aboutsummaryrefslogtreecommitdiffstats
path: root/mm/slab.c
diff options
context:
space:
mode:
Diffstat (limited to 'mm/slab.c')
-rw-r--r--mm/slab.c622
1 files changed, 349 insertions, 273 deletions
diff --git a/mm/slab.c b/mm/slab.c
index e901a36e2520..f8b0d539b482 100644
--- a/mm/slab.c
+++ b/mm/slab.c
@@ -68,7 +68,7 @@
* Further notes from the original documentation:
*
* 11 April '97. Started multi-threading - markhe
- * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
+ * The global cache-chain is protected by the mutex 'slab_mutex'.
* The sem is only needed when accessing/extending the cache-chain, which
* can never happen inside an interrupt (kmem_cache_create(),
* kmem_cache_shrink() and kmem_cache_reap()).
@@ -87,6 +87,7 @@
*/
#include <linux/slab.h>
+#include "slab.h"
#include <linux/mm.h>
#include <linux/poison.h>
#include <linux/swap.h>
@@ -117,12 +118,16 @@
#include <linux/memory.h>
#include <linux/prefetch.h>
+#include <net/sock.h>
+
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/page.h>
#include <trace/events/kmem.h>
+#include "internal.h"
+
/*
* DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
* 0 for faster, smaller code (especially in the critical paths).
@@ -151,6 +156,12 @@
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif
+/*
+ * true if a page was allocated from pfmemalloc reserves for network-based
+ * swap
+ */
+static bool pfmemalloc_active __read_mostly;
+
/* Legal flag mask for kmem_cache_create(). */
#if DEBUG
# define CREATE_MASK (SLAB_RED_ZONE | \
@@ -256,9 +267,30 @@ struct array_cache {
* Must have this definition in here for the proper
* alignment of array_cache. Also simplifies accessing
* the entries.
+ *
+ * Entries should not be directly dereferenced as
+ * entries belonging to slabs marked pfmemalloc will
+ * have the lower bits set SLAB_OBJ_PFMEMALLOC
*/
};
+#define SLAB_OBJ_PFMEMALLOC 1
+static inline bool is_obj_pfmemalloc(void *objp)
+{
+ return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
+}
+
+static inline void set_obj_pfmemalloc(void **objp)
+{
+ *objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
+ return;
+}
+
+static inline void clear_obj_pfmemalloc(void **objp)
+{
+ *objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
+}
+
/*
* bootstrap: The caches do not work without cpuarrays anymore, but the
* cpuarrays are allocated from the generic caches...
@@ -424,8 +456,8 @@ static void kmem_list3_init(struct kmem_list3 *parent)
* cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
* redzone word.
* cachep->obj_offset: The real object.
- * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
- * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
+ * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
+ * cachep->size - 1* BYTES_PER_WORD: last caller address
* [BYTES_PER_WORD long]
*/
static int obj_offset(struct kmem_cache *cachep)
@@ -433,11 +465,6 @@ static int obj_offset(struct kmem_cache *cachep)
return cachep->obj_offset;
}
-static int obj_size(struct kmem_cache *cachep)
-{
- return cachep->obj_size;
-}
-
static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
{
BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
@@ -449,23 +476,22 @@ static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
{
BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
if (cachep->flags & SLAB_STORE_USER)
- return (unsigned long long *)(objp + cachep->buffer_size -
+ return (unsigned long long *)(objp + cachep->size -
sizeof(unsigned long long) -
REDZONE_ALIGN);
- return (unsigned long long *) (objp + cachep->buffer_size -
+ return (unsigned long long *) (objp + cachep->size -
sizeof(unsigned long long));
}
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
{
BUG_ON(!(cachep->flags & SLAB_STORE_USER));
- return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
+ return (void **)(objp + cachep->size - BYTES_PER_WORD);
}
#else
#define obj_offset(x) 0
-#define obj_size(cachep) (cachep->buffer_size)
#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
@@ -475,7 +501,7 @@ static void **dbg_userword(struct kmem_cache *cachep, void *objp)
#ifdef CONFIG_TRACING
size_t slab_buffer_size(struct kmem_cache *cachep)
{
- return cachep->buffer_size;
+ return cachep->size;
}
EXPORT_SYMBOL(slab_buffer_size);
#endif
@@ -489,56 +515,37 @@ EXPORT_SYMBOL(slab_buffer_size);
static int slab_max_order = SLAB_MAX_ORDER_LO;
static bool slab_max_order_set __initdata;
-/*
- * Functions for storing/retrieving the cachep and or slab from the page
- * allocator. These are used to find the slab an obj belongs to. With kfree(),
- * these are used to find the cache which an obj belongs to.
