aboutsummaryrefslogtreecommitdiffstats
path: root/lib/math
diff options
context:
space:
mode:
Diffstat (limited to 'lib/math')
-rw-r--r--lib/math/Kconfig9
-rw-r--r--lib/math/Makefile3
-rw-r--r--lib/math/div64.c46
-rw-r--r--lib/math/int_pow.c2
-rw-r--r--lib/math/int_sqrt.c3
-rw-r--r--lib/math/prime_numbers.c10
-rw-r--r--lib/math/rational-test.c56
-rw-r--r--lib/math/rational.c23
-rw-r--r--lib/math/reciprocal_div.c10
-rw-r--r--lib/math/test_div64.c249
10 files changed, 391 insertions, 20 deletions
diff --git a/lib/math/Kconfig b/lib/math/Kconfig
index 15bd50d92308..0634b428d0cb 100644
--- a/lib/math/Kconfig
+++ b/lib/math/Kconfig
@@ -6,7 +6,12 @@ config CORDIC
calculations are in fixed point. Module will be called cordic.
config PRIME_NUMBERS
- tristate
+ tristate "Simple prime number generator for testing"
+ help
+ This option provides a simple prime number generator for test
+ modules.
+
+ If unsure, say N.
config RATIONAL
- bool
+ tristate
diff --git a/lib/math/Makefile b/lib/math/Makefile
index be6909e943bd..bfac26ddfc22 100644
--- a/lib/math/Makefile
+++ b/lib/math/Makefile
@@ -4,3 +4,6 @@ obj-y += div64.o gcd.o lcm.o int_pow.o int_sqrt.o reciprocal_div.o
obj-$(CONFIG_CORDIC) += cordic.o
obj-$(CONFIG_PRIME_NUMBERS) += prime_numbers.o
obj-$(CONFIG_RATIONAL) += rational.o
+
+obj-$(CONFIG_TEST_DIV64) += test_div64.o
+obj-$(CONFIG_RATIONAL_KUNIT_TEST) += rational-test.o
diff --git a/lib/math/div64.c b/lib/math/div64.c
index 368ca7fd0d82..46866394fc84 100644
--- a/lib/math/div64.c
+++ b/lib/math/div64.c
@@ -18,9 +18,11 @@
* or by defining a preprocessor macro in arch/include/asm/div64.h.
*/
+#include <linux/bitops.h>
#include <linux/export.h>
-#include <linux/kernel.h>
+#include <linux/math.h>
#include <linux/math64.h>
+#include <linux/log2.h>
/* Not needed on 64bit architectures */
#if BITS_PER_LONG == 32
@@ -190,3 +192,45 @@ u32 iter_div_u64_rem(u64 dividend, u32 divisor, u64 *remainder)
return __iter_div_u64_rem(dividend, divisor, remainder);
}
EXPORT_SYMBOL(iter_div_u64_rem);
+
+#ifndef mul_u64_u64_div_u64
+u64 mul_u64_u64_div_u64(u64 a, u64 b, u64 c)
+{
+ u64 res = 0, div, rem;
+ int shift;
+
+ /* can a * b overflow ? */
+ if (ilog2(a) + ilog2(b) > 62) {
+ /*
+ * (b * a) / c is equal to
+ *
+ * (b / c) * a +
+ * (b % c) * a / c
+ *
+ * if nothing overflows. Can the 1st multiplication
+ * overflow? Yes, but we do not care: this can only
+ * happen if the end result can't fit in u64 anyway.
