diff options
Diffstat (limited to 'lib/math')
-rw-r--r-- | lib/math/Kconfig | 9 | ||||
-rw-r--r-- | lib/math/Makefile | 3 | ||||
-rw-r--r-- | lib/math/div64.c | 46 | ||||
-rw-r--r-- | lib/math/int_pow.c | 2 | ||||
-rw-r--r-- | lib/math/int_sqrt.c | 3 | ||||
-rw-r--r-- | lib/math/prime_numbers.c | 10 | ||||
-rw-r--r-- | lib/math/rational-test.c | 56 | ||||
-rw-r--r-- | lib/math/rational.c | 23 | ||||
-rw-r--r-- | lib/math/reciprocal_div.c | 10 | ||||
-rw-r--r-- | lib/math/test_div64.c | 249 |
10 files changed, 391 insertions, 20 deletions
diff --git a/lib/math/Kconfig b/lib/math/Kconfig index 15bd50d92308..0634b428d0cb 100644 --- a/lib/math/Kconfig +++ b/lib/math/Kconfig @@ -6,7 +6,12 @@ config CORDIC calculations are in fixed point. Module will be called cordic. config PRIME_NUMBERS - tristate + tristate "Simple prime number generator for testing" + help + This option provides a simple prime number generator for test + modules. + + If unsure, say N. config RATIONAL - bool + tristate diff --git a/lib/math/Makefile b/lib/math/Makefile index be6909e943bd..bfac26ddfc22 100644 --- a/lib/math/Makefile +++ b/lib/math/Makefile @@ -4,3 +4,6 @@ obj-y += div64.o gcd.o lcm.o int_pow.o int_sqrt.o reciprocal_div.o obj-$(CONFIG_CORDIC) += cordic.o obj-$(CONFIG_PRIME_NUMBERS) += prime_numbers.o obj-$(CONFIG_RATIONAL) += rational.o + +obj-$(CONFIG_TEST_DIV64) += test_div64.o +obj-$(CONFIG_RATIONAL_KUNIT_TEST) += rational-test.o diff --git a/lib/math/div64.c b/lib/math/div64.c index 368ca7fd0d82..46866394fc84 100644 --- a/lib/math/div64.c +++ b/lib/math/div64.c @@ -18,9 +18,11 @@ * or by defining a preprocessor macro in arch/include/asm/div64.h. */ +#include <linux/bitops.h> #include <linux/export.h> -#include <linux/kernel.h> +#include <linux/math.h> #include <linux/math64.h> +#include <linux/log2.h> /* Not needed on 64bit architectures */ #if BITS_PER_LONG == 32 @@ -190,3 +192,45 @@ u32 iter_div_u64_rem(u64 dividend, u32 divisor, u64 *remainder) return __iter_div_u64_rem(dividend, divisor, remainder); } EXPORT_SYMBOL(iter_div_u64_rem); + +#ifndef mul_u64_u64_div_u64 +u64 mul_u64_u64_div_u64(u64 a, u64 b, u64 c) +{ + u64 res = 0, div, rem; + int shift; + + /* can a * b overflow ? */ + if (ilog2(a) + ilog2(b) > 62) { + /* + * (b * a) / c is equal to + * + * (b / c) * a + + * (b % c) * a / c + * + * if nothing overflows. Can the 1st multiplication + * overflow? Yes, but we do not care: this can only + * happen if the end result can't fit in u64 anyway. + * + * So the code below does + * + * res = (b / c) * a; + * b = b % c; + */ + div = div64_u64_rem(b, c, &rem); + res = div * a; + b = rem; + + shift = ilog2(a) + ilog2(b) - 62; + if (shift > 0) { + /* drop precision */ + b >>= shift; + c >>= shift; + if (!c) + return res; + } + } + + return res + div64_u64(a * b, c); +} +EXPORT_SYMBOL(mul_u64_u64_div_u64); +#endif diff --git a/lib/math/int_pow.c b/lib/math/int_pow.c index 622fc1ab3c74..0cf426e69bda 100644 --- a/lib/math/int_pow.c +++ b/lib/math/int_pow.c @@ -6,7 +6,7 @@ */ #include <linux/export.h> -#include <linux/kernel.h> +#include <linux/math.h> #include <linux/types.h> /** diff --git a/lib/math/int_sqrt.c b/lib/math/int_sqrt.c index 30e0f9770f88..a8170bb9142f 100644 --- a/lib/math/int_sqrt.c +++ b/lib/math/int_sqrt.c @@ -6,9 +6,10 @@ * square root from Guy L. Steele. */ -#include <linux/kernel.h> #include <linux/export.h> #include <linux/bitops.h> +#include <linux/limits.h> +#include <linux/math.h> /** * int_sqrt - computes the integer square root diff --git a/lib/math/prime_numbers.c b/lib/math/prime_numbers.c index 052f5b727be7..d42cebf7407f 100644 --- a/lib/math/prime_numbers.c +++ b/lib/math/prime_numbers.c @@ -1,5 +1,5 @@ // SPDX-License-Identifier: GPL-2.0-only -#define pr_fmt(fmt) "prime numbers: " fmt "\n" +#define pr_fmt(fmt) "prime numbers: " fmt #include <linux/module.h> #include <linux/mutex.h> @@ -253,7 +253,7 @@ static void dump_primes(void) if (buf) bitmap_print_to_pagebuf(true, buf, p->primes, p->sz); - pr_info("primes.{last=%lu, .sz=%lu, .primes[]=...x%lx} = %s", + pr_info("primes.{last=%lu, .sz=%lu, .primes[]=...x%lx} = %s\n", p->last, p->sz, p->primes[BITS_TO_LONGS(p->sz) - 1], buf); rcu_read_unlock(); @@ -273,7 +273,7 @@ static int selftest(unsigned long max) bool fast = is_prime_number(x); if (slow != fast) { - pr_err("inconsistent result for is-prime(%lu): slow=%s, fast=%s!", + pr_err("inconsistent result for is-prime(%lu): slow=%s, fast=%s!\n", x, slow ? "yes" : "no", fast ? "yes" : "no"); goto err; } @@ -282,14 +282,14 @@ static int selftest(unsigned long max) continue; if (next_prime_number(last) != x) { - pr_err("incorrect result for next-prime(%lu): expected %lu, got %lu", + pr_err("incorrect result for next-prime(%lu): expected %lu, got %lu\n", last, x, next_prime_number(last)); goto err; } last = x; } - pr_info("selftest(%lu) passed, last prime was %lu", x, last); + pr_info("%s(%lu) passed, last prime was %lu\n", __func__, x, last); return 0; err: diff --git a/lib/math/rational-test.c b/lib/math/rational-test.c new file mode 100644 index 000000000000..01611ddff420 --- /dev/null +++ b/lib/math/rational-test.c @@ -0,0 +1,56 @@ +// SPDX-License-Identifier: GPL-2.0 + +#include <kunit/test.h> + +#include <linux/rational.h> + +struct rational_test_param { + unsigned long num, den; + unsigned long max_num, max_den; + unsigned long exp_num, exp_den; + + const char *name; +}; + +static const struct rational_test_param test_parameters[] = { + { 1230, 10, 100, 20, 100, 1, "Exceeds bounds, semi-convergent term > 1/2 last term" }, + { 34567,100, 120, 20, 120, 1, "Exceeds bounds, semi-convergent term < 1/2 last term" }, + { 1, 30, 100, 10, 0, 1, "Closest to zero" }, + { 1, 19, 100, 10, 1, 10, "Closest to smallest non-zero" }, + { 27,32, 16, 16, 11, 13, "Use convergent" }, + { 1155, 7735, 255, 255, 33, 221, "Exact answer" }, + { 87, 32, 70, 32, 68, 25, "Semiconvergent, numerator limit" }, + { 14533, 4626, 15000, 2400, 7433, 2366, "Semiconvergent, denominator limit" }, +}; + +static void get_desc(const struct rational_test_param *param, char *desc) +{ + strscpy(desc, param->name, KUNIT_PARAM_DESC_SIZE); +} + +/* Creates function rational_gen_params */ +KUNIT_ARRAY_PARAM(rational, test_parameters, get_desc); + +static void rational_test(struct kunit *test) +{ + const struct rational_test_param *param = (const struct rational_test_param *)test->param_value; + unsigned long n = 0, d = 0; + + rational_best_approximation(param->num, param->den, param->max_num, param->max_den, &n, &d); + KUNIT_EXPECT_EQ(test, n, param->exp_num); + KUNIT_EXPECT_EQ(test, d, param->exp_den); +} + +static struct kunit_case rational_test_cases[] = { + KUNIT_CASE_PARAM(rational_test, rational_gen_params), + {} +}; + +static