- */
-static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
-{
- page->lru.next = (struct list_head *)cache;
-}
-
static inline struct kmem_cache *page_get_cache(struct page *page)
{
page = compound_head(page);
BUG_ON(!PageSlab(page));
- return (struct kmem_cache *)page->lru.next;
-}
-
-static inline void page_set_slab(struct page *page, struct slab *slab)
-{
- page->lru.prev = (struct list_head *)slab;
-}
-
-static inline struct slab *page_get_slab(struct page *page)
-{
- BUG_ON(!PageSlab(page));
- return (struct slab *)page->lru.prev;
+ return page->slab_cache;
}
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
struct page *page = virt_to_head_page(obj);
- return page_get_cache(page);
+ return page->slab_cache;
}
static inline struct slab *virt_to_slab(const void *obj)
{
struct page *page = virt_to_head_page(obj);
- return page_get_slab(page);
+
+ VM_BUG_ON(!PageSlab(page));
+ return page->slab_page;
}
static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
unsigned int idx)
{
- return slab->s_mem + cache->buffer_size * idx;
+ return slab->s_mem + cache->size * idx;
}
/*
- * We want to avoid an expensive divide : (offset / cache->buffer_size)
- * Using the fact that buffer_size is a constant for a particular cache,
- * we can replace (offset / cache->buffer_size) by
+ * We want to avoid an expensive divide : (offset / cache->size)
+ * Using the fact that size is a constant for a particular cache,
+ * we can replace (offset / cache->size) by
* reciprocal_divide(offset, cache->reciprocal_buffer_size)
*/
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
@@ -584,33 +591,12 @@ static struct kmem_cache cache_cache = {
.batchcount = 1,
.limit = BOOT_CPUCACHE_ENTRIES,
.shared = 1,
- .buffer_size = sizeof(struct kmem_cache),
+ .size = sizeof(struct kmem_cache),
.name = "kmem_cache",
};
#define BAD_ALIEN_MAGIC 0x01020304ul
-/*
- * chicken and egg problem: delay the per-cpu array allocation
- * until the general caches are up.
- */
-static enum {
- NONE,
- PARTIAL_AC,
- PARTIAL_L3,
- EARLY,
- LATE,
- FULL
-} g_cpucache_up;
-
-/*
- * used by boot code to determine if it can use slab based allocator
- */
-int slab_is_available(void)
-{
- return g_cpucache_up >= EARLY;
-}
-
#ifdef CONFIG_LOCKDEP
/*
@@ -676,7 +662,7 @@ static void init_node_lock_keys(int q)
{
struct cache_sizes *s = malloc_sizes;
- if (g_cpucache_up < LATE)
+ if (slab_state < UP)
return;
for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) {
@@ -716,12 +702,6 @@ static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
}
#endif
-/*
- * Guard access to the cache-chain.