+ *
+ * So the code below does
+ *
+ * res = (b / c) * a;
+ * b = b % c;
+ */
+ div = div64_u64_rem(b, c, &rem);
+ res = div * a;
+ b = rem;
+
+ shift = ilog2(a) + ilog2(b) - 62;
+ if (shift > 0) {
+ /* drop precision */
+ b >>= shift;
+ c >>= shift;
+ if (!c)
+ return res;
+ }
+ }
+
+ return res + div64_u64(a * b, c);
+}
+EXPORT_SYMBOL(mul_u64_u64_div_u64);
+#endif
diff --git a/lib/math/int_pow.c b/lib/math/int_pow.c
index 622fc1ab3c74..0cf426e69bda 100644
--- a/lib/math/int_pow.c
+++ b/lib/math/int_pow.c
@@ -6,7 +6,7 @@
*/
#include <linux/export.h>
-#include <linux/kernel.h>
+#include <linux/math.h>
#include <linux/types.h>
/**
diff --git a/lib/math/int_sqrt.c b/lib/math/int_sqrt.c
index 30e0f9770f88..a8170bb9142f 100644
--- a/lib/math/int_sqrt.c
+++ b/lib/math/int_sqrt.c
@@ -6,9 +6,10 @@
* square root from Guy L. Steele.
*/
-#include <linux/kernel.h>
#include <linux/export.h>
#include <linux/bitops.h>
+#include <linux/limits.h>
+#include <linux/math.h>
/**
* int_sqrt - computes the integer square root
diff --git a/lib/math/prime_numbers.c b/lib/math/prime_numbers.c
index 052f5b727be7..d42cebf7407f 100644
--- a/lib/math/prime_numbers.c
+++ b/lib/math/prime_numbers.c
@@ -1,5 +1,5 @@
// SPDX-License-Identifier: GPL-2.0-only
-#define pr_fmt(fmt) "prime numbers: " fmt "\n"
+#define pr_fmt(fmt) "prime numbers: " fmt
#include <linux/module.h>
#include <linux/mutex.h>
@@ -253,7 +253,7 @@ static void dump_primes(void)
if (buf)
bitmap_print_to_pagebuf(true, buf, p->primes, p->sz);
- pr_info("primes.{last=%lu, .sz=%lu, .primes[]=...x%lx} = %s",
+ pr_info("primes.{last=%lu, .sz=%lu, .primes[]=...x%lx} = %s\n",
p->last, p->sz, p->primes[BITS_TO_LONGS(p->sz) - 1], buf);
rcu_read_unlock();
@@ -273,7 +273,7 @@ static int selftest(unsigned long max)
bool fast = is_prime_number(x);
if (slow != fast) {
- pr_err("inconsistent result for is-prime(%lu): slow=%s, fast=%s!",
+ pr_err("inconsistent result for is-prime(%lu): slow=%s, fast=%s!\n",
x, slow ? "yes" : "no", fast ? "yes" : "no");
goto err;
}
@@ -282,14 +282,14 @@ static int selftest(unsigned long max)
continue;
if (next_prime_number(last) != x) {
- pr_err("incorrect result for next-prime(%lu): expected %lu, got %lu",
+ pr_err("incorrect result for next-prime(%lu): expected %lu, got %lu\n",
last, x, next_prime_number(last));
goto err;
}
last = x;
}
- pr_info("selftest(%lu) passed, last prime was %lu", x, last);
+ pr_info("%s(%lu) passed, last prime was %lu\n", __func__, x, last);
return 0;
err:
diff --git a/lib/math/rational-test.c b/lib/math/rational-test.c
new file mode 100644
index 000000000000..01611ddff420
--- /dev/null
+++ b/lib/math/rational-test.c
@@ -0,0 +1,56 @@
+// SPDX-License-Identifier: GPL-2.0
+
+#include <kunit/test.h>
+
+#include <linux/rational.h>
+
+struct rational_test_param {
+ unsigned long num, den;
+ unsigned long max_num, max_den;
+ unsigned long exp_num, exp_den;
