aboutsummaryrefslogtreecommitdiffstats
path: root/kernel/sched/cpupri.c
diff options
context:
space:
mode:
Diffstat (limited to 'kernel/sched/cpupri.c')
-rw-r--r--kernel/sched/cpupri.c209
1 files changed, 133 insertions, 76 deletions
diff --git a/kernel/sched/cpupri.c b/kernel/sched/cpupri.c
index 1a2719e1350a..a286e726eb4b 100644
--- a/kernel/sched/cpupri.c
+++ b/kernel/sched/cpupri.c
@@ -11,7 +11,7 @@
* This code tracks the priority of each CPU so that global migration
* decisions are easy to calculate. Each CPU can be in a state as follows:
*
- * (INVALID), IDLE, NORMAL, RT1, ... RT99
+ * (INVALID), NORMAL, RT1, ... RT99, HIGHER
*
* going from the lowest priority to the highest. CPUs in the INVALID state
* are not eligible for routing. The system maintains this state with
@@ -19,30 +19,112 @@
* in that class). Therefore a typical application without affinity
* restrictions can find a suitable CPU with O(1) complexity (e.g. two bit
* searches). For tasks with affinity restrictions, the algorithm has a
- * worst case complexity of O(min(102, nr_domcpus)), though the scenario that
+ * worst case complexity of O(min(101, nr_domcpus)), though the scenario that
* yields the worst case search is fairly contrived.
*/
-#include "sched.h"
-/* Convert between a 140 based task->prio, and our 102 based cpupri */
+/*
+ * p->rt_priority p->prio newpri cpupri
+ *
+ * -1 -1 (CPUPRI_INVALID)
+ *
+ * 99 0 (CPUPRI_NORMAL)
+ *
+ * 1 98 98 1
+ * ...
+ * 49 50 50 49
+ * 50 49 49 50
+ * ...
+ * 99 0 0 99
+ *
+ * 100 100 (CPUPRI_HIGHER)
+ */
static int convert_prio(int prio)
{
int cpupri;
- if (prio == CPUPRI_INVALID)
- cpupri = CPUPRI_INVALID;
- else if (prio == MAX_PRIO)
- cpupri = CPUPRI_IDLE;
- else if (prio >= MAX_RT_PRIO)
- cpupri = CPUPRI_NORMAL;
- else
- cpupri = MAX_RT_PRIO - prio + 1;
+ switch (prio) {
+ case CPUPRI_INVALID:
+ cpupri = CPUPRI_INVALID; /* -1 */
+ break;
+
+ case 0 ... 98:
+ cpupri = MAX_RT_PRIO-1 - prio; /* 1 ... 99 */
+ break;
+
+ case MAX_RT_PRIO-1:
+ cpupri = CPUPRI_NORMAL; /* 0 */
+ break;
+
+ case MAX_RT_PRIO:
+ cpupri = CPUPRI_HIGHER; /* 100 */
+ break;
+ }
return cpupri;
}
+static inline int __cpupri_find(struct cpupri *cp, struct task_struct *p,
+ struct cpumask *lowest_mask, int idx)
+{
+ struct cpupri_vec *vec = &cp->pri_to_cpu[idx];
+ int skip = 0;
+
+ if (!atomic_read(&(vec)->count))
+ skip = 1;
+ /*
+ * When looking at the vector, we need to read the counter,
+ * do a memory barrier, then read the mask.
+ *
+ * Note: This is still all racy, but we can deal with it.
+ * Ideally, we only want to look at masks that are set.
+ *
+ * If a mask is not set, then the only thing wrong is that we
+ * did a little more work than necessary.
+ *
+ * If we read a zero count but the mask is set, because of the
+ * memory barriers, that can only happen when the highest prio
+ * task for a run queue has left the run queue, in which case,
+ * it will be followed by a pull. If the task we are processing
+ * fails to find a proper place to go, that pull request will
+ * pull this task if the run queue is running at a lower
+ * priority.
+ */
+ smp_rmb();
+
+ /* Need to do the rmb for every iteration */
+ if (skip)
+ return 0;
+
+ if (cpumask_any_and(&p->cpus_mask, vec->mask) >= nr_cpu_ids)
+ return 0;
+
+ if (lowest_mask) {
+ cpumask_and(lowest_mask, &p->cpus_mask, vec->mask);
+
+ /*
+ * We have to ensure that we have at least one bit
+ * still set in the array, since the map could have
+ * been concurrently emptied between the first and
+ * second reads of vec->mask. If we hit this
+ * condition, simply act as though we never hit this
+ * priority level and continue on.
