diff options
Diffstat (limited to 'kernel/sched/sched.h')
-rw-r--r-- | kernel/sched/sched.h | 1440 |
1 files changed, 1066 insertions, 374 deletions
diff --git a/kernel/sched/sched.h b/kernel/sched/sched.h index 9ea647835fd6..a4a20046e586 100644 --- a/kernel/sched/sched.h +++ b/kernel/sched/sched.h @@ -2,83 +2,99 @@ /* * Scheduler internal types and methods: */ -#include <linux/sched.h> +#ifndef _KERNEL_SCHED_SCHED_H +#define _KERNEL_SCHED_SCHED_H +#include <linux/sched/affinity.h> #include <linux/sched/autogroup.h> -#include <linux/sched/clock.h> -#include <linux/sched/coredump.h> #include <linux/sched/cpufreq.h> -#include <linux/sched/cputime.h> #include <linux/sched/deadline.h> -#include <linux/sched/debug.h> -#include <linux/sched/hotplug.h> -#include <linux/sched/idle.h> -#include <linux/sched/init.h> -#include <linux/sched/isolation.h> -#include <linux/sched/jobctl.h> +#include <linux/sched.h> #include <linux/sched/loadavg.h> #include <linux/sched/mm.h> -#include <linux/sched/nohz.h> -#include <linux/sched/numa_balancing.h> -#include <linux/sched/prio.h> -#include <linux/sched/rt.h> +#include <linux/sched/rseq_api.h> #include <linux/sched/signal.h> #include <linux/sched/smt.h> #include <linux/sched/stat.h> #include <linux/sched/sysctl.h> +#include <linux/sched/task_flags.h> #include <linux/sched/task.h> -#include <linux/sched/task_stack.h> #include <linux/sched/topology.h> -#include <linux/sched/user.h> -#include <linux/sched/wake_q.h> -#include <linux/sched/xacct.h> - -#include <uapi/linux/sched/types.h> -#include <linux/binfmts.h> -#include <linux/blkdev.h> -#include <linux/compat.h> +#include <linux/atomic.h> +#include <linux/bitmap.h> +#include <linux/bug.h> +#include <linux/capability.h> +#include <linux/cgroup_api.h> +#include <linux/cgroup.h> #include <linux/context_tracking.h> #include <linux/cpufreq.h> -#include <linux/cpuidle.h> -#include <linux/cpuset.h> +#include <linux/cpumask_api.h> #include <linux/ctype.h> -#include <linux/debugfs.h> -#include <linux/delayacct.h> -#include <linux/energy_model.h> -#include <linux/init_task.h> -#include <linux/kprobes.h> +#include <linux/file.h> +#include <linux/fs_api.h> +#include <linux/hrtimer_api.h> +#include <linux/interrupt.h> +#include <linux/irq_work.h> +#include <linux/jiffies.h> +#include <linux/kref_api.h> #include <linux/kthread.h> -#include <linux/membarrier.h> -#include <linux/migrate.h> -#include <linux/mmu_context.h> -#include <linux/nmi.h> +#include <linux/ktime_api.h> +#include <linux/lockdep_api.h> +#include <linux/lockdep.h> +#include <linux/minmax.h> +#include <linux/mm.h> +#include <linux/module.h> +#include <linux/mutex_api.h> +#include <linux/plist.h> +#include <linux/poll.h> #include <linux/proc_fs.h> -#include <linux/prefetch.h> #include <linux/profile.h> #include <linux/psi.h> -#include <linux/rcupdate_wait.h> -#include <linux/security.h> +#include <linux/rcupdate.h> +#include <linux/seq_file.h> +#include <linux/seqlock.h> +#include <linux/softirq.h> +#include <linux/spinlock_api.h> +#include <linux/static_key.h> #include <linux/stop_machine.h> -#include <linux/suspend.h> -#include <linux/swait.h> +#include <linux/syscalls_api.h> #include <linux/syscalls.h> -#include <linux/task_work.h> -#include <linux/tsacct_kern.h> +#include <linux/tick.h> +#include <linux/topology.h> +#include <linux/types.h> +#include <linux/u64_stats_sync_api.h> +#include <linux/uaccess.h> +#include <linux/wait_api.h> +#include <linux/wait_bit.h> +#include <linux/workqueue_api.h> + +#include <trace/events/power.h> +#include <trace/events/sched.h> + +#include "../workqueue_internal.h" + +#ifdef CONFIG_CGROUP_SCHED +#include <linux/cgroup.h> +#include <linux/psi.h> +#endif -#include <asm/tlb.h> +#ifdef CONFIG_SCHED_DEBUG +# include <linux/static_key.h> +#endif #ifdef CONFIG_PARAVIRT # include <asm/paravirt.h> +# include <asm/paravirt_api_clock.h> #endif #include "cpupri.h" #include "cpudeadline.h" #ifdef CONFIG_SCHED_DEBUG -# define SCHED_WARN_ON(x) WARN_ONCE(x, #x) +# define SCHED_WARN_ON(x) WARN_ONCE(x, #x) #else -# define SCHED_WARN_ON(x) ({ (void)(x), 0; }) +# define SCHED_WARN_ON(x) ({ (void)(x), 0; }) #endif struct rq; @@ -93,9 +109,17 @@ extern __read_mostly int scheduler_running; extern unsigned long calc_load_update; extern atomic_long_t calc_load_tasks; +extern unsigned int sysctl_sched_child_runs_first; + extern void calc_global_load_tick(struct rq *this_rq); extern long calc_load_fold_active(struct rq *this_rq, long adjust); +extern void call_trace_sched_update_nr_running(struct rq *rq, int count); + +extern unsigned int sysctl_sched_rt_period; +extern int sysctl_sched_rt_runtime; +extern int sched_rr_timeslice; + /* * Helpers for converting nanosecond timing to jiffy resolution */ @@ -118,7 +142,13 @@ extern long calc_load_fold_active(struct rq *this_rq, long adjust); #ifdef CONFIG_64BIT # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT) # define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT) -# define scale_load_down(w) ((w) >> SCHED_FIXEDPOINT_SHIFT) +# define scale_load_down(w) \ +({ \ + unsigned long __w = (w); \ + if (__w) \ + __w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \ + __w; \ +}) #else # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT) # define scale_load(w) (w) @@ -131,7 +161,7 @@ extern long calc_load_fold_active(struct rq *this_rq, long adjust); * scale_load() and scale_load_down(w) to convert between them. The * following must be true: * - * scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD + * scale_load(sched_prio_to_weight[NICE_TO_PRIO(0)-MAX_RT_PRIO]) == NICE_0_LOAD * */ #define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT) @@ -189,6 +219,19 @@ static inline int task_has_dl_policy(struct task_struct *p) #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT) +static inline void update_avg(u64 *avg, u64 sample) +{ + s64 diff = sample - *avg; + *avg += diff / 8; +} + +/* + * Shifting a value by an exponent greater *or equal* to the size of said value + * is UB; cap at size-1. + */ +#define shr_bound(val, shift) \ + (val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1)) + /* * !! For sched_setattr_nocheck() (kernel) only !! * @@ -203,6 +246,8 @@ static inline int task_has_dl_policy(struct task_struct *p) */ #define SCHED_FLAG_SUGOV 0x10000000 +#define SCHED_DL_FLAGS (SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV) + static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se) { #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL @@ -241,30 +286,6 @@ struct rt_bandwidth { void __dl_clear_params(struct task_struct *p); -/* - * To keep the bandwidth of -deadline tasks and groups under control - * we need some place where: - * - store the maximum -deadline bandwidth of the system (the group); - * - cache the fraction of that bandwidth that is currently allocated. - * - * This is all done in the data structure below. It is similar to the - * one used for RT-throttling (rt_bandwidth), with the main difference - * that, since here we are only interested in admission control, we - * do not decrease any runtime while the group "executes", neither we - * need a timer to replenish it. - * - * With respect to SMP, the bandwidth is given on a per-CPU basis, - * meaning that: - * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU; - * - dl_total_bw array contains, in the i-eth element, the currently - * allocated bandwidth on the i-eth CPU. - * Moreover, groups consume bandwidth on each CPU, while tasks only - * consume bandwidth on the CPU they're running on. - * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw - * that will be shown the next time the proc or cgroup controls will - * be red. It on its turn can be changed by writing on its own - * control. - */ struct dl_bandwidth { raw_spinlock_t dl_runtime_lock; u64 dl_runtime; @@ -276,36 +297,30 @@ static inline int dl_bandwidth_enabled(void) return sysctl_sched_rt_runtime >= 0; } +/* + * To keep the bandwidth of -deadline tasks under control + * we need some place where: + * - store the maximum -deadline bandwidth of each cpu; + * - cache the fraction of bandwidth that is currently allocated in + * each root domain; + * + * This is all done in the data structure below. It is similar to the + * one used for RT-throttling (rt_bandwidth), with the main difference + * that, since here we are only interested in admission control, we + * do not decrease