struct kunit_suite rational_test_suite = { + .name = "rational", + .test_cases = rational_test_cases, +}; + +kunit_test_suites(&rational_test_suite); + +MODULE_LICENSE("GPL v2"); diff --git a/lib/math/rational.c b/lib/math/rational.c index 31fb27db2deb..ec59d426ea63 100644 --- a/lib/math/rational.c +++ b/lib/math/rational.c @@ -11,7 +11,9 @@ #include <linux/rational.h> #include <linux/compiler.h> #include <linux/export.h> -#include <linux/kernel.h> +#include <linux/minmax.h> +#include <linux/limits.h> +#include <linux/module.h> /* * calculate best rational approximation for a given fraction @@ -27,7 +29,7 @@ * with the fractional part size described in given_denominator. * * for theoretical background, see: - * http://en.wikipedia.org/wiki/Continued_fraction + * https://en.wikipedia.org/wiki/Continued_fraction */ void rational_best_approximation( @@ -78,13 +80,18 @@ void rational_best_approximation( * found below as 't'. */ if ((n2 > max_numerator) || (d2 > max_denominator)) { - unsigned long t = min((max_numerator - n0) / n1, - (max_denominator - d0) / d1); + unsigned long t = ULONG_MAX; - /* This tests if the semi-convergent is closer - * than the previous convergent. + if (d1) + t = (max_denominator - d0) / d1; + if (n1) + t = min(t, (max_numerator - n0) / n1); + + /* This tests if the semi-convergent is closer than the previous + * convergent. If d1 is zero there is no previous convergent as this + * is the 1st iteration, so always choose the semi-convergent. */ - if (2u * t > a || (2u * t == a && d0 * dp > d1 * d)) { + if (!d1 || 2u * t > a || (2u * t == a && d0 * dp > d1 * d)) { n1 = n0 + t * n1; d1 = d0 + t * d1; } @@ -100,3 +107,5 @@ void rational_best_approximation( } EXPORT_SYMBOL(rational_best_approximation); + +MODULE_LICENSE("GPL v2"); diff --git a/lib/math/reciprocal_div.c b/lib/math/reciprocal_div.c index bf043258fa00..6cb4adbb81d2 100644 --- a/lib/math/reciprocal_div.c +++ b/lib/math/reciprocal_div.c @@ -1,9 +1,13 @@ // SPDX-License-Identifier: GPL-2.0 +#include <linux/bitops.h> #include <linux/bug.h> -#include <linux/kernel.h> -#include <asm/div64.h> -#include <linux/reciprocal_div.h> #include <linux/export.h> +#include <linux/limits.h> +#include <linux/math.h> +#include <linux/minmax.h> +#include <linux/types.h> + +#include <linux/reciprocal_div.h> /* * For a description of the algorithm please have a look at diff --git a/lib/math/test_div64.c b/lib/math/test_div64.c new file mode 100644 index 000000000000..c15edd688dd2 --- /dev/null +++ b/lib/math/test_div64.c @@ -0,0 +1,249 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Copyright (C) 2021 Maciej W. Rozycki + */ + +#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt + +#include <linux/init.h> +#include <linux/ktime.h> +#include <linux/module.h> +#include <linux/printk.h> +#include <linux/time64.h> +#include <linux/types.h> + +#include <asm/div64.h> + +#define TEST_DIV64_N_ITER 1024 + +static const u64 test_div64_dividends[] = { + 0x00000000ab275080, + 0x0000000fe73c1959, + 0x000000e54c0a74b1, + 0x00000d4398ff1ef9, + 0x0000a18c2ee1c097, + 0x00079fb80b072e4a, + 0x0072db27380dd689, + 0x0842f488162e2284, + 0xf66745411d8ab063, +}; +#define SIZE_DIV64_DIVIDENDS ARRAY_SIZE(test_div64_dividends) + +#define TEST_DIV64_DIVISOR_0 0x00000009 +#define TEST_DIV64_DIVISOR_1 0x0000007c +#define TEST_DIV64_DIVISOR_2 