- */
-static DEFINE_MUTEX(cache_chain_mutex);
-static struct list_head cache_chain;
-
static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
@@ -951,6 +931,124 @@ static struct array_cache *alloc_arraycache(int node, int entries,
return nc;
}
+static inline bool is_slab_pfmemalloc(struct slab *slabp)
+{
+ struct page *page = virt_to_page(slabp->s_mem);
+
+ return PageSlabPfmemalloc(page);
+}
+
+/* Clears pfmemalloc_active if no slabs have pfmalloc set */
+static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
+ struct array_cache *ac)
+{
+ struct kmem_list3 *l3 = cachep->nodelists[numa_mem_id()];
+ struct slab *slabp;
+ unsigned long flags;
+
+ if (!pfmemalloc_active)
+ return;
+
+ spin_lock_irqsave(&l3->list_lock, flags);
+ list_for_each_entry(slabp, &l3->slabs_full, list)
+ if (is_slab_pfmemalloc(slabp))
+ goto out;
+
+ list_for_each_entry(slabp, &l3->slabs_partial, list)
+ if (is_slab_pfmemalloc(slabp))
+ goto out;
+
+ list_for_each_entry(slabp, &l3->slabs_free, list)
+ if (is_slab_pfmemalloc(slabp))
+ goto out;
+
+ pfmemalloc_active = false;
+out:
+ spin_unlock_irqrestore(&l3->list_lock, flags);
+}
+
+static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
+ gfp_t flags, bool force_refill)
+{
+ int i;
+ void *objp = ac->entry[--ac->avail];
+
+ /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
+ if (unlikely(is_obj_pfmemalloc(objp))) {
+ struct kmem_list3 *l3;
+
+ if (gfp_pfmemalloc_allowed(flags)) {
+ clear_obj_pfmemalloc(&objp);
+ return objp;
+ }
+
+ /* The caller cannot use PFMEMALLOC objects, find another one */
+ for (i = 1; i < ac->avail; i++) {
+ /* If a !PFMEMALLOC object is found, swap them */
+ if (!is_obj_pfmemalloc(ac->entry[i])) {
+ objp = ac->entry[i];
+ ac->entry[i] = ac->entry[ac->avail];
+ ac->entry[ac->avail] = objp;
+ return objp;
+ }
+ }
+
+ /*
+ * If there are empty slabs on the slabs_free list and we are
+ * being forced to refill the cache, mark this one !pfmemalloc.
+ */
+ l3 = cachep->nodelists[numa_mem_id()];
+ if (!list_empty(&l3->slabs_free) && force_refill) {
+ struct slab *slabp = virt_to_slab(objp);
+ ClearPageSlabPfmemalloc(virt_to_page(slabp->s_mem));
+ clear_obj_pfmemalloc(&objp);
+ recheck_pfmemalloc_active(cachep, ac);
+ return objp;
+ }
+
+ /* No !PFMEMALLOC objects available */
+ ac->avail++;
+ objp = NULL;
+ }
+
+ return objp;
+}
+
+static inline void *ac_get_obj(struct kmem_cache *cachep,
+ struct array_cache *ac, gfp_t flags, bool force_refill)
+{
+ void *objp;
+
+ if (unlikely(sk_memalloc_socks()))
+ objp = __ac_get_obj(cachep, ac, flags, force_refill);
+ else
+ objp = ac->entry[--ac->avail];
+
+ return objp;
+}
+
+static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
+ void *objp)
+{
+ if (unlikely(pfmemalloc_active)) {
+ /* Some pfmemalloc slabs exist, check if this is one */
+ struct page *page = virt_to_page(objp);
+ if (PageSlabPfmemalloc(page))
+ set_obj_pfmemalloc(&objp);
+ }
+
+ return objp;
+}
+
+static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
+ void *objp)
+{
+ if (unlikely(sk_memalloc_socks()))
+ objp = __ac_put_obj(cachep, ac, objp);
+
+ ac->entry[ac->avail++] = objp;
+}
+
/*
* Transfer objects in one arraycache to another.
* Locking must be handled by the caller.