any runtime while the group "executes", neither we + * need a timer to replenish it. + * + * With respect to SMP, bandwidth is given on a per root domain basis, + * meaning that: + * - bw (< 100%) is the deadline bandwidth of each CPU; + * - total_bw is the currently allocated bandwidth in each root domain; + */ struct dl_bw { raw_spinlock_t lock; u64 bw; u64 total_bw; }; -static inline void __dl_update(struct dl_bw *dl_b, s64 bw); - -static inline -void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus) -{ - dl_b->total_bw -= tsk_bw; - __dl_update(dl_b, (s32)tsk_bw / cpus); -} - -static inline -void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus) -{ - dl_b->total_bw += tsk_bw; - __dl_update(dl_b, -((s32)tsk_bw / cpus)); -} - -static inline -bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw) -{ - return dl_b->bw != -1 && - dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw; -} - -extern void dl_change_utilization(struct task_struct *p, u64 new_bw); extern void init_dl_bw(struct dl_bw *dl_b); extern int sched_dl_global_validate(void); extern void sched_dl_do_global(void); @@ -314,15 +329,11 @@ extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr); extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr); extern bool __checkparam_dl(const struct sched_attr *attr); extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr); -extern int dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed); extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial); -extern bool dl_cpu_busy(unsigned int cpu); +extern int dl_cpu_busy(int cpu, struct task_struct *p); #ifdef CONFIG_CGROUP_SCHED -#include <linux/cgroup.h> -#include <linux/psi.h> - struct cfs_rq; struct rt_rq; @@ -334,11 +345,12 @@ struct cfs_bandwidth { ktime_t period; u64 quota; u64 runtime; + u64 burst; + u64 runtime_snap; s64 hierarchical_quota; u8 idle; u8 period_active; - u8 distribute_running; u8 slack_started; struct hrtimer period_timer; struct hrtimer slack_timer; @@ -347,7 +359,9 @@ struct cfs_bandwidth { /* Statistics: */ int nr_periods; int nr_throttled; + int nr_burst; u64 throttled_time; + u64 burst_time; #endif }; @@ -362,6 +376,9 @@ struct task_group { struct cfs_rq **cfs_rq; unsigned long shares; + /* A positive value indicates that this is a SCHED_IDLE group. */ + int idle; + #ifdef CONFIG_SMP /* * load_avg can be heavily contended at clock tick time, so put @@ -449,8 +466,6 @@ extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b); extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b); extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq); -extern void free_rt_sched_group(struct task_group *tg); -extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent); extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int cpu, struct sched_rt_entity *parent); @@ -464,13 +479,15 @@ extern struct task_group *sched_create_group(struct task_group *parent); extern void sched_online_group(struct task_group *tg, struct task_group *parent); extern void sched_destroy_group(struct task_group *tg); -extern void sched_offline_group(struct task_group *tg); +extern void sched_release_group(struct task_group *tg); extern void sched_move_task(struct task_struct *tsk); #ifdef CONFIG_FAIR_GROUP_SCHED extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); +extern int sched_group_set_idle(struct task_group *tg, long idle); + #ifdef CONFIG_SMP extern void set_task_rq_fair(struct sched_entity *se, struct cfs_rq *prev, struct cfs_rq *next); @@ -486,16 +503,64 @@ struct cfs_bandwidth { }; #endif /* CONFIG_CGROUP_SCHED */ +extern void unregister_rt_sched_group(struct task_group *tg); +extern void free_rt_sched_group(struct task_group *tg); +extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent); + +/* + * u64_u32_load/u64_u32_store + * + * Use a copy of a u64 value to protect against data race. This is only + * applicable for 32-bits architectures. + */ +#ifdef CONFIG_64BIT +# define u64_u32_load_copy(var, copy) var +# define u64_u32_store_copy(var, copy, val) (var = val) +#else +# define u64_u32_load_copy(var, copy) \ +({ \ + u64 __val, __val_copy; \ + do { \ + __val_copy = copy; \ + /* \ + * paired with u64_u32_store_copy(), ordering access \ + * to var and copy. \ + */ \ + smp_rmb(); \ + __val = var; \ + } while (__val != __val_copy); \ + __val; \ +}) +# define u64_u32_store_copy(var, copy, val) \ +do { \ + typeof(val) __val = (val); \ + var = __val; \ + /* \ + * paired with u64_u32_load_copy(), ordering access to var and \ + * copy. \ + */ \ + smp_wmb(); \ + copy = __val; \ +} while (0) +#endif +# define u64_u32_load(var) u64_u32_load_copy(var, var##_copy) +# define u64_u32_store(var, val) u64_u32_store_copy(var, var##_copy, val) + /* CFS-related fields in a runqueue */ struct cfs_rq { struct load_weight load; - unsigned long runnable_weight; unsigned int nr_running; unsigned int h_nr_running; /* SCHED_{NORMAL,BATCH,IDLE} */ + unsigned int idle_nr_running; /* SCHED_IDLE */ unsigned int idle_h_nr_running; /* SCHED_IDLE */ u64 exec_clock; u64 min_vruntime; +#ifdef CONFIG_SCHED_CORE + unsigned int forceidle_seq; + u64 min_vruntime_fi; +#endif + #ifndef CONFIG_64BIT u64 min_vruntime_copy; #endif @@ -521,14 +586,14 @@ struct cfs_rq { */ struct sched_avg avg; #ifndef CONFIG_64BIT - u64 load_last_update_time_copy; + u64 last_update_time_copy; #endif struct { raw_spinlock_t lock ____cacheline_aligned; int nr; unsigned long load_avg; unsigned long util_avg; - unsigned long runnable_sum; + unsigned long runnable_avg; } removed; #ifdef CONFIG_FAIR_GROUP_SCHED @@ -563,13 +628,20 @@ struct cfs_rq { struct list_head leaf_cfs_rq_list; struct task_group *tg; /* group that "owns" this runqueue */ + /* Locally cached copy of our task_group's idle value */ + int idle; + #ifdef CONFIG_CFS_BANDWIDTH int runtime_enabled; s64 runtime_remaining; + u64 throttled_pelt_idle; +#ifndef CONFIG_64BIT + u64 throttled_pelt_idle_copy; +#endif u64 throttled_clock; - u64 throttled_clock_task; - u64 throttled_clock_task_time; + u64 throttled_clock_pelt; + u64 throttled_clock_pelt_time; int throttled; int throttle_count; struct list_head throttled_list; @@ -601,8 +673,8 @@ struct rt_rq { } highest_prio; #endif #ifdef CONFIG_SMP - unsigned long rt_nr_migratory; - unsigned long rt_nr_total; + unsigned int rt_nr_migratory; + unsigned int rt_nr_total; int overloaded; struct plist_head pushable_tasks; @@ -616,7 +688,7 @@ struct rt_rq { raw_spinlock_t rt_runtime_lock; #ifdef CONFIG_RT_GROUP_SCHED - unsigned long rt_nr_boosted; + unsigned int rt_nr_boosted; struct rq *rq; struct task_group *tg; @@ -633,7 +705,7 @@ struct dl_rq { /* runqueue is an rbtree, ordered by deadline */ struct rb_root_cached root; - unsigned long dl_nr_running; + unsigned int dl_nr_running; #ifdef CONFIG_SMP /* @@ -647,7 +719,7 @@ struct dl_rq { u64 next; } earliest_dl; - unsigned long dl_nr_migratory; + unsigned int dl_nr_migratory; int overloaded; /* @@ -688,8 +760,30 @@ struct dl_rq { #ifdef CONFIG_FAIR_GROUP_SCHED /* An entity is a task if it doesn't "own" a runqueue */ #define entity_is_task(se) (!se->my_q) + +static inline void se_update_runnable(struct sched_entity *se) +{ + if (!entity_is_task(se)) + se->runnable_weight = se->my_q->h_nr_running; +} + +static inline long se_runnable(struct sched_entity *se) +{ + if (entity_is_task(se)) + return !!se->on_rq; + else + return se->runnable_weight; +} + #else #define entity_is_task(se) 1 + +static inline void se_update_runnable(struct sched_entity *se) {} + +static inline long se_runnable(struct sched_entity *se) +{ + return !!se->on_rq; +} #endif #ifdef CONFIG_SMP @@ -701,10 +795,6 @@ static inline long se_weight(struct sched_entity *se) return scale_load_down(se->load.weight); } -static inline long se_runnable(struct sched_entity *se) -{ - return scale_load_down(se->runnable_weight); -} static inline bool sched_asym_prefer(int a, int b) { @@ -755,6 +845,15 @@ struct root_domain { struct dl_bw dl_bw; struct cpudl cpudl; + /* + * Indicate whether a root_domain's dl_bw has been checked or + * updated. It's monotonously increasing value. + * + * Also, some corner cases, like 'wrap around' is dangerous, but given + * that u64 is 'big enough'. So that shouldn't be a concern. + */ + u64 visit_gen; + #ifdef HAVE_RT_PUSH_IPI /* * For IPI pull requests, loop across the rto_mask. @@ -835,8 +934,16 @@ struct uclamp_rq { unsigned int value; struct uclamp_bucket