+ */
+ if (cpumask_empty(lowest_mask))
+ return 0;
+ }
+
+ return 1;
+}
+
+int cpupri_find(struct cpupri *cp, struct task_struct *p,
+ struct cpumask *lowest_mask)
+{
+ return cpupri_find_fitness(cp, p, lowest_mask, NULL);
+}
+
/**
- * cpupri_find - find the best (lowest-pri) CPU in the system
+ * cpupri_find_fitness - find the best (lowest-pri) CPU in the system
* @cp: The cpupri context
* @p: The task
* @lowest_mask: A mask to fill in with selected CPUs (or NULL)
@@ -58,84 +140,59 @@ static int convert_prio(int prio)
*
* Return: (int)bool - CPUs were found
*/
-int cpupri_find(struct cpupri *cp, struct task_struct *p,
+int cpupri_find_fitness(struct cpupri *cp, struct task_struct *p,
struct cpumask *lowest_mask,
bool (*fitness_fn)(struct task_struct *p, int cpu))
{
- int idx = 0;
int task_pri = convert_prio(p->prio);
+ int idx, cpu;
- BUG_ON(task_pri >= CPUPRI_NR_PRIORITIES);
+ WARN_ON_ONCE(task_pri >= CPUPRI_NR_PRIORITIES);
for (idx = 0; idx < task_pri; idx++) {
- struct cpupri_vec *vec = &cp->pri_to_cpu[idx];
- int skip = 0;
- if (!atomic_read(&(vec)->count))
- skip = 1;
- /*
- * When looking at the vector, we need to read the counter,
- * do a memory barrier, then read the mask.
- *
- * Note: This is still all racey, but we can deal with it.
- * Ideally, we only want to look at masks that are set.
- *
- * If a mask is not set, then the only thing wrong is that we
- * did a little more work than necessary.
- *
- * If we read a zero count but the mask is set, because of the
- * memory barriers, that can only happen when the highest prio
- * task for a run queue has left the run queue, in which case,
- * it will be followed by a pull. If the task we are processing
- * fails to find a proper place to go, that pull request will
- * pull this task if the run queue is running at a lower
- * priority.
- */
- smp_rmb();
-
- /* Need to do the rmb for every iteration */
- if (skip)
+ if (!__cpupri_find(cp, p, lowest_mask, idx))
continue;
- if (cpumask_any_and(p->cpus_ptr, vec->mask) >= nr_cpu_ids)
- continue;
+ if (!lowest_mask || !fitness_fn)
+ return 1;
- if (lowest_mask) {
- int cpu;
-
- cpumask_and(lowest_mask, p->cpus_ptr, vec->mask);
-
- /*
- * We have to ensure that we have at least one bit
- * still set in the array, since the map could have
- * been concurrently emptied between the first and
- * second reads of vec->mask. If we hit this
- * condition, simply act as though we never hit this
- * priority level and continue on.
- */
- if (cpumask_empty(lowest_mask))
- continue;
-
- if (!fitness_fn)
- return 1;
-
- /* Ensure the capacity of the CPUs fit the task */
- for_each_cpu(cpu, lowest_mask) {
- if (!fitness_fn(p, cpu))
- cpumask_clear_cpu(cpu, lowest_mask);
- }
-
- /*
- * If no CPU at the current priority can fit the task
- * continue looking
- */
- if (cpumask_empty(lowest_mask))
- continue;
+ /* Ensure the capacity of the CPUs fit the task */
+ for_each_cpu(cpu, lowest_mask) {
+ if (!fitness_fn(p, cpu))
+ cpumask_clear_cpu(cpu, lowest_mask);
}
+ /*
+ * If no CPU at the current priority can fit the task
+ * continue looking
+ */
+ if (cpumask_empty(lowest_mask))
+ continue;
+
return 1;
}
+ /*
+ * If we failed to find a fitting lowest_mask, kick off a new search
+ * but without taking into account any fitness criteria this time.
+ *
+ * This rule favours honouring priority over fitting the task in the
+ * correct CPU (Capacity Awareness being the only user now).
+ * The idea is that if a higher priority task can run, then it should
+ * run even if this ends up being on unfitting CPU.
+ *
+ * The cost of this trade-off is not entirely clear and will probably
+ * be good for some workloads and bad for others.
+ *
+ * The main idea here is that if some CPUs were over-committed, we try
+ * to spread which is what the scheduler traditionally did. Sys admins
+ * must do proper RT planning to avoid overloading the system if they
+ * really care.
+ */
+ if (fitness_fn)
+ return cpupri_find(cp, p, lowest_mask);
+
return 0;
}
@@ -143,7 +200,7 @@ int cpupri_find(struct cpupri *cp, struct task_struct *p,
* cpupri_set - update the CPU priority setting
* @cp: The cpupri context
* @cpu: The target CPU
- * @newpri: The priority (INVALID-RT99) to assign to this CPU
+ * @newpri: The priority (INVALID,NORMAL,RT1-RT99,HIGHER) to assign to this CPU
*
* Note: Assumes cpu_rq(cpu)->lock is locked
*