+
+ const char *name;
+};
+
+static const struct rational_test_param test_parameters[] = {
+ { 1230, 10, 100, 20, 100, 1, "Exceeds bounds, semi-convergent term > 1/2 last term" },
+ { 34567,100, 120, 20, 120, 1, "Exceeds bounds, semi-convergent term < 1/2 last term" },
+ { 1, 30, 100, 10, 0, 1, "Closest to zero" },
+ { 1, 19, 100, 10, 1, 10, "Closest to smallest non-zero" },
+ { 27,32, 16, 16, 11, 13, "Use convergent" },
+ { 1155, 7735, 255, 255, 33, 221, "Exact answer" },
+ { 87, 32, 70, 32, 68, 25, "Semiconvergent, numerator limit" },
+ { 14533, 4626, 15000, 2400, 7433, 2366, "Semiconvergent, denominator limit" },
+};
+
+static void get_desc(const struct rational_test_param *param, char *desc)
+{
+ strscpy(desc, param->name, KUNIT_PARAM_DESC_SIZE);
+}
+
+/* Creates function rational_gen_params */
+KUNIT_ARRAY_PARAM(rational, test_parameters, get_desc);
+
+static void rational_test(struct kunit *test)
+{
+ const struct rational_test_param *param = (const struct rational_test_param *)test->param_value;
+ unsigned long n = 0, d = 0;
+
+ rational_best_approximation(param->num, param->den, param->max_num, param->max_den, &n, &d);
+ KUNIT_EXPECT_EQ(test, n, param->exp_num);
+ KUNIT_EXPECT_EQ(test, d, param->exp_den);
+}
+
+static struct kunit_case rational_test_cases[] = {
+ KUNIT_CASE_PARAM(rational_test, rational_gen_params),
+ {}
+};
+
+static struct kunit_suite rational_test_suite = {
+ .name = "rational",
+ .test_cases = rational_test_cases,
+};
+
+kunit_test_suites(&rational_test_suite);
+
+MODULE_LICENSE("GPL v2");
diff --git a/lib/math/rational.c b/lib/math/rational.c
index 31fb27db2deb..ec59d426ea63 100644
--- a/lib/math/rational.c
+++ b/lib/math/rational.c
@@ -11,7 +11,9 @@
#include <linux/rational.h>
#include <linux/compiler.h>
#include <linux/export.h>
-#include <linux/kernel.h>
+#include <linux/minmax.h>
+#include <linux/limits.h>
+#include <linux/module.h>
/*
* calculate best rational approximation for a given fraction
@@ -27,7 +29,7 @@
* with the fractional part size described in given_denominator.
*
* for theoretical background, see:
- * http://en.wikipedia.org/wiki/Continued_fraction
+ * https://en.wikipedia.org/wiki/Continued_fraction
*/
void rational_best_approximation(
@@ -78,13 +80,18 @@ void rational_best_approximation(
* found below as 't'.
*/
if ((n2 > max_numerator) || (d2 > max_denominator)) {
- unsigned long t = min((max_numerator - n0) / n1,
- (max_denominator - d0) / d1);
+ unsigned long t = ULONG_MAX;
- /* This tests if the semi-convergent is closer
- * than the previous convergent.
+ if (d1)
+ t = (max_denominator - d0) / d1;
+ if (n1)
+ t = min(t, (max_numerator - n0) / n1);
+
+ /* This tests if the semi-convergent is closer than the previous
+ * convergent. If d1 is zero there is no previous convergent as this
+ * is the 1st iteration, so always choose the semi-convergent.