bucket[UCLAMP_BUCKETS]; }; + +DECLARE_STATIC_KEY_FALSE(sched_uclamp_used); #endif /* CONFIG_UCLAMP_TASK */ +struct rq; +struct balance_callback { + struct balance_callback *next; + void (*func)(struct rq *rq); +}; + /* * This is the main, per-CPU runqueue data structure. * @@ -846,7 +953,7 @@ struct uclamp_rq { */ struct rq { /* runqueue lock: */ - raw_spinlock_t lock; + raw_spinlock_t __lock; /* * nr_running and cpu_load should be in the same cacheline because @@ -860,15 +967,17 @@ struct rq { #endif #ifdef CONFIG_NO_HZ_COMMON #ifdef CONFIG_SMP - unsigned long last_load_update_tick; unsigned long last_blocked_load_update_tick; unsigned int has_blocked_load; + call_single_data_t nohz_csd; #endif /* CONFIG_SMP */ unsigned int nohz_tick_stopped; - atomic_t nohz_flags; + atomic_t nohz_flags; #endif /* CONFIG_NO_HZ_COMMON */ - unsigned long nr_load_updates; +#ifdef CONFIG_SMP + unsigned int ttwu_pending; +#endif u64 nr_switches; #ifdef CONFIG_UCLAMP_TASK @@ -894,7 +1003,7 @@ struct rq { * one CPU and if it got migrated afterwards it may decrease * it on another CPU. Always updated under the runqueue lock: */ - unsigned long nr_uninterruptible; + unsigned int nr_uninterruptible; struct task_struct __rcu *curr; struct task_struct *idle; @@ -908,9 +1017,20 @@ struct rq { u64 clock_task ____cacheline_aligned; u64 clock_pelt; unsigned long lost_idle_time; + u64 clock_pelt_idle; + u64 clock_idle; +#ifndef CONFIG_64BIT + u64 clock_pelt_idle_copy; + u64 clock_idle_copy; +#endif atomic_t nr_iowait; +#ifdef CONFIG_SCHED_DEBUG + u64 last_seen_need_resched_ns; + int ticks_without_resched; +#endif + #ifdef CONFIG_MEMBARRIER int membarrier_state; #endif @@ -922,8 +1042,9 @@ struct rq { unsigned long cpu_capacity; unsigned long cpu_capacity_orig; - struct callback_head *balance_callback; + struct balance_callback *balance_callback; + unsigned char nohz_idle_balance; unsigned char idle_balance; unsigned long misfit_task_load; @@ -944,12 +1065,22 @@ struct rq { #ifdef CONFIG_HAVE_SCHED_AVG_IRQ struct sched_avg avg_irq; #endif +#ifdef CONFIG_SCHED_THERMAL_PRESSURE + struct sched_avg avg_thermal; +#endif u64 idle_stamp; u64 avg_idle; + unsigned long wake_stamp; + u64 wake_avg_idle; + /* This is used to determine avg_idle's max value */ u64 max_idle_balance_cost; + +#ifdef CONFIG_HOTPLUG_CPU + struct rcuwait hotplug_wait; #endif +#endif /* CONFIG_SMP */ #ifdef CONFIG_IRQ_TIME_ACCOUNTING u64 prev_irq_time; @@ -967,10 +1098,10 @@ struct rq { #ifdef CONFIG_SCHED_HRTICK #ifdef CONFIG_SMP - int hrtick_csd_pending; call_single_data_t hrtick_csd; #endif struct hrtimer hrtick_timer; + ktime_t hrtick_time; #endif #ifdef CONFIG_SCHEDSTATS @@ -991,14 +1122,34 @@ struct rq { unsigned int ttwu_local; #endif -#ifdef CONFIG_SMP - struct llist_head wake_list; -#endif - #ifdef CONFIG_CPU_IDLE /* Must be inspected within a rcu lock section */ struct cpuidle_state *idle_state; #endif + +#ifdef CONFIG_SMP + unsigned int nr_pinned; +#endif + unsigned int push_busy; + struct cpu_stop_work push_work; + +#ifdef CONFIG_SCHED_CORE + /* per rq */ + struct rq *core; + struct task_struct *core_pick; + unsigned int core_enabled; + unsigned int core_sched_seq; + struct rb_root core_tree; + + /* shared state -- careful with sched_core_cpu_deactivate() */ + unsigned int core_task_seq; + unsigned int core_pick_seq; + unsigned long core_cookie; + unsigned int core_forceidle_count; + unsigned int core_forceidle_seq; + unsigned int core_forceidle_occupation; + u64 core_forceidle_start; +#endif }; #ifdef CONFIG_FAIR_GROUP_SCHED @@ -1026,6 +1177,213 @@ static inline int cpu_of(struct rq *rq) #endif } +#define MDF_PUSH 0x01 + +static inline bool is_migration_disabled(struct task_struct *p) +{ +#ifdef CONFIG_SMP + return p->migration_disabled; +#else + return false; +#endif +} + +DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); + +#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) +#define this_rq() this_cpu_ptr(&runqueues) +#define task_rq(p) cpu_rq(task_cpu(p)) +#define cpu_curr(cpu) (cpu_rq(cpu)->curr) +#define raw_rq() raw_cpu_ptr(&runqueues) + +struct sched_group; +#ifdef CONFIG_SCHED_CORE +static inline struct cpumask *sched_group_span(struct sched_group *sg); + +DECLARE_STATIC_KEY_FALSE(__sched_core_enabled); + +static inline bool sched_core_enabled(struct rq *rq) +{ + return static_branch_unlikely(&__sched_core_enabled) && rq->core_enabled; +} + +static inline bool sched_core_disabled(void) +{ + return !static_branch_unlikely(&__sched_core_enabled); +} + +/* + * Be careful with this function; not for general use. The return value isn't + * stable unless you actually hold a relevant rq->__lock. + */ +static inline raw_spinlock_t *rq_lockp(struct rq *rq) +{ + if (sched_core_enabled(rq)) + return &rq->core->__lock; + + return &rq->__lock; +} + +static inline raw_spinlock_t *__rq_lockp(struct rq *rq) +{ + if (rq->core_enabled) + return &rq->core->__lock; + + return &rq->__lock; +} + +bool cfs_prio_less(struct task_struct *a, struct task_struct *b, bool fi); + +/* + * Helpers to check if the CPU's core cookie matches with the task's cookie + * when core scheduling is enabled. + * A special case is that the task's cookie always matches with CPU's core + * cookie if the CPU is in an idle core. + */ +static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p) +{ + /* Ignore cookie match if core scheduler is not enabled on the CPU. */ + if (!sched_core_enabled(rq)) + return true; + + return rq->core->core_cookie == p->core_cookie; +} + +static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p) +{ + bool idle_core = true; + int cpu; + + /* Ignore cookie match if core scheduler is not enabled on the CPU. */ + if (!sched_core_enabled(rq)) + return true; + + for_each_cpu(cpu, cpu_smt_mask(cpu_of(rq))) { + if (!available_idle_cpu(cpu)) { + idle_core = false; + break; + } + } + + /* + * A CPU in an idle core is always the best choice for tasks with + * cookies. + */ + return idle_core || rq->core->core_cookie == p->core_cookie; +} + +static inline bool sched_group_cookie_match(struct rq *rq, + struct task_struct *p, + struct sched_group *group) +{ + int cpu; + + /* Ignore cookie match if core scheduler is not enabled on the CPU. */ + if (!sched_core_enabled(rq)) + return true; + + for_each_cpu_and(cpu, sched_group_span(group), p->cpus_ptr) { + if (sched_core_cookie_match(cpu_rq(cpu), p)) + return true; + } + return false; +} + +static inline bool sched_core_enqueued(struct task_struct *p) +{ + return !RB_EMPTY_NODE(&p->core_node); +} + +extern void sched_core_enqueue(struct rq *rq, struct task_struct *p); +extern void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags); + +extern void sched_core_get(void); +extern void sched_core_put(void); + +#else /* !CONFIG_SCHED_CORE */ + +static inline bool sched_core_enabled(struct rq *rq) +{ + return false; +} + +static inline bool sched_core_disabled(void) +{ + return true; +} + +static inline raw_spinlock_t *rq_lockp(struct rq *rq) +{ + return &rq->__lock; +} + +static inline raw_spinlock_t *__rq_lockp(struct rq *rq) +{ + return &rq->__lock; +} + +static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p) +{ + return true; +} + +static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p) +{ + return true; +} + +static inline bool sched_group_cookie_match(struct rq *rq, + struct task_struct *p, + struct sched_group *group) +{ + return true; +} +#endif /* CONFIG_SCHED_CORE */ + +static inline void lockdep_assert_rq_held(struct rq *rq) +{ + lockdep_assert_held(__rq_lockp(rq)); +} + +extern void raw_spin_rq_lock_nested(struct rq *rq, int subclass); +extern bool raw_spin_rq_trylock(struct rq *rq); +extern void raw_spin_rq_unlock(struct rq *rq); + +static inline void raw_spin_rq_lock(struct rq *rq) +{ + raw_spin_rq_lock_nested(rq, 0); +} + +static inline void raw_spin_rq_lock_irq(struct rq *rq) +{ + local_irq_disable(); + raw_spin_rq_lock(rq); +} + +static inline void raw_spin_rq_unlock_irq(struct rq *rq) +{ + raw_spin_rq_unlock(rq); + local_irq_enable(); +} + +static inline unsigned long _raw_spin_rq_lock_irqsave(struct rq *rq) +{ + unsigned long flags; + local_irq_save(flags); + raw_spin_rq_lock(rq); + return flags; +} + +static inline void raw_spin_rq_unlock_irqrestore(struct rq *rq, unsigned long flags) +{ + raw_spin_rq_unlock(rq); + local_irq_restore(flags); +} + +#define raw_spin_rq_lock_irqsave(rq, flags) \ +do { \ + flags = _raw_spin_rq_lock_irqsave(rq); \ +} while (0) #ifdef CONFIG_SCHED_SMT extern void __update_idle_core(struct rq *rq); @@ -1040,21 +1398,59 @@ static inline void update_idle_core(struct rq *rq) static inline void update_idle_core(struct rq *rq) { } #endif -DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); +#ifdef CONFIG_FAIR_GROUP_SCHED +static inline struct task_struct *task_of(struct sched_entity *se) +{ + SCHED_WARN_ON(!entity_is_task(se)); + return container_of(se, struct task_struct, se); +} -#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) -#define this_rq() this_cpu_ptr(&runqueues) -#define task_rq(p) cpu_rq(task_cpu(p)) -#define cpu_curr(cpu) (cpu_rq(cpu)->curr) -#define raw_rq() raw_cpu_ptr(&runqueues) +static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) +{ + return p->se.cfs_rq; +} -extern void update_rq_clock(struct rq *rq); +/* runqueue on which this entity is (to be) queued */ +static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) +{ + return se->cfs_rq; +} -static inline u64 __rq_clock_broken(struct rq *rq) +/* runqueue "owned" by this group */ +static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) { - return READ_ONCE(rq->clock); + return grp->my_q; } +#else + +static inline struct task_struct *task_of(struct sched_entity *se) +{ + return container_of(se, struct task_struct, se); +} + +static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) +{ + return &task_rq(p)->cfs; +} + +static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) +{ + struct task_struct *p = task_of(se); + struct rq *rq = task_rq(p); + + return &rq->cfs; +} + +/* runqueue "owned" by this group */ +static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) +{ + return NULL; +} +#endif + +extern void update_rq_clock(struct rq *rq); + /* * rq::clock_update_flags bits * @@ -1074,7 +1470,7 @@ static inline u64 __rq_clock_broken(struct rq *rq) * * if (rq-clock_update_flags >= RQCF_UPDATED) * - * to check if %RQCF_UPADTED is set. It'll never be shifted more than + * to check if %RQCF_UPDATED is set. It'll never be shifted more than * one position though, because the next rq_unpin_lock() will shift it * back. */ @@ -1093,7 +1489,7 @@ static inline void assert_clock_updated(struct rq *rq) static inline u64 rq_clock(struct rq *rq) { - lockdep_assert_held(&rq->lock); + lockdep_assert_rq_held(rq); assert_clock_updated(rq); return rq->clock; @@ -1101,25 +1497,43 @@ static inline u64 rq_clock(struct rq *rq) static inline u64 rq_clock_task(struct rq *rq) { - lockdep_assert_held(&rq->lock); + lockdep_assert_rq_held(rq); assert_clock_updated(rq); return rq->clock_task; } +/** + * By default the decay is the default pelt decay period. + * The decay shift can change the decay period in + * multiples of 32. + * Decay shift Decay period(ms) + * 0 32 + * 1 64 + * 2 128 + * 3 256 + * 4 512 + */ +extern int sched_thermal_decay_shift; + +static inline u64 rq_clock_thermal(struct rq *rq) +{ + return rq_clock_task(rq) >> sched_thermal_decay_shift; +} + static inline void rq_clock_skip_update(struct rq *rq) { - lockdep_assert_held(&rq->lock); + lockdep_assert_rq_held(rq); rq->clock_update_flags |= RQCF_REQ_SKIP; } /* * See rt task throttling, which is the only time a skip - * request is cancelled. + * request is canceled. */ static inline void rq_clock_cancel_skipupdate(struct rq *rq) { - lockdep_assert_held(&rq->lock); + lockdep_assert_rq_held(rq); rq->clock_update_flags &= ~RQCF_REQ_SKIP; } @@ -1136,13 +1550,28 @@ struct rq_flags { #endif }; +extern struct balance_callback balance_push_callback; + +/* + * Lockdep annotation that avoids accidental unlocks; it's like a + * sticky/continuous lockdep_assert_held(). + * + * This avoids code that has access to 'struct rq *rq' (basically everything in + * the scheduler) from accidentally unlocking the rq if they do not also have a + * copy of the (on-stack) 'struct rq_flags rf'. + * + * Also see Documentation/locking/lockdep-design.rst. + */ static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf) { - rf->cookie = lockdep_pin_lock(&rq->lock); + rf->cookie = lockdep_pin_lock(__rq_lockp(rq)); #ifdef CONFIG_SCHED_DEBUG rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); rf->clock_update_flags = 0; +#ifdef CONFIG_SMP + SCHED_WARN_ON(rq->balance_callback && rq->balance_callback != &balance_push_callback); +#endif #endif } @@ -1153,12 +1582,12 @@ static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf) rf->clock_update_flags = RQCF_UPDATED; #endif - lockdep_unpin_lock(&rq->lock, rf->cookie); + lockdep_unpin_lock(__rq_lockp(rq), rf->cookie); } static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf) { - lockdep_repin_lock(&rq->lock, rf->cookie); + lockdep_repin_lock(__rq_lockp(rq), rf->cookie); #ifdef CONFIG_SCHED_DEBUG /* @@ -1179,7 +1608,7 @@ static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf) __releases(rq->lock) { rq_unpin_lock(rq, rf); - raw_spin_unlock(&rq->lock); + raw_spin_rq_unlock(rq); } static inline void @@ -1188,7 +1617,7 @@ task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf) __releases(p->pi_lock) { rq_unpin_lock(rq, rf); - raw_spin_unlock(&rq->lock); + raw_spin_rq_unlock(rq); raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); } @@ -1196,7 +1625,7 @@ static inline void rq_lock_irqsave(struct rq *rq, struct rq_flags *rf) __acquires(rq->lock) { - raw_spin_lock_irqsave(&rq->lock, rf->flags); + raw_spin_rq_lock_irqsave(rq, rf->flags); rq_pin_lock(rq, rf); } @@ -1204,7 +1633,7 @@ static inline void rq_lock_irq(struct rq *rq, struct rq_flags *rf) __acquires(rq->lock) { - raw_spin_lock_irq(&rq->lock); + raw_spin_rq_lock_irq(rq); rq_pin_lock(rq, rf); } @@ -1212,24 +1641,16 @@ static inline void rq_lock(struct rq *rq, struct rq_flags *rf) __acquires(rq->lock) { - raw_spin_lock(&rq->lock); + raw_spin_rq_lock(rq); rq_pin_lock(rq, rf); } static inline void -rq_relock(struct rq *rq, struct rq_flags *rf) - __acquires(rq->lock) -{ - raw_spin_lock(&rq->lock); - rq_repin_lock(rq, rf); -} - -static inline void rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf) __releases(rq->lock) { rq_unpin_lock(rq, rf); - raw_spin_unlock_irqrestore(&rq->lock, rf->flags); + raw_spin_rq_unlock_irqrestore(rq, rf->flags); } static inline void @@ -1237,7 +1658,7 @@ rq_unlock_irq(struct rq *rq, struct rq_flags *rf) __releases(rq->lock) { rq_unpin_lock(rq, rf); - raw_spin_unlock_irq(&rq->lock); + raw_spin_rq_unlock_irq(rq); } static inline void @@ -1245,7 +1666,7 @@ rq_unlock(struct rq *rq, struct rq_flags *rf) __releases(rq->lock) { rq_unpin_lock(rq, rf); - raw_spin_unlock(&rq->lock); + raw_spin_rq_unlock(rq); } static inline struct rq * @@ -1269,12 +1690,14 @@ enum numa_topology_type { extern enum numa_topology_type sched_numa_topology_type; extern int sched_max_numa_distance; extern bool find_numa_distance(int distance); -extern void sched_init_numa(void); +extern void sched_init_numa(int offline_node); +extern void sched_update_numa(int cpu, bool online); extern void sched_domains_numa_masks_set(unsigned int cpu); extern void sched_domains_numa_masks_clear(unsigned int cpu); extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu); #else -static inline void sched_init_numa(void) { } +static inline void sched_init_numa(int offline_node) { } +static inline void sched_update_numa(int cpu, bool online) { } static inline void sched_domains_numa_masks_set(unsigned int cpu) { } static inline void sched_domains_numa_masks_clear(unsigned int cpu) { } static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu) @@ -1307,21 +1730,24 @@ init_numa_balancing(unsigned long clone_flags, struct task_struct *p) static inline void queue_balance_callback(struct rq *rq, - struct callback_head *head, + struct balance_callback *head, void (*func)(struct rq *rq)) { - lockdep_assert_held(&rq->lock); + lockdep_assert_rq_held(rq); - if (unlikely(head->next)) + /* + * Don't (re)queue an already queued item; nor queue anything when + * balance_push() is active, see the comment with + * balance_push_callback. + */ + if (unlikely(head->next || rq->balance_callback == &balance_push_callback)) return; - head->func = (void (*)(struct callback_head *))func; + head->func = func; head->next = rq->balance_callback; rq->balance_callback = head; } -extern void sched_ttwu_pending(void); - #define rcu_dereference_check_sched_domain(p) \ rcu_dereference_check((p), \ lockdep_is_held(&sched_domains_mutex)) @@ -1337,8 +1763,6 @@ extern void