@@ -1127,7 +1225,7 @@ static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
STATS_INC_ACOVERFLOW(cachep);
__drain_alien_cache(cachep, alien, nodeid);
}
- alien->entry[alien->avail++] = objp;
+ ac_put_obj(cachep, alien, objp);
spin_unlock(&alien->lock);
} else {
spin_lock(&(cachep->nodelists[nodeid])->list_lock);
@@ -1145,7 +1243,7 @@ static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
* When hotplugging memory or a cpu, existing nodelists are not replaced if
* already in use.
*
- * Must hold cache_chain_mutex.
+ * Must hold slab_mutex.
*/
static int init_cache_nodelists_node(int node)
{
@@ -1153,7 +1251,7 @@ static int init_cache_nodelists_node(int node)
struct kmem_list3 *l3;
const int memsize = sizeof(struct kmem_list3);
- list_for_each_entry(cachep, &cache_chain, next) {
+ list_for_each_entry(cachep, &slab_caches, list) {
/*
* Set up the size64 kmemlist for cpu before we can
* begin anything. Make sure some other cpu on this
@@ -1169,7 +1267,7 @@ static int init_cache_nodelists_node(int node)
/*
* The l3s don't come and go as CPUs come and
- * go. cache_chain_mutex is sufficient
+ * go. slab_mutex is sufficient
* protection here.
*/
cachep->nodelists[node] = l3;
@@ -1191,7 +1289,7 @@ static void __cpuinit cpuup_canceled(long cpu)
int node = cpu_to_mem(cpu);
const struct cpumask *mask = cpumask_of_node(node);
- list_for_each_entry(cachep, &cache_chain, next) {
+ list_for_each_entry(cachep, &slab_caches, list) {
struct array_cache *nc;
struct array_cache *shared;
struct array_cache **alien;
@@ -1241,7 +1339,7 @@ free_array_cache:
* the respective cache's slabs, now we can go ahead and
* shrink each nodelist to its limit.
*/
- list_for_each_entry(cachep, &cache_chain, next) {
+ list_for_each_entry(cachep, &slab_caches, list) {
l3 = cachep->nodelists[node];
if (!l3)
continue;
@@ -1270,7 +1368,7 @@ static int __cpuinit cpuup_prepare(long cpu)
* Now we can go ahead with allocating the shared arrays and
* array caches
*/
- list_for_each_entry(cachep, &cache_chain, next) {
+ list_for_each_entry(cachep, &slab_caches, list) {
struct array_cache *nc;
struct array_cache *shared = NULL;
struct array_cache **alien = NULL;
@@ -1338,9 +1436,9 @@ static int __cpuinit cpuup_callback(struct notifier_block *nfb,
switch (action) {
case CPU_UP_PREPARE:
case CPU_UP_PREPARE_FROZEN:
- mutex_lock(&cache_chain_mutex);
+ mutex_lock(&slab_mutex);
err = cpuup_prepare(cpu);
- mutex_unlock(&cache_chain_mutex);
+ mutex_unlock(&slab_mutex);
break;
case CPU_ONLINE:
case CPU_ONLINE_FROZEN:
@@ -1350,7 +1448,7 @@ static int __cpuinit cpuup_callback(struct notifier_block *nfb,
case CPU_DOWN_PREPARE:
case CPU_DOWN_PREPARE_FROZEN:
/*
- * Shutdown cache reaper. Note that the cache_chain_mutex is
+ * Shutdown cache reaper. Note that the slab_mutex is
* held so that if cache_reap() is invoked it cannot do
* anything expensive but will only modify reap_work
* and reschedule the timer.
@@ -1377,9 +1475,9 @@ static int __cpuinit cpuup_callback(struct notifier_block *nfb,
#endif
case CPU_UP_CANCELED:
case CPU_UP_CANCELED_FROZEN:
- mutex_lock(&cache_chain_mutex);
+ mutex_lock(&slab_mutex);
cpuup_canceled(cpu);
- mutex_unlock(&cache_chain_mutex);
+ mutex_unlock(&slab_mutex);
break;
}
return notifier_from_errno(err);
@@ -1395,14 +1493,14 @@ static struct notifier_block __cpuinitdata cpucache_notifier = {
* Returns -EBUSY if all objects cannot be drained so that the node is not
* removed.