*/
- if (2u * t > a || (2u * t == a && d0 * dp > d1 * d)) {
+ if (!d1 || 2u * t > a || (2u * t == a && d0 * dp > d1 * d)) {
n1 = n0 + t * n1;
d1 = d0 + t * d1;
}
@@ -100,3 +107,5 @@ void rational_best_approximation(
}
EXPORT_SYMBOL(rational_best_approximation);
+
+MODULE_LICENSE("GPL v2");
diff --git a/lib/math/reciprocal_div.c b/lib/math/reciprocal_div.c
index bf043258fa00..6cb4adbb81d2 100644
--- a/lib/math/reciprocal_div.c
+++ b/lib/math/reciprocal_div.c
@@ -1,9 +1,13 @@
// SPDX-License-Identifier: GPL-2.0
+#include <linux/bitops.h>
#include <linux/bug.h>
-#include <linux/kernel.h>
-#include <asm/div64.h>
-#include <linux/reciprocal_div.h>
#include <linux/export.h>
+#include <linux/limits.h>
+#include <linux/math.h>
+#include <linux/minmax.h>
+#include <linux/types.h>
+
+#include <linux/reciprocal_div.h>
/*
* For a description of the algorithm please have a look at
diff --git a/lib/math/test_div64.c b/lib/math/test_div64.c
new file mode 100644
index 000000000000..c15edd688dd2
--- /dev/null
+++ b/lib/math/test_div64.c
@@ -0,0 +1,249 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (C) 2021 Maciej W. Rozycki
+ */
+
+#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
+
+#include <linux/init.h>
+#include <linux/ktime.h>
+#include <linux/module.h>
+#include <linux/printk.h>
+#include <linux/time64.h>
+#include <linux/types.h>
+
+#include <asm/div64.h>
+
+#define TEST_DIV64_N_ITER 1024
+
+static const u64 test_div64_dividends[] = {
+ 0x00000000ab275080,
+ 0x0000000fe73c1959,
+ 0x000000e54c0a74b1,
+ 0x00000d4398ff1ef9,
+ 0x0000a18c2ee1c097,
+ 0x00079fb80b072e4a,
+ 0x0072db27380dd689,
+ 0x0842f488162e2284,
+ 0xf66745411d8ab063,
+};
+#define SIZE_DIV64_DIVIDENDS ARRAY_SIZE(test_div64_dividends)
+
+#define TEST_DIV64_DIVISOR_0 0x00000009
+#define TEST_DIV64_DIVISOR_1 0x0000007c
+#define TEST_DIV64_DIVISOR_2 0x00000204
+#define TEST_DIV64_DIVISOR_3 0x0000cb5b
+#define TEST_DIV64_DIVISOR_4 0x00010000
+#define TEST_DIV64_DIVISOR_5 0x0008a880
+#define TEST_DIV64_DIVISOR_6 0x003fd3ae
+#define TEST_DIV64_DIVISOR_7 0x0b658fac
+#define TEST_DIV64_DIVISOR_8 0xdc08b349
+
+static const u32 test_div64_divisors[] = {
+ TEST_DIV64_DIVISOR_0,
+ TEST_DIV64_DIVISOR_1,
+ TEST_DIV64_DIVISOR_2,
+ TEST_DIV64_DIVISOR_3,
+ TEST_DIV64_DIVISOR_4,
+ TEST_DIV64_DIVISOR_5,
+ TEST_DIV64_DIVISOR_6,
+ TEST_DIV64_DIVISOR_7,
+ TEST_DIV64_DIVISOR_8,
+};
+#define SIZE_DIV64_DIVISORS ARRAY_SIZE(test_div64_divisors)
+
+static const struct {
+ u64 quotient;
+ u32 remainder;
+} test_div64_results[SIZE_DIV64_DIVISORS][SIZE_DIV64_DIVIDENDS] = {
+ {
+ { 0x0000000013045e47, 0x00000001 },
+ { 0x000000000161596c, 0x00000030 },
+ { 0x000000000054e9d4, 0x00000130 },
+ { 0x000000000000d776, 0x0000278e },
+ { 0x000000000000ab27, 0x00005080 },
+ { 0x00000000000013c4, 0x0004ce80 },
+ { 0x00000000000002ae, 0x001e143c },
+ { 0x000000000000000f, 0x0033e56c },
+ { 0x0000000000000000, 0xab275080 },
+ }, {
+ { 0x00000001c45c02d1, 0x00000000 },
+ { 0x0000000020d5213c, 0x00000049 },
+ { 0x0000000007e3d65f, 0x000001dd },
+ { 0x0000000000140531, 0x000065ee },