0x00000204 +#define TEST_DIV64_DIVISOR_3 0x0000cb5b +#define TEST_DIV64_DIVISOR_4 0x00010000 +#define TEST_DIV64_DIVISOR_5 0x0008a880 +#define TEST_DIV64_DIVISOR_6 0x003fd3ae +#define TEST_DIV64_DIVISOR_7 0x0b658fac +#define TEST_DIV64_DIVISOR_8 0xdc08b349 + +static const u32 test_div64_divisors[] = { + TEST_DIV64_DIVISOR_0, + TEST_DIV64_DIVISOR_1, + TEST_DIV64_DIVISOR_2, + TEST_DIV64_DIVISOR_3, + TEST_DIV64_DIVISOR_4, + TEST_DIV64_DIVISOR_5, + TEST_DIV64_DIVISOR_6, + TEST_DIV64_DIVISOR_7, + TEST_DIV64_DIVISOR_8, +}; +#define SIZE_DIV64_DIVISORS ARRAY_SIZE(test_div64_divisors) + +static const struct { + u64 quotient; + u32 remainder; +} test_div64_results[SIZE_DIV64_DIVISORS][SIZE_DIV64_DIVIDENDS] = { + { + { 0x0000000013045e47, 0x00000001 }, + { 0x000000000161596c, 0x00000030 }, + { 0x000000000054e9d4, 0x00000130 }, + { 0x000000000000d776, 0x0000278e }, + { 0x000000000000ab27, 0x00005080 }, + { 0x00000000000013c4, 0x0004ce80 }, + { 0x00000000000002ae, 0x001e143c }, + { 0x000000000000000f, 0x0033e56c }, + { 0x0000000000000000, 0xab275080 }, + }, { + { 0x00000001c45c02d1, 0x00000000 }, + { 0x0000000020d5213c, 0x00000049 }, + { 0x0000000007e3d65f, 0x000001dd }, + { 0x0000000000140531, 0x000065ee }, + { 0x00000000000fe73c, 0x00001959 }, + { 0x000000000001d637, 0x0004e5d9 }, + { 0x0000000000003fc9, 0x000713bb }, + { 0x0000000000000165, 0x029abe7d }, + { 0x0000000000000012, 0x6e9f7e37 }, + }, { + { 0x000000197a3a0cf7, 0x00000002 }, + { 0x00000001d9632e5c, 0x00000021 }, + { 0x0000000071c28039, 0x000001cd }, + { 0x000000000120a844, 0x0000b885 }, + { 0x0000000000e54c0a, 0x000074b1 }, + { 0x00000000001a7bb3, 0x00072331 }, + { 0x00000000000397ad, 0x0002c61b }, + { 0x000000000000141e, 0x06ea2e89 }, + { 0x000000000000010a, 0xab002ad7 }, + }, { + { 0x0000017949e37538, 0x00000001 }, + { 0x0000001b62441f37, 0x00000055 }, + { 0x0000000694a3391d, 0x00000085 }, + { 0x0000000010b2a5d2, 0x0000a753 }, + { 0x000000000d4398ff, 0x00001ef9 }, + { 0x0000000001882ec6, 0x0005cbf9 }, + { 0x000000000035333b, 0x0017abdf }, + { 0x00000000000129f1, 0x0ab4520d }, + { 0x0000000000000f6e, 0x8ac0ce9b }, + }, { + { 0x000011f321a74e49, 0x00000006 }, + { 0x0000014d8481d211, 0x0000005b }, + { 0x0000005025cbd92d, 0x000001e3 }, + { 0x00000000cb5e71e3, 0x000043e6 }, + { 0x00000000a18c2ee1, 0x0000c097 }, + { 0x0000000012a88828, 0x00036c97 }, + { 0x000000000287f16f, 0x002c2a25 }, + { 0x00000000000e2cc7, 0x02d581e3 }, + { 0x000000000000bbf4, 0x1ba08c03 }, + }, { + { 0x0000d8db8f72935d, 0x00000005 }, + { 0x00000fbd5aed7a2e, 0x00000002 }, + { 0x000003c84b6ea64a, 0x00000122 }, + { 0x0000000998fa8829, 0x000044b7 }, + { 0x000000079fb80b07, 0x00002e4a }, + { 0x00000000e16b20fa, 0x0002a14a }, + { 0x000000001e940d22, 0x00353b2e }, + { 0x0000000000ab40ac, 0x06fba6ba }, + { 0x000000000008debd, 0x72d98365 }, + }, { + { 0x000cc3045b8fc281, 0x00000000 }, + { 0x0000ed1f48b5c9fc, 0x00000079 }, + { 0x000038fb9c63406a, 0x000000e1 }, + { 0x000000909705b825, 0x00000a62 }, + { 0x00000072db27380d, 0x0000d689 }, + { 0x0000000d43fce827, 0x00082b09 }, + { 0x00000001ccaba11a, 0x0037e8dd }, + { 0x000000000a13f729, 0x0566dffd }, + { 0x000000000085a14b, 0x23d36726 }, + }, { + { 0x00eafeb9c993592b, 0x00000001 }, + { 0x00110e5befa9a991, 0x00000048 }, + { 0x00041947b4a1d36a, 0x000000dc }, + { 0x00000a6679327311, 0x0000c079 }, + { 0x00000842f488162e, 0x00002284 }, + { 