*
- * Must hold cache_chain_mutex.
+ * Must hold slab_mutex.
*/
static int __meminit drain_cache_nodelists_node(int node)
{
struct kmem_cache *cachep;
int ret = 0;
- list_for_each_entry(cachep, &cache_chain, next) {
+ list_for_each_entry(cachep, &slab_caches, list) {
struct kmem_list3 *l3;
l3 = cachep->nodelists[node];
@@ -1433,14 +1531,14 @@ static int __meminit slab_memory_callback(struct notifier_block *self,
switch (action) {
case MEM_GOING_ONLINE:
- mutex_lock(&cache_chain_mutex);
+ mutex_lock(&slab_mutex);
ret = init_cache_nodelists_node(nid);
- mutex_unlock(&cache_chain_mutex);
+ mutex_unlock(&slab_mutex);
break;
case MEM_GOING_OFFLINE:
- mutex_lock(&cache_chain_mutex);
+ mutex_lock(&slab_mutex);
ret = drain_cache_nodelists_node(nid);
- mutex_unlock(&cache_chain_mutex);
+ mutex_unlock(&slab_mutex);
break;
case MEM_ONLINE:
case MEM_OFFLINE:
@@ -1544,8 +1642,8 @@ void __init kmem_cache_init(void)
node = numa_mem_id();
/* 1) create the cache_cache */
- INIT_LIST_HEAD(&cache_chain);
- list_add(&cache_cache.next, &cache_chain);
+ INIT_LIST_HEAD(&slab_caches);
+ list_add(&cache_cache.list, &slab_caches);
cache_cache.colour_off = cache_line_size();
cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
@@ -1553,18 +1651,16 @@ void __init kmem_cache_init(void)
/*
* struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
*/
- cache_cache.buffer_size = offsetof(struct kmem_cache, array[nr_cpu_ids]) +
+ cache_cache.size = offsetof(struct kmem_cache, array[nr_cpu_ids]) +
nr_node_ids * sizeof(struct kmem_list3 *);
-#if DEBUG
- cache_cache.obj_size = cache_cache.buffer_size;
-#endif
- cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
+ cache_cache.object_size = cache_cache.size;
+ cache_cache.size = ALIGN(cache_cache.size,
cache_line_size());
cache_cache.reciprocal_buffer_size =
- reciprocal_value(cache_cache.buffer_size);
+ reciprocal_value(cache_cache.size);
for (order = 0; order < MAX_ORDER; order++) {
- cache_estimate(order, cache_cache.buffer_size,
+ cache_estimate(order, cache_cache.size,
cache_line_size(), 0, &left_over, &cache_cache.num);
if (cache_cache.num)
break;
@@ -1585,7 +1681,7 @@ void __init kmem_cache_init(void)
* bug.
*/
- sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
+ sizes[INDEX_AC].cs_cachep = __kmem_cache_create(names[INDEX_AC].name,
sizes[INDEX_AC].cs_size,
ARCH_KMALLOC_MINALIGN,
ARCH_KMALLOC_FLAGS|SLAB_PANIC,
@@ -1593,7 +1689,7 @@ void __init kmem_cache_init(void)
if (INDEX_AC != INDEX_L3) {
sizes[INDEX_L3].cs_cachep =
- kmem_cache_create(names[INDEX_L3].name,
+ __kmem_cache_create(names[INDEX_L3].name,
sizes[INDEX_L3].cs_size,
ARCH_KMALLOC_MINALIGN,
ARCH_KMALLOC_FLAGS|SLAB_PANIC,
@@ -1611,14 +1707,14 @@ void __init kmem_cache_init(void)
* allow tighter packing of the smaller caches.