+ { 0x00000000000fe73c, 0x00001959 },
+ { 0x000000000001d637, 0x0004e5d9 },
+ { 0x0000000000003fc9, 0x000713bb },
+ { 0x0000000000000165, 0x029abe7d },
+ { 0x0000000000000012, 0x6e9f7e37 },
+ }, {
+ { 0x000000197a3a0cf7, 0x00000002 },
+ { 0x00000001d9632e5c, 0x00000021 },
+ { 0x0000000071c28039, 0x000001cd },
+ { 0x000000000120a844, 0x0000b885 },
+ { 0x0000000000e54c0a, 0x000074b1 },
+ { 0x00000000001a7bb3, 0x00072331 },
+ { 0x00000000000397ad, 0x0002c61b },
+ { 0x000000000000141e, 0x06ea2e89 },
+ { 0x000000000000010a, 0xab002ad7 },
+ }, {
+ { 0x0000017949e37538, 0x00000001 },
+ { 0x0000001b62441f37, 0x00000055 },
+ { 0x0000000694a3391d, 0x00000085 },
+ { 0x0000000010b2a5d2, 0x0000a753 },
+ { 0x000000000d4398ff, 0x00001ef9 },
+ { 0x0000000001882ec6, 0x0005cbf9 },
+ { 0x000000000035333b, 0x0017abdf },
+ { 0x00000000000129f1, 0x0ab4520d },
+ { 0x0000000000000f6e, 0x8ac0ce9b },
+ }, {
+ { 0x000011f321a74e49, 0x00000006 },
+ { 0x0000014d8481d211, 0x0000005b },
+ { 0x0000005025cbd92d, 0x000001e3 },
+ { 0x00000000cb5e71e3, 0x000043e6 },
+ { 0x00000000a18c2ee1, 0x0000c097 },
+ { 0x0000000012a88828, 0x00036c97 },
+ { 0x000000000287f16f, 0x002c2a25 },
+ { 0x00000000000e2cc7, 0x02d581e3 },
+ { 0x000000000000bbf4, 0x1ba08c03 },
+ }, {
+ { 0x0000d8db8f72935d, 0x00000005 },
+ { 0x00000fbd5aed7a2e, 0x00000002 },
+ { 0x000003c84b6ea64a, 0x00000122 },
+ { 0x0000000998fa8829, 0x000044b7 },
+ { 0x000000079fb80b07, 0x00002e4a },
+ { 0x00000000e16b20fa, 0x0002a14a },
+ { 0x000000001e940d22, 0x00353b2e },
+ { 0x0000000000ab40ac, 0x06fba6ba },
+ { 0x000000000008debd, 0x72d98365 },
+ }, {
+ { 0x000cc3045b8fc281, 0x00000000 },
+ { 0x0000ed1f48b5c9fc, 0x00000079 },
+ { 0x000038fb9c63406a, 0x000000e1 },
+ { 0x000000909705b825, 0x00000a62 },
+ { 0x00000072db27380d, 0x0000d689 },
+ { 0x0000000d43fce827, 0x00082b09 },
+ { 0x00000001ccaba11a, 0x0037e8dd },
+ { 0x000000000a13f729, 0x0566dffd },
+ { 0x000000000085a14b, 0x23d36726 },
+ }, {
+ { 0x00eafeb9c993592b, 0x00000001 },
+ { 0x00110e5befa9a991, 0x00000048 },
+ { 0x00041947b4a1d36a, 0x000000dc },
+ { 0x00000a6679327311, 0x0000c079 },
+ { 0x00000842f488162e, 0x00002284 },
+ { 0x000000f4459740fc, 0x00084484 },
+ { 0x0000002122c47bf9, 0x002ca446 },
+ { 0x00000000b9936290, 0x004979c4 },
+ { 0x00000000099ca89d, 0x9db446bf },
+ }, {
+ { 0x1b60cece589da1d2, 0x00000001 },
+ { 0x01fcb42be1453f5b, 0x0000004f },
+ { 0x007a3f2457df0749, 0x0000013f },
+ { 0x0001363130e3ec7b, 0x000017aa },
+ { 0x0000f66745411d8a, 0x0000b063 },
+ { 0x00001c757dfab350, 0x00048863 },
+ { 0x000003dc4979c652, 0x00224ea7 },
+ { 0x000000159edc3144, 0x06409ab3 },
+ { 0x000000011eadfee3, 0xa99c48a8 },
+ },
+};
+
+static inline bool test_div64_verify(u64 quotient, u32 remainder, int i, int j)
+{
+ return (quotient == test_div64_results[i][j].quotient &&
+ remainder == test_div64_results[i][j].remainder);
+}
+
+/*
+ * This needs to be a macro, because we don't want to rely on the compiler
+ * to do constant propagation, and `do_div' may take a different path for
+ * constants, so we do want to verify that as well.