sched_ttwu_pending(void); for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \ __sd; __sd = __sd->parent) -#define for_each_lower_domain(sd) for (; sd; sd = sd->child) - /** * highest_flag_domain - Return highest sched_domain containing flag. * @cpu: The CPU whose highest level of sched domain is to @@ -1382,6 +1806,11 @@ DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing); DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity); extern struct static_key_false sched_asym_cpucapacity; +static __always_inline bool sched_asym_cpucap_active(void) +{ + return static_branch_unlikely(&sched_asym_cpucapacity); +} + struct sched_group_capacity { atomic_t ref; /* @@ -1398,7 +1827,7 @@ struct sched_group_capacity { int id; #endif - unsigned long cpumask[0]; /* Balance mask */ + unsigned long cpumask[]; /* Balance mask */ }; struct sched_group { @@ -1408,6 +1837,7 @@ struct sched_group { unsigned int group_weight; struct sched_group_capacity *sgc; int asym_prefer_cpu; /* CPU of highest priority in group */ + int flags; /* * The CPUs this group covers. @@ -1416,7 +1846,7 @@ struct sched_group { * by attaching extra space to the end of the structure, * depending on how many CPUs the kernel has booted up with) */ - unsigned long cpumask[0]; + unsigned long cpumask[]; }; static inline struct cpumask *sched_group_span(struct sched_group *sg) @@ -1432,45 +1862,50 @@ static inline struct cpumask *group_balance_mask(struct sched_group *sg) return to_cpumask(sg->sgc->cpumask); } -/** - * group_first_cpu - Returns the first CPU in the cpumask of a sched_group. - * @group: The group whose first CPU is to be returned. - */ -static inline unsigned int group_first_cpu(struct sched_group *group) -{ - return cpumask_first(sched_group_span(group)); -} - extern int group_balance_cpu(struct sched_group *sg); -#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL) -void register_sched_domain_sysctl(void); +#ifdef CONFIG_SCHED_DEBUG +void update_sched_domain_debugfs(void); void dirty_sched_domain_sysctl(int cpu); -void unregister_sched_domain_sysctl(void); #else -static inline void register_sched_domain_sysctl(void) +static inline void update_sched_domain_debugfs(void) { } static inline void dirty_sched_domain_sysctl(int cpu) { } -static inline void unregister_sched_domain_sysctl(void) +#endif + +extern int sched_update_scaling(void); +#endif /* CONFIG_SMP */ + +#include "stats.h" + +#if defined(CONFIG_SCHED_CORE) && defined(CONFIG_SCHEDSTATS) + +extern void __sched_core_account_forceidle(struct rq *rq); + +static inline void sched_core_account_forceidle(struct rq *rq) { + if (schedstat_enabled()) + __sched_core_account_forceidle(rq); } -#endif -extern int newidle_balance(struct rq *this_rq, struct rq_flags *rf); +extern void __sched_core_tick(struct rq *rq); -#else +static inline void sched_core_tick(struct rq *rq) +{ + if (sched_core_enabled(rq) && schedstat_enabled()) + __sched_core_tick(rq); +} -static inline void sched_ttwu_pending(void) { } +#else -static inline int newidle_balance(struct rq *this_rq, struct rq_flags *rf) { return 0; } +static inline void sched_core_account_forceidle(struct rq *rq) {} -#endif /* CONFIG_SMP */ +static inline void sched_core_tick(struct rq *rq) {} -#include "stats.h" -#include "autogroup.h" +#endif /* CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS */ #ifdef CONFIG_CGROUP_SCHED @@ -1503,6 +1938,7 @@ static inline void set_task_rq(struct task_struct *p, unsigned int cpu) set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]); p->se.cfs_rq = tg->cfs_rq[cpu]; p->se.parent = tg->se[cpu]; + p->se.depth = tg->se[cpu] ? tg->se[cpu]->depth + 1 : 0; #endif #ifdef CONFIG_RT_GROUP_SCHED @@ -1531,11 +1967,7 @@ static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) * per-task data have been completed by this moment. */ smp_wmb(); -#ifdef CONFIG_THREAD_INFO_IN_TASK - WRITE_ONCE(p->cpu, cpu); -#else WRITE_ONCE(task_thread_info(p)->cpu, cpu); -#endif p->wake_cpu = cpu; #endif } @@ -1544,7 +1976,6 @@ static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) * Tunables that become constants when CONFIG_SCHED_DEBUG is off: */ #ifdef CONFIG_SCHED_DEBUG -# include <linux/static_key.h> # define const_debug __read_mostly #else # define const_debug const @@ -1560,7 +1991,7 @@ enum { #undef SCHED_FEAT -#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL) +#ifdef CONFIG_SCHED_DEBUG /* * To support run-time toggling of sched features, all the translation units @@ -1568,6 +1999,7 @@ enum { */ extern const_debug unsigned int sysctl_sched_features; +#ifdef CONFIG_JUMP_LABEL #define SCHED_FEAT(name, enabled) \ static __always_inline bool static_branch_##name(struct static_key *key) \ { \ @@ -1580,7 +2012,13 @@ static __always_inline bool static_branch_##name(struct static_key *key) \ extern struct static_key sched_feat_keys[__SCHED_FEAT_NR]; #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x])) -#else /* !(SCHED_DEBUG && CONFIG_JUMP_LABEL) */ +#else /* !CONFIG_JUMP_LABEL */ + +#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) + +#endif /* CONFIG_JUMP_LABEL */ + +#else /* !SCHED_DEBUG */ /* * Each translation unit has its own copy of sysctl_sched_features to allow @@ -1596,7 +2034,7 @@ static const_debug __maybe_unused unsigned int sysctl_sched_features = #define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) -#endif /* SCHED_DEBUG && CONFIG_JUMP_LABEL */ +#endif /* SCHED_DEBUG */ extern struct static_key_false sched_numa_balancing; extern struct static_key_false sched_schedstats; @@ -1619,7 +2057,7 @@ static inline int task_current(struct rq *rq, struct task_struct *p) return rq->curr == p; } -static inline int task_running(struct rq *rq, struct task_struct *p) +static inline int task_on_cpu(struct rq *rq, struct task_struct *p) { #ifdef CONFIG_SMP return p->on_cpu; @@ -1638,12 +2076,19 @@ static inline int task_on_rq_migrating(struct task_struct *p) return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING; } -/* - * wake flags - */ -#define WF_SYNC 0x01 /* Waker goes to sleep after wakeup */ -#define WF_FORK 0x02 /* Child wakeup after fork */ -#define WF_MIGRATED 0x4 /* Internal use, task got migrated */ +/* Wake flags. The first three directly map to some SD flag value */ +#define WF_EXEC 0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */ +#define WF_FORK 0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */ +#define WF_TTWU 0x08 /* Wakeup; maps to SD_BALANCE_WAKE */ + +#define WF_SYNC 0x10 /* Waker goes to sleep after wakeup */ +#define WF_MIGRATED 0x20 /* Internal use, task got migrated */ + +#ifdef CONFIG_SMP +static_assert(WF_EXEC == SD_BALANCE_EXEC); +static_assert(WF_FORK == SD_BALANCE_FORK); +static_assert(WF_TTWU == SD_BALANCE_WAKE); +#endif /* * To aid in avoiding the subversion of "niceness" due to uneven distribution @@ -1700,7 +2145,6 @@ extern const u32 sched_prio_to_wmult[40]; #define RETRY_TASK ((void *)-1UL) struct sched_class { - const struct sched_class *next; #ifdef CONFIG_UCLAMP_TASK int uclamp_enabled; @@ -1709,7 +2153,7 @@ struct sched_class { void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags); void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags); void (*yield_task) (struct rq *rq); - bool (*yield_to_task)(struct rq *rq, struct task_struct *p, bool preempt); + bool (*yield_to_task)(struct rq *rq, struct task_struct *p); void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags); @@ -1720,16 +2164,22 @@ struct sched_class { #ifdef CONFIG_SMP int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf); - int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags); + int (*select_task_rq)(struct task_struct *p, int task_cpu, int flags); + + struct task_struct * (*pick_task)(struct rq *rq); + void (*migrate_task_rq)(struct task_struct *p, int new_cpu); void (*task_woken)(struct rq *this_rq, struct task_struct *task); void (*set_cpus_allowed)(struct task_struct *p, - const struct cpumask *newmask); + const struct cpumask *newmask, + u32 flags); void (*rq_online)(struct rq *rq); void (*rq_offline)(struct rq *rq); + + struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq); #endif void (*task_tick)(struct rq *rq, struct task_struct *p, int queued); @@ -1738,7 +2188,7 @@ struct sched_class { /* * The switched_from() call is allowed to drop rq->lock, therefore we - * cannot assume the switched_from/switched_to pair is serliazed by + * cannot assume the switched_from/switched_to pair is serialized by * rq->lock. They are however serialized by p->pi_lock. */ void (*switched_from)(struct rq *this_rq, struct task_struct *task); @@ -1751,11 +2201,8 @@ struct sched_class { void (*update_curr)(struct rq *rq); -#define TASK_SET_GROUP 0 -#define TASK_MOVE_GROUP 1 - #ifdef CONFIG_FAIR_GROUP_SCHED - void (*task_change_group)(struct task_struct *p, int type); + void (*task_change_group)(struct task_struct *p); #endif }; @@ -1767,21 +2214,36 @@ static inline void put_prev_task(struct rq *rq, struct task_struct *prev) static inline void set_next_task(struct rq *rq, struct task_struct *next) { - WARN_ON_ONCE(rq->curr != next); next->sched_class->set_next_task(rq, next, false); } -#ifdef CONFIG_SMP -#define sched_class_highest (&stop_sched_class) -#else -#define sched_class_highest (&dl_sched_class) -#endif + +/* + * Helper to define a sched_class instance; each one is placed in a separate + * section which is ordered by the linker script: + * + * include/asm-generic/vmlinux.lds.h + * + * *CAREFUL* they are laid out in *REVERSE* order!!! + * + * Also enforce alignment on the instance, not the type, to guarantee layout. + */ +#define DEFINE_SCHED_CLASS(name) \ +const struct sched_class name##_sched_class \ + __aligned(__alignof__(struct sched_class)) \ + __section("__" #name "_sched_class") + +/* Defined in include/asm-generic/vmlinux.lds.h */ +extern struct sched_class __sched_class_highest[]; +extern struct sched_class __sched_class_lowest[]; #define for_class_range(class, _from, _to) \ - for (class = (_from); class != (_to); class = class->next) + for (class = (_from); class < (_to); class++) #define for_each_class(class) \ - for_class_range(class, sched_class_highest, NULL) + for_class_range(class, __sched_class_highest, __sched_class_lowest) + +#define sched_class_above(_a, _b) ((_a) < (_b)) extern const struct sched_class stop_sched_class; extern const struct sched_class dl_sched_class; @@ -1812,13 +2274,39 @@ static inline bool sched_fair_runnable(struct rq *rq) extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf); extern struct task_struct *pick_next_task_idle(struct rq *rq); +#define SCA_CHECK 0x01 +#define SCA_MIGRATE_DISABLE 0x02 +#define SCA_MIGRATE_ENABLE 0x04 +#define SCA_USER 0x08 + #ifdef CONFIG_SMP extern void update_group_capacity(struct sched_domain *sd, int cpu); extern void trigger_load_balance(struct rq *rq); -extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask); +extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags); + +static inline struct task_struct *get_push_task(struct rq *rq) +{ + struct task_struct *p = rq->curr; + + lockdep_assert_rq_held(rq); + + if (rq->push_busy) + return NULL; + + if (p->nr_cpus_allowed == 1) + return NULL; + + if (p->migration_disabled) + return NULL; + + rq->push_busy = true; + return get_task_struct(p); +} + +extern int push_cpu_stop(void *arg); #endif @@ -1864,16 +2352,17 @@ extern void resched_cpu(int cpu); extern struct rt_bandwidth def_rt_bandwidth; extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime); +extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq); -extern struct dl_bandwidth def_dl_bandwidth; extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime); extern void init_dl_task_timer(struct sched_dl_entity *dl_se); extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se); -extern void init_dl_rq_bw_ratio(struct dl_rq *dl_rq); #define BW_SHIFT 20 #define BW_UNIT (1 << BW_SHIFT) #define RATIO_SHIFT 8 +#define MAX_BW_BITS (64 - BW_SHIFT) +#define MAX_BW ((1ULL << MAX_BW_BITS) - 1) unsigned long to_ratio(u64 period, u64 runtime); extern void init_entity_runnable_average(struct sched_entity *se); @@ -1890,12 +2379,7 @@ extern int __init sched_tick_offload_init(void); */ static inline void sched_update_tick_dependency(struct rq *rq) { - int cpu; - - if (!tick_nohz_full_enabled()) - return; - - cpu = cpu_of(rq); + int cpu = cpu_of(rq); if (!tick_nohz_full_cpu(cpu)) return; @@ -1915,6 +2399,9 @@ static inline void add_nr_running(struct rq *rq, unsigned count) unsigned prev_nr = rq->nr_running; rq->nr_running = prev_nr + count; + if (trace_sched_update_nr_running_tp_enabled()) { + call_trace_sched_update_nr_running(rq, count); + } #ifdef CONFIG_SMP if (prev_nr < 2 && rq->nr_running >= 2) { @@ -1929,6 +2416,10 @@ static inline void add_nr_running(struct rq *rq, unsigned count) static inline void sub_nr_running(struct rq *rq, unsigned count) { rq->nr_running -= count; + if (trace_sched_update_nr_running_tp_enabled()) { + call_trace_sched_update_nr_running(rq, -count); + } + /* Check if we still need preemption */ sched_update_tick_dependency(rq); } @@ -1938,9 +2429,32 @@ extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags); extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags); +#ifdef CONFIG_PREEMPT_RT +#define SCHED_NR_MIGRATE_BREAK 8 +#else +#define SCHED_NR_MIGRATE_BREAK 32 +#endif + extern const_debug unsigned int sysctl_sched_nr_migrate; extern const_debug unsigned int sysctl_sched_migration_cost; +#ifdef CONFIG_SCHED_DEBUG +extern unsigned int sysctl_sched_latency; +extern unsigned int sysctl_sched_min_granularity; +extern unsigned int sysctl_sched_idle_min_granularity; +extern unsigned int sysctl_sched_wakeup_granularity; +extern int sysctl_resched_latency_warn_ms; +extern int sysctl_resched_latency_warn_once; + +extern unsigned int sysctl_sched_tunable_scaling; + +extern unsigned int sysctl_numa_balancing_scan_delay; +extern unsigned int sysctl_numa_balancing_scan_period_min; +extern unsigned int sysctl_numa_balancing_scan_period_max; +extern unsigned int sysctl_numa_balancing_scan_size; +extern unsigned int sysctl_numa_balancing_hot_threshold; +#endif + #ifdef CONFIG_SCHED_HRTICK /* @@ -1950,17 +2464,39 @@ extern const_debug unsigned int sysctl_sched_migration_cost; */ static inline int hrtick_enabled(struct rq *rq) { - if (!sched_feat(HRTICK)) - return 0; if (!cpu_active(cpu_of(rq))) return 0; return hrtimer_is_hres_active(&rq->hrtick_timer); } +static inline int hrtick_enabled_fair(struct rq *rq) +{ + if (!sched_feat(HRTICK)) + return 0; + return hrtick_enabled(rq); +} + +static inline int hrtick_enabled_dl(struct rq *rq) +{ + if (!sched_feat(HRTICK_DL)) + return 0; + return hrtick_enabled(rq); +} + void hrtick_start(struct rq *rq, u64 delay); #else +static inline int hrtick_enabled_fair(struct rq *rq) +{ + return 0; +} + +static inline int hrtick_enabled_dl(struct rq *rq) +{ + return 0; +} + static inline int hrtick_enabled(struct rq *rq) { return 0; @@ -1968,7 +2504,24 @@ static inline int hrtick_enabled(struct rq *rq) #endif /* CONFIG_SCHED_HRTICK */ +#ifndef arch_scale_freq_tick +static __always_inline +void arch_scale_freq_tick(void) +{ +} +#endif + #ifndef arch_scale_freq_capacity +/** + * arch_scale_freq_capacity - get the frequency scale factor of a given CPU. + * @cpu: the CPU in question. + * + * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e. + * + * f_curr + * ------ * SCHED_CAPACITY_SCALE + * f_max + */ static __always_inline unsigned long arch_scale_freq_capacity(int cpu) { @@ -1976,10 +2529,56 @@ unsigned long arch_scale_freq_capacity(int cpu) } #endif +#ifdef CONFIG_SCHED_DEBUG +/* + * In double_lock_balance()/double_rq_lock(), we use raw_spin_rq_lock() to + * acquire rq lock instead of rq_lock(). So at the end of these two functions + * we need to call double_rq_clock_clear_update() to clear RQCF_UPDATED of + * rq->clock_update_flags to avoid the WARN_DOUBLE_CLOCK warning. + */ +static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2) +{ + rq1->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); + /* rq1 == rq2 for !CONFIG_SMP, so just clear RQCF_UPDATED once. */ #ifdef CONFIG_SMP -#ifdef CONFIG_PREEMPTION + rq2->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); +#endif +} +#else +static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2) {} +#endif -static inline void double_rq_lock(struct rq *rq1, struct rq *rq2); +#ifdef CONFIG_SMP + +static inline bool rq_order_less(struct rq *rq1, struct rq *rq2) +{ +#ifdef CONFIG_SCHED_CORE + /* + * In order to not have {0,2},{1,3} turn into into an AB-BA, + * order by core-id first and cpu-id second. + * + * Notably: + * + * double_rq_lock(0,3); will take core-0, core-1 lock + * double_rq_lock(1,2); will take core-1, core-0 lock + * + * when only cpu-id is considered. + */ + if (rq1->core->cpu < rq2->core->cpu) + return true; + if (rq1->core->cpu > rq2->core->cpu) + return false; + + /* + * __sched_core_flip() relies on SMT having cpu-id lock order. + */ +#endif + return rq1->cpu < rq2->cpu; +} + +extern void double_rq_lock(struct rq *rq1, struct rq *rq2); + +#ifdef CONFIG_PREEMPTION /* * fair double_lock_balance: Safely acquires both rq->locks in a fair @@ -1994,7 +2593,7 @@ static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) __acquires(busiest->lock) __acquires(this_rq->lock) { - raw_spin_unlock(&this_rq->lock); + raw_spin_rq_unlock(this_rq); double_rq_lock(this_rq, busiest); return 1; @@ -2013,20 +2612,22 @@ static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) __acquires(busiest->lock) __acquires(this_rq->lock) { - int ret = 0; - - if (unlikely(!raw_spin_trylock(&busiest->lock))) { - if (busiest < this_rq) { - raw_spin_unlock(&this_rq->lock); - raw_spin_lock(&busiest->lock); - raw_spin_lock_nested(&this_rq->lock, - SINGLE_DEPTH_NESTING); - ret = 1; - } else - raw_spin_lock_nested(&busiest->lock, - SINGLE_DEPTH_NESTING); + if (__rq_lockp(this_rq) == __rq_lockp(busiest) || + likely(raw_spin_rq_trylock(busiest))) { + double_rq_clock_clear_update(this_rq, busiest); + return 0; + } + + if (rq_order_less(this_rq, busiest)) { + raw_spin_rq_lock_nested(busiest, SINGLE_DEPTH_NESTING); + double_rq_clock_clear_update(this_rq, busiest); + return 0; } - return ret; + + raw_spin_rq_unlock(this_rq); + double_rq_lock(this_rq, busiest); + + return 1; } #endif /* CONFIG_PREEMPTION */ @@ -2036,11 +2637,7 @@ static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) */ static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest) { - if (unlikely(!irqs_disabled())) { - /* printk() doesn't work well under rq->lock */ - raw_spin_unlock(&this_rq->lock); - BUG_ON(1); - } + lockdep_assert_irqs_disabled(); return _double_lock_balance(this_rq, busiest); } @@ -2048,8 +2645,9 @@ static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest) static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) __releases(busiest->lock) { - raw_spin_unlock(&busiest->lock); - lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_); + if (__rq_lockp(this_rq) != __rq_lockp(busiest)) + raw_spin_rq_unlock(busiest); + lock_set_subclass(&__rq_lockp(this_rq)->dep_map, 0, _RET_IP_); } static inline void double_lock(spinlock_t *l1, spinlock_t *l2) @@ -2080,31 +2678,6 @@ static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2) } /* - * double_rq_lock - safely lock two runqueues - * - * Note this does not disable interrupts like task_rq_lock, - * you need to do so manually before calling. - */ -static inline void double_rq_lock(struct rq *rq1, struct rq *rq2) - __acquires(rq1->lock) - __acquires(rq2->lock) -{ - BUG_ON(!irqs_disabled()); - if (rq1 == rq2) { - raw_spin_lock(&rq1->lock); - __acquire(rq2->lock); /* Fake it out ;) */ - } else { - if (rq1 < rq2) { - raw_spin_lock(&rq1->lock); - raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING); - } else { - raw_spin_lock(&rq2->lock); - raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING); - } - } -} - -/* * double_rq_unlock - safely unlock two runqueues * * Note this does not restore interrupts like task_rq_unlock, @@ -2114,11 +2687,11 @@ static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) __releases(rq1->lock) __releases(rq2->lock) { - raw_spin_unlock(&rq1->lock); - if (rq1 != rq2) - raw_spin_unlock(&rq2->lock); + if (__rq_lockp(rq1) != __rq_lockp(rq2)) + raw_spin_rq_unlock(rq2); else __release(rq2->lock); + raw_spin_rq_unlock(rq1); } extern void set_rq_online (struct rq *rq); @@ -2137,10 +2710,11 @@ static inline void double_rq_lock(struct rq *rq1, struct rq *rq2) __acquires(rq1->lock) __acquires(rq2->lock) { - BUG_ON(!irqs_disabled()); - BUG_ON(rq1 != rq2); - raw_spin_lock(&rq1->lock); + WARN_ON_ONCE(!irqs_disabled()); + WARN_ON_ONCE(rq1 != rq2); + raw_spin_rq_lock(rq1); __acquire(rq2->lock); /* Fake it out ;) */ + double_rq_clock_clear_update(rq1, rq2); } /* @@ -2153,8 +2727,8 @@ static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) __releases(rq1->lock) __releases(rq2->lock) { - BUG_ON(rq1 != rq2); - raw_spin_unlock(&rq1->lock); + WARN_ON_ONCE(rq1 != rq2); + raw_spin_rq_unlock(rq1); __release(rq2->lock); } @@ -2164,7 +2738,7 @@ extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq); extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq); #ifdef CONFIG_SCHED_DEBUG -extern bool sched_debug_enabled; +extern bool sched_debug_verbose; extern void print_cfs_stats(struct seq_file *m, int cpu); extern void print_rt_stats(struct seq_file *m, int cpu); @@ -2172,6 +2746,8 @@ extern void print_dl_stats(struct seq_file *m, int cpu); extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq); extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq); + +extern void resched_latency_warn(int cpu, u64 latency); #ifdef CONFIG_NUMA_BALANCING extern void show_numa_stats(struct task_struct *p, struct seq_file *m); @@ -2179,6 +2755,8 @@ extern void print_numa_stats(struct seq_file *m, int node, unsigned long tsf, unsigned long tpf, unsigned long gsf, unsigned long gpf); #endif /* CONFIG_NUMA_BALANCING */ +#else +static inline void resched_latency_warn(int cpu, u64 latency) {} #endif /* CONFIG_SCHED_DEBUG */ extern void init_cfs_rq(struct cfs_rq *cfs_rq); @@ -2191,11 +2769,19 @@ extern void cfs_bandwidth_usage_dec(void); #ifdef CONFIG_NO_HZ_COMMON #define NOHZ_BALANCE_KICK_BIT 0 #define NOHZ_STATS_KICK_BIT 1 +#define NOHZ_NEWILB_KICK_BIT 2 +#define NOHZ_NEXT_KICK_BIT 3 +/* Run rebalance_domains() */ #define NOHZ_BALANCE_KICK BIT(NOHZ_BALANCE_KICK_BIT) +/* Update blocked load */ #define NOHZ_STATS_KICK BIT(NOHZ_STATS_KICK_BIT) +/* Update blocked load when entering idle */ +#define NOHZ_NEWILB_KICK BIT(NOHZ_NEWILB_KICK_BIT) +/* Update nohz.next_balance */ +#define NOHZ_NEXT_KICK BIT(NOHZ_NEXT_KICK_BIT) -#define NOHZ_KICK_MASK (NOHZ_BALANCE_KICK | NOHZ_STATS_KICK) +#define NOHZ_KICK_MASK (NOHZ_BALANCE_KICK | NOHZ_STATS_KICK | NOHZ_NEXT_KICK) #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags) @@ -2204,33 +2790,12 @@ extern void nohz_balance_exit_idle(struct rq *rq); static inline void nohz_balance_exit_idle(struct rq *rq) { } #endif - -#ifdef CONFIG_SMP -static inline -void __dl_update(struct dl_bw *dl_b, s64 bw) -{ - struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw); - int i; - - RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), - "sched RCU must be held"); - for_each_cpu_and(i, rd->span, cpu_active_mask) { - struct rq *rq = cpu_rq(i); - - rq->dl.extra_bw += bw; - } -} +#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) +extern void nohz_run_idle_balance(int cpu); #else -static inline -void __dl_update(struct dl_bw *dl_b, s64 bw) -{ - struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw); - - dl->extra_bw += bw; -} +static inline void nohz_run_idle_balance(int cpu) { } #endif - #ifdef CONFIG_IRQ_TIME_ACCOUNTING struct irqtime { u64 total; @@ -2243,7 +2808,7 @@ DECLARE_PER_CPU(struct irqtime, cpu_irqtime); /* * Returns the irqtime minus the softirq time computed by ksoftirqd. - * Otherwise ksoftirqd's sum_exec_runtime is substracted its own runtime + * Otherwise ksoftirqd's sum_exec_runtime is subtracted its own runtime * and never move forward. */ static inline u64 irq_time_read(int cpu) @@ -2299,40 +2864,6 @@ static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {} #endif /* CONFIG_CPU_FREQ */ -#ifdef CONFIG_UCLAMP_TASK -unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id); - -static __always_inline -unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util, - struct task_struct *p) -{ - unsigned long min_util = READ_ONCE(rq->uclamp[UCLAMP_MIN].value); - unsigned long max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value); - - if (p) { - min_util = max(min_util, uclamp_eff_value(p, UCLAMP_MIN)); - max_util = max(max_util, uclamp_eff_value(p, UCLAMP_MAX)); - } - - /* - * Since CPU's {min,max}_util clamps are MAX aggregated considering - * RUNNABLE tasks with _different_ clamps, we can end up with an - * inversion. Fix it now when the clamps are applied. - */ - if (unlikely(min_util >= max_util)) - return min_util; - - return clamp(util, min_util, max_util); -} -#else /* CONFIG_UCLAMP_TASK */ -static inline -unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util, - struct task_struct *p) -{ - return util; -} -#endif /* CONFIG_UCLAMP_TASK */ - #ifdef arch_scale_freq_capacity # ifndef arch_scale_freq_invariant # define arch_scale_freq_invariant() true @@ -2346,29 +2877,41 @@ static inline unsigned long capacity_orig_of(int cpu) { return cpu_rq(cpu)->cpu_capacity_orig; } -#endif /** - * enum schedutil_type - CPU utilization type + * enum cpu_util_type - CPU utilization type * @FREQUENCY_UTIL: Utilization used to select frequency * @ENERGY_UTIL: Utilization used during energy calculation * * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time * need to be aggregated differently depending on the usage made of them. This - * enum is used within schedutil_freq_util() to differentiate the types of + * enum is used within effective_cpu_util() to differentiate the types of * utilization expected by the callers, and adjust the aggregation accordingly. */ -enum schedutil_type { +enum cpu_util_type { FREQUENCY_UTIL, ENERGY_UTIL, }; -#ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL - -unsigned long schedutil_cpu_util(int cpu, unsigned long util_cfs, - unsigned long max, enum schedutil_type type, +unsigned long effective_cpu_util(int cpu, unsigned long util_cfs, + enum cpu_util_type type, struct task_struct *p); +/* + * Verify the fitness of task @p to run on @cpu taking into account the + * CPU original capacity and the runtime/deadline ratio of the task. + * + * The function will return true if the original capacity of @cpu is + * greater than or equal to task's deadline density right shifted by + * (BW_SHIFT - SCHED_CAPACITY_SHIFT) and false otherwise. + */ +static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu) +{ + unsigned long cap = arch_scale_cpu_capacity(cpu); + + return cap >= p->dl.dl_density >> (BW_SHIFT - SCHED_CAPACITY_SHIFT); +} + static inline unsigned long cpu_bw_dl(struct rq *rq) { return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT; @@ -2379,30 +2922,158 @@ static inline unsigned long cpu_util_dl(struct rq *rq) return READ_ONCE(rq->avg_dl.util_avg); } -static inline unsigned long cpu_util_cfs(struct rq *rq) +/** + * cpu_util_cfs() - Estimates the amount of CPU capacity used by CFS tasks. + * @cpu: the CPU to get the utilization for. + * + * The unit of the return value must be the same as the one of CPU capacity + * so that CPU utilization can be compared with CPU capacity. + * + * CPU utilization is the sum of running time of runnable tasks plus the + * recent utilization of currently non-runnable tasks on that CPU. + * It represents the amount of CPU capacity currently used by CFS tasks in + * the range [0..max CPU capacity] with max CPU capacity being the CPU + * capacity at f_max. + * + * The estimated CPU utilization is defined as the maximum between CPU + * utilization and sum of the estimated utilization of the currently + * runnable tasks on that CPU. It preserves a utilization "snapshot" of + * previously-executed tasks, which helps better deduce how busy a CPU will + * be when a long-sleeping task wakes up. The contribution to CPU utilization + * of such a task would be significantly decayed at this point of time. + * + * CPU utilization can be higher than the current CPU capacity + * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because + * of rounding errors as well as task migrations or wakeups of new tasks. + * CPU utilization has to be capped to fit into the [0..max CPU capacity] + * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%) + * could be seen as over-utilized even though CPU1 has 20% of spare CPU + * capacity. CPU utilization is allowed to overshoot current CPU capacity + * though since this is useful for predicting the CPU capacity required + * after task migrations (scheduler-driven DVFS). + * + * Return: (Estimated) utilization for the specified CPU. + */ +static inline unsigned long cpu_util_cfs(int cpu) { - unsigned long util = READ_ONCE(rq->cfs.avg.util_avg); + struct cfs_rq *cfs_rq; + unsigned long util; + + cfs_rq = &cpu_rq(cpu)->cfs; + util = READ_ONCE(cfs_rq->avg.util_avg); if (sched_feat(UTIL_EST)) { util = max_t(unsigned long, util, - READ_ONCE(rq->cfs.avg.util_est.enqueued)); + READ_ONCE(cfs_rq->avg.util_est.enqueued)); } - return util; + return min(util, capacity_orig_of(cpu)); } static inline unsigned long cpu_util_rt(struct rq *rq) { return READ_ONCE(rq->avg_rt.util_avg); } -#else /* CONFIG_CPU_FREQ_GOV_SCHEDUTIL */ -static inline unsigned long schedutil_cpu_util(int cpu, unsigned long util_cfs, - unsigned long max, enum schedutil_type type, - struct task_struct *p) +#endif + +#ifdef CONFIG_UCLAMP_TASK +unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id); + +/** + * uclamp_rq_util_with - clamp @util with @rq and @p effective uclamp values. + * @rq: The rq to clamp against. Must not be NULL. + * @util: The util value to clamp. + * @p: The task to clamp against. Can be NULL if you want to clamp + * against @rq only. + * + * Clamps the passed @util to the max(@rq, @p) effective uclamp values. + * + * If sched_uclamp_used static key is disabled, then just return the util + * without any clamping since uclamp aggregation at the rq level in the fast + * path is disabled, rendering this operation a NOP. + * + * Use uclamp_eff_value() if you don't care about uclamp values at rq level. It + * will return the correct effective uclamp value of the task even if the + * static key is disabled. + */ +static __always_inline +unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util, + struct task_struct *p) { - return 0; + unsigned long min_util = 0; + unsigned long max_util = 0; + + if (!static_branch_likely(&sched_uclamp_used)) + return util; + + if (p) { + min_util = uclamp_eff_value(p, UCLAMP_MIN); + max_util = uclamp_eff_value(p, UCLAMP_MAX); + + /* + * Ignore last runnable task's max clamp, as this task will + * reset it. Similarly, no need to read the rq's min clamp. + */ + if (rq->uclamp_flags & UCLAMP_FLAG_IDLE) + goto out; + } + + min_util = max_t(unsigned long, min_util, READ_ONCE(rq->uclamp[UCLAMP_MIN].value)); + max_util = max_t(unsigned long, max_util, READ_ONCE(rq->uclamp[UCLAMP_MAX].value)); +out: + /* + * Since CPU's {min,max}_util clamps are MAX aggregated considering + * RUNNABLE tasks with _different_ clamps, we can end up with an + * inversion. Fix it now when the clamps are applied. + */ + if (unlikely(min_util >= max_util)) + return min_util; + + return clamp(util, min_util, max_util); } -#endif /* CONFIG_CPU_FREQ_GOV_SCHEDUTIL */ + +/* Is the rq being capped/throttled by uclamp_max? */ +static inline bool uclamp_rq_is_capped(struct rq *rq) +{ + unsigned long rq_util; + unsigned long max_util; + + if (!static_branch_likely(&sched_uclamp_used)) + return false; + + rq_util = cpu_util_cfs(cpu_of(rq)) + cpu_util_rt(rq); + max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value); + + return max_util != SCHED_CAPACITY_SCALE && rq_util >= max_util; +} + +/* + * When uclamp is compiled in, the aggregation at rq level is 'turned off' + * by default in the fast path and only gets turned on once userspace performs + * an operation that requires it. + * + * Returns true if userspace opted-in to use uclamp and aggregation at rq level + * hence is active. + */ +static inline bool uclamp_is_used(void) +{ + return static_branch_likely(&sched_uclamp_used); +} +#else /* CONFIG_UCLAMP_TASK */ +static inline +unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util, + struct task_struct *p) +{ + return util; +} + +static inline bool uclamp_rq_is_capped(struct rq *rq) { return false; } + +static inline bool uclamp_is_used(void) +{ + return false; +} +#endif /* CONFIG_UCLAMP_TASK */ #ifdef CONFIG_HAVE_SCHED_AVG_IRQ static inline unsigned long cpu_util_irq(struct rq *rq) @@ -2492,3 +3163,24 @@ static inline bool is_per_cpu_kthread(struct task_struct *p) return true; } #endif + +extern void swake_up_all_locked(struct swait_queue_head *q); +extern void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait); + +#ifdef CONFIG_PREEMPT_DYNAMIC +extern int preempt_dynamic_mode; +extern int sched_dynamic_mode(const char *str); +extern void sched_dynamic_update(int mode); +#endif + +static inline void update_current_exec_runtime(struct task_struct *curr, + u64 now, u64 delta_exec) +{ + curr->se.sum_exec_runtime += delta_exec; + account_group_exec_runtime(curr, delta_exec); + + curr->se.exec_start = now; + cgroup_account_cputime(curr, delta_exec); +} + +#endif /* _KERNEL_SCHED_SCHED_H */ |