0x000000f4459740fc, 0x00084484 }, + { 0x0000002122c47bf9, 0x002ca446 }, + { 0x00000000b9936290, 0x004979c4 }, + { 0x00000000099ca89d, 0x9db446bf }, + }, { + { 0x1b60cece589da1d2, 0x00000001 }, + { 0x01fcb42be1453f5b, 0x0000004f }, + { 0x007a3f2457df0749, 0x0000013f }, + { 0x0001363130e3ec7b, 0x000017aa }, + { 0x0000f66745411d8a, 0x0000b063 }, + { 0x00001c757dfab350, 0x00048863 }, + { 0x000003dc4979c652, 0x00224ea7 }, + { 0x000000159edc3144, 0x06409ab3 }, + { 0x000000011eadfee3, 0xa99c48a8 }, + }, +}; + +static inline bool test_div64_verify(u64 quotient, u32 remainder, int i, int j) +{ + return (quotient == test_div64_results[i][j].quotient && + remainder == test_div64_results[i][j].remainder); +} + +/* + * This needs to be a macro, because we don't want to rely on the compiler + * to do constant propagation, and `do_div' may take a different path for + * constants, so we do want to verify that as well. + */ +#define test_div64_one(dividend, divisor, i, j) ({ \ + bool result = true; \ + u64 quotient; \ + u32 remainder; \ + \ + quotient = dividend; \ + remainder = do_div(quotient, divisor); \ + if (!test_div64_verify(quotient, remainder, i, j)) { \ + pr_err("ERROR: %016llx / %08x => %016llx,%08x\n", \ + dividend, divisor, quotient, remainder); \ + pr_err("ERROR: expected value => %016llx,%08x\n",\ + test_div64_results[i][j].quotient, \ + test_div64_results[i][j].remainder); \ + result = false; \ + } \ + result; \ +}) + +/* + * Run calculation for the same divisor value expressed as a constant + * and as a variable, so as to verify the implementation for both cases + * should they be handled by different code execution paths. + */ +static bool __init test_div64(void) +{ + u64 dividend; + int i, j; + + for (i = 0; i < SIZE_DIV64_DIVIDENDS; i++) { + dividend = test_div64_dividends[i]; + if (!test_div64_one(dividend, TEST_DIV64_DIVISOR_0, i, 0)) + return false; + if (!test_div64_one(dividend, TEST_DIV64_DIVISOR_1, i, 1)) + return false; + if (!test_div64_one(dividend, TEST_DIV64_DIVISOR_2, i, 2)) + return false; + if (!test_div64_one(dividend, TEST_DIV64_DIVISOR_3, i, 3)) + return false; + if (!test_div64_one(dividend, TEST_DIV64_DIVISOR_4, i, 4)) + return false; + if (!test_div64_one(dividend, TEST_DIV64_DIVISOR_5, i, 5)) + return false; + if (!test_div64_one(dividend, TEST_DIV64_DIVISOR_6, i, 6)) + return false; + if (!test_div64_one(dividend, TEST_DIV64_DIVISOR_7, i, 7)) + return false; + if (!test_div64_one(dividend, TEST_DIV64_DIVISOR_8, i, 8)) + return false; + for (j = 0; j < SIZE_DIV64_DIVISORS; j++) { + if (!test_div64_one(dividend, test_div64_divisors[j], + i, j)) + return false; + } + } + return true; +} + +static int __init test_div64_init(void) +{ + struct timespec64 ts, ts0, ts1; + int i; + + pr_info("Starting 64bit/32bit division and modulo test\n"); + ktime_get_ts64(&ts0); + + for (i = 0; i < TEST_DIV64_N_ITER; i++) + if (!test_div64()) + break; + + ktime_get_ts64(&ts1); + ts = timespec64_sub(ts1, ts0); + pr_info("Completed 64bit/32bit division and modulo test, " + "%llu.%09lus elapsed\n", ts.tv_sec, ts.tv_nsec); + + return 0; +} + +static void __exit test_div64_exit(void) +{ +} + +module_init(test_div64_init); +module_exit(test_div64_exit); + +MODULE_AUTHOR("Maciej W. Rozycki <macro@orcam.me.uk>"); +MODULE_LICENSE("GPL"); +MODULE_DESCRIPTION("64bit/32bit division and modulo test module"); |