*/
if (!sizes->cs_cachep) {
- sizes->cs_cachep = kmem_cache_create(names->name,
+ sizes->cs_cachep = __kmem_cache_create(names->name,
sizes->cs_size,
ARCH_KMALLOC_MINALIGN,
ARCH_KMALLOC_FLAGS|SLAB_PANIC,
NULL);
}
#ifdef CONFIG_ZONE_DMA
- sizes->cs_dmacachep = kmem_cache_create(
+ sizes->cs_dmacachep = __kmem_cache_create(
names->name_dma,
sizes->cs_size,
ARCH_KMALLOC_MINALIGN,
@@ -1676,27 +1772,27 @@ void __init kmem_cache_init(void)
}
}
- g_cpucache_up = EARLY;
+ slab_state = UP;
}
void __init kmem_cache_init_late(void)
{
struct kmem_cache *cachep;
- g_cpucache_up = LATE;
+ slab_state = UP;
/* Annotate slab for lockdep -- annotate the malloc caches */
init_lock_keys();
/* 6) resize the head arrays to their final sizes */
- mutex_lock(&cache_chain_mutex);
- list_for_each_entry(cachep, &cache_chain, next)
+ mutex_lock(&slab_mutex);
+ list_for_each_entry(cachep, &slab_caches, list)
if (enable_cpucache(cachep, GFP_NOWAIT))
BUG();
- mutex_unlock(&cache_chain_mutex);
+ mutex_unlock(&slab_mutex);
/* Done! */
- g_cpucache_up = FULL;
+ slab_state = FULL;
/*
* Register a cpu startup notifier callback that initializes
@@ -1727,6 +1823,9 @@ static int __init cpucache_init(void)
*/
for_each_online_cpu(cpu)
start_cpu_timer(cpu);
+
+ /* Done! */
+ slab_state = FULL;
return 0;
}
__initcall(cpucache_init);
@@ -1743,7 +1842,7 @@ slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
"SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
nodeid, gfpflags);
printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n",
- cachep->name, cachep->buffer_size, cachep->gfporder);
+ cachep->name, cachep->size, cachep->gfporder);
for_each_online_node(node) {
unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
@@ -1798,7 +1897,7 @@ static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
flags |= __GFP_COMP;
#endif
- flags |= cachep->gfpflags;
+ flags |= cachep->allocflags;
if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
flags |= __GFP_RECLAIMABLE;
@@ -1809,6 +1908,10 @@ static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
return NULL;
}
+ /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
+ if (unlikely(page->pfmemalloc))
+ pfmemalloc_active = true;
+
nr_pages = (1 << cachep->gfporder);
if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
add_zone_page_state(page_zone(page),
@@ -1816,9 +1919,13 @@ static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
else
add_zone_page_state(page_zone(page),
NR_SLAB_UNRECLAIMABLE, nr_pages);
- for (i = 0; i < nr_pages; i++)
+ for (i = 0; i < nr_pages; i++) {
__SetPageSlab(page + i);
+ if (page->pfmemalloc)
+ SetPageSlabPfmemalloc(page + i);
+ }
+
if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
@@ -1850,6 +1957,7 @@ static void kmem_freepages(struct kmem_cache *cachep, void *addr)
NR_SLAB_UNRECLAIMABLE, nr_freed);
while (i--) {
BUG_ON(!PageSlab(page));
+ __ClearPageSlabPfmemalloc(page);
__ClearPageSlab(page);
page++;
}
@@ -1874,7 +1982,7 @@ static void kmem_rcu_free(struct rcu_head *head)
static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
unsigned long caller)
{
- int size = obj_size(cachep);
+ int size = cachep->object_size;
addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
@@ -1906,7 +2014,7 @@ static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
{
- int size = obj_size(cachep);
+ int size = cachep->object_size;
addr = &((char *)addr)[obj_offset(cachep)];
