+ kprobe_opcode_t *correct_ret_addr = NULL;
+ bool skipped = false;
+
+ INIT_HLIST_HEAD(&empty_rp);
+ kretprobe_hash_lock(current, &head, &flags);
+
+ /*
+ * It is possible to have multiple instances associated with a given
+ * task either because multiple functions in the call path have
+ * return probes installed on them, and/or more than one
+ * return probe was registered for a target function.
+ *
+ * We can handle this because:
+ * - instances are always pushed into the head of the list
+ * - when multiple return probes are registered for the same
+ * function, the (chronologically) first instance's ret_addr
+ * will be the real return address, and all the rest will
+ * point to kretprobe_trampoline.
+ */
+ hlist_for_each_entry(ri, head, hlist) {
+ if (ri->task != current)
+ /* another task is sharing our hash bucket */
+ continue;
+ /*
+ * Return probes must be pushed on this hash list correct
+ * order (same as return order) so that it can be popped
+ * correctly. However, if we find it is pushed it incorrect
+ * order, this means we find a function which should not be
+ * probed, because the wrong order entry is pushed on the
+ * path of processing other kretprobe itself.
+ */
+ if (ri->fp != frame_pointer) {
+ if (!skipped)
+ pr_warn("kretprobe is stacked incorrectly. Trying to fixup.\n");
+ skipped = true;
+ continue;
+ }
+
+ correct_ret_addr = ri->ret_addr;
+ if (skipped)
+ pr_warn("%ps must be blacklisted because of incorrect kretprobe order\n",
+ ri->rp->kp.addr);
+
+ if (correct_ret_addr != trampoline_address)
+ /*
+ * This is the real return address. Any other
+ * instances associated with this task are for
+ * other calls deeper on the call stack
+ */
+ break;
+ }
+
+ kretprobe_assert(ri, (unsigned long)correct_ret_addr,
+ (unsigned long)trampoline_address);
+ last = ri;
+
+ hlist_for_each_entry_safe(ri, tmp, head, hlist) {
+ if (ri->task != current)
+ /* another task is sharing our hash bucket */
+ continue;
+ if (ri->fp != frame_pointer)
+ continue;
+
+ if (ri->rp && ri->rp->handler) {
+ struct kprobe *prev = kprobe_running();
+
+ __this_cpu_write(current_kprobe, &ri->rp->kp);
+ ri->ret_addr = correct_ret_addr;
+ ri->rp->handler(ri, regs);
+ __this_cpu_write(current_kprobe, prev);
+ }
+
+ recycle_rp_inst(ri, &empty_rp);
+
+ if (ri == last)
+ break;
+ }
+
+ kretprobe_hash_unlock(current, &flags);
+
+ hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
+ hlist_del(&ri->hlist);
+ kfree(ri);
+ }
+
+ return (unsigned long)correct_ret_addr;
+}
+NOKPROBE_SYMBOL(__kretprobe_trampoline_handler)
+
/*
* This kprobe pre_handler is registered with every kretprobe. When probe
* hits it will set up the return probe.