+ */
+#define test_div64_one(dividend, divisor, i, j) ({ \
+ bool result = true; \
+ u64 quotient; \
+ u32 remainder; \
+ \
+ quotient = dividend; \
+ remainder = do_div(quotient, divisor); \
+ if (!test_div64_verify(quotient, remainder, i, j)) { \
+ pr_err("ERROR: %016llx / %08x => %016llx,%08x\n", \
+ dividend, divisor, quotient, remainder); \
+ pr_err("ERROR: expected value => %016llx,%08x\n",\
+ test_div64_results[i][j].quotient, \
+ test_div64_results[i][j].remainder); \
+ result = false; \
+ } \
+ result; \
+})
+
+/*
+ * Run calculation for the same divisor value expressed as a constant
+ * and as a variable, so as to verify the implementation for both cases
+ * should they be handled by different code execution paths.
+ */
+static bool __init test_div64(void)
+{
+ u64 dividend;
+ int i, j;
+
+ for (i = 0; i < SIZE_DIV64_DIVIDENDS; i++) {
+ dividend = test_div64_dividends[i];
+ if (!test_div64_one(dividend, TEST_DIV64_DIVISOR_0, i, 0))
+ return false;
+ if (!test_div64_one(dividend, TEST_DIV64_DIVISOR_1, i, 1))
+ return false;
+ if (!test_div64_one(dividend, TEST_DIV64_DIVISOR_2, i, 2))
+ return false;
+ if (!test_div64_one(dividend, TEST_DIV64_DIVISOR_3, i, 3))
+ return false;
+ if (!test_div64_one(dividend, TEST_DIV64_DIVISOR_4, i, 4))
+ return false;
+ if (!test_div64_one(dividend, TEST_DIV64_DIVISOR_5, i, 5))
+ return false;
+ if (!test_div64_one(dividend, TEST_DIV64_DIVISOR_6, i, 6))
+ return false;
+ if (!test_div64_one(dividend, TEST_DIV64_DIVISOR_7, i, 7))
+ return false;
+ if (!test_div64_one(dividend, TEST_DIV64_DIVISOR_8, i, 8))
+ return false;
+ for (j = 0; j < SIZE_DIV64_DIVISORS; j++) {
+ if (!test_div64_one(dividend, test_div64_divisors[j],
+ i, j))
+ return false;
+ }
+ }
+ return true;
+}
+
+static int __init test_div64_init(void)
+{
+ struct timespec64 ts, ts0, ts1;
+ int i;
+
+ pr_info("Starting 64bit/32bit division and modulo test\n");
+ ktime_get_ts64(&ts0);
+
+ for (i = 0; i < TEST_DIV64_N_ITER; i++)
+ if (!test_div64())
+ break;
+
+ ktime_get_ts64(&ts1);
+ ts = timespec64_sub(ts1, ts0);
+ pr_info("Completed 64bit/32bit division and modulo test, "
+ "%llu.%09lus elapsed\n", ts.tv_sec, ts.tv_nsec);
+
+ return 0;
+}
+
+static void __exit test_div64_exit(void)
+{
+}
+
+module_init(test_div64_init);
+module_exit(test_div64_exit);
+
+MODULE_AUTHOR("Maciej W. Rozycki <macro@orcam.me.uk>");
+MODULE_LICENSE("GPL");
+MODULE_DESCRIPTION("64bit/32bit division and modulo test module");