memset(addr, val, size);
@@ -1966,7 +2074,7 @@ static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
printk("\n");
}
realobj = (char *)objp + obj_offset(cachep);
- size = obj_size(cachep);
+ size = cachep->object_size;
for (i = 0; i < size && lines; i += 16, lines--) {
int limit;
limit = 16;
@@ -1983,7 +2091,7 @@ static void check_poison_obj(struct kmem_cache *cachep, void *objp)
int lines = 0;
realobj = (char *)objp + obj_offset(cachep);
- size = obj_size(cachep);
+ size = cachep->object_size;
for (i = 0; i < size; i++) {
char exp = POISON_FREE;
@@ -2047,10 +2155,10 @@ static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slab
if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
- if (cachep->buffer_size % PAGE_SIZE == 0 &&
+ if (cachep->size % PAGE_SIZE == 0 &&
OFF_SLAB(cachep))
kernel_map_pages(virt_to_page(objp),
- cachep->buffer_size / PAGE_SIZE, 1);
+ cachep->size / PAGE_SIZE, 1);
else
check_poison_obj(cachep, objp);
#else
@@ -2194,10 +2302,10 @@ static size_t calculate_slab_order(struct kmem_cache *cachep,
static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
{
- if (g_cpucache_up == FULL)
+ if (slab_state >= FULL)
return enable_cpucache(cachep, gfp);
- if (g_cpucache_up == NONE) {
+ if (slab_state == DOWN) {
/*
* Note: the first kmem_cache_create must create the cache
* that's used by kmalloc(24), otherwise the creation of
@@ -2212,16 +2320,16 @@ static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
*/
set_up_list3s(cachep, SIZE_AC);
if (INDEX_AC == INDEX_L3)
- g_cpucache_up = PARTIAL_L3;
+ slab_state = PARTIAL_L3;
else
- g_cpucache_up = PARTIAL_AC;
+ slab_state = PARTIAL_ARRAYCACHE;
} else {
cachep->array[smp_processor_id()] =
kmalloc(sizeof(struct arraycache_init), gfp);
- if (g_cpucache_up == PARTIAL_AC) {
+ if (slab_state == PARTIAL_ARRAYCACHE) {
set_up_list3s(cachep, SIZE_L3);
- g_cpucache_up = PARTIAL_L3;
+ slab_state = PARTIAL_L3;
} else {
int node;
for_each_online_node(node) {
@@ -2247,7 +2355,7 @@ static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
}
/**
- * kmem_cache_create - Create a cache.
+ * __kmem_cache_create - Create a cache.
* @name: A string which is used in /proc/slabinfo to identify this cache.
* @size: The size of objects to be created in this cache.
* @align: The required alignment for the objects.
@@ -2274,59 +2382,14 @@ static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
* as davem.
*/
struct kmem_cache *
-kmem_cache_create (const char *name, size_t size, size_t align,
+__kmem_cache_create (const char *name, size_t size, size_t align,
unsigned long flags, void (*ctor)(void *))
{
size_t left_over, slab_size, ralign;
- struct kmem_cache *cachep = NULL, *pc;
+ struct kmem_cache *cachep = NULL;
gfp_t gfp;
- /*
- * Sanity checks... these are all serious usage bugs.
- */
- if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
- size > KMALLOC_MAX_SIZE) {
- printk(KERN_ERR "%s: Early error in slab %s\n", __func__,
- name);
- BUG();
- }
-
- /*
- * We use cache_chain_mutex to ensure a consistent view of
- * cpu_online_mask as well. Please see cpuup_callback
- */
- if (slab_is_available()) {
- get_online_cpus();
- mutex_lock(&cache_chain_mutex);
- }
-
- list_for_each_entry(pc, &cache_chain, next) {
- char tmp;
- int res;
-
- /*
- * This happens when the module gets unloaded and doesn't
- * destroy its slab cache and no-one else reuses the vmalloc
- * area of the module. Print a warning.
- */
- res = probe_kernel_address(pc->name, tmp);
- if (res) {
- printk(KERN_ERR
- "SLAB: cache with size %d has lost its name\n",
- pc->buffer_size);
- continue;
- }
-
- if (!strcmp(pc->name, name)) {
- printk(KERN_ERR
- "kmem_cache_create: duplicate cache %s\n", name);
- dump_stack();
- goto oops;
- }
- }
-
#if DEBUG
- WARN_ON(strchr(name, ' ')); /* It confuses parsers */
#if FORCED_DEBUG
/*
* Enable redzoning and last user accounting, except for caches with
@@ -2415,11 +2478,12 @@ kmem_cache_create (const char *name, size_t size, size_t align,
/* Get cache's description obj. */
cachep = kmem_cache_zalloc(&cache_cache, gfp);
if (!cachep)
- goto oops;
+ return NULL;
cachep->nodelists = (struct kmem_list3 **)&cachep->array[nr_cpu_ids];
+ cachep->object_size = size;
+ cachep->align = align;
#if DEBUG
- cachep->obj_size = size;
/*
* Both debugging options require word-alignment which is calculated
@@ -2442,7 +2506,7 @@ kmem_cache_create (const char *name, size_t size, size_t align,
}
#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
- && cachep->obj_size > cache_line_size() && ALIGN(size, align) < PAGE_SIZE) {
+ && cachep->object_size > cache_line_size() && ALIGN(size, align) < PAGE_SIZE) {
cachep->obj_offset += PAGE_SIZE - ALIGN(size, align);
size = PAGE_SIZE;
}
@@ -2471,8 +2535,7 @@ kmem_cache_create (const char *name, size_t size, size_t align,
printk(KERN_ERR
"kmem_cache_create: couldn't create cache %s.\n", name);
kmem_cache_free(&cache_cache, cachep);
- cachep = NULL;
- goto oops;
+ return NULL;
}
slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
+ sizeof(struct slab), align);
@@ -2508,10 +2571,10 @@ kmem_cache_create (const char *name, size_t size, size_t align,
cachep->colour = left_over / cachep->colour_off;
cachep->slab_size = slab_size;
cachep->flags = flags;
- cachep->gfpflags = 0;
+ cachep->allocflags = 0;
if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
- cachep->gfpflags |= GFP_DMA;
- cachep->buffer_size = size;
+ cachep->allocflags |= GFP_DMA;
+ cachep->size = size;
cachep->reciprocal_buffer_size = reciprocal_value(size);
if (flags & CFLGS_OFF_SLAB) {
@@ -2530,8 +2593,7 @@ kmem_cache_create (const char *name, size_t size, size_t align,
if (setup_cpu_cache(cachep, gfp)) {
__kmem_cache_destroy(cachep);
- cachep = NULL;
- goto oops;
+ return NULL;
}
if (flags & SLAB_DEBUG_OBJECTS) {
@@ -2545,18 +2607,9 @@ kmem_cache_create (const char *name, size_t size, size_t align,
}
/* cache setup completed, link it into the list */
- list_add(&cachep->next, &cache_chain);
-oops:
- if (!cachep && (flags & SLAB_PANIC))
- panic("kmem_cache_create(): failed to create slab `%s'\n",
- name);
- if (slab_is_available()) {
- mutex_unlock(&cache_chain_mutex);
- put_online_cpus();
- }
+ list_add(&cachep->list, &slab_caches);
return cachep;
}
-EXPORT_SYMBOL(kmem_cache_create);
#if DEBUG
static void check_irq_off(void)
@@ -2671,7 +2724,7 @@ out:
return nr_freed;
}
-/* Called with cache_chain_mutex held to protect against cpu hotplug */
+/* Called with slab_mutex held to protect against cpu hotplug */
static int __cache_shrink(struct kmem_cache *cachep)
{
int ret = 0, i = 0;
@@ -2706,9 +2759,9 @@ int kmem_cache_shrink(struct kmem_cache *cachep)
BUG_ON(!cachep || in_interrupt());
get_online_cpus();
- mutex_lock(&cache_chain_mutex);
+ mutex_lock(&slab_mutex);
ret = __cache_shrink(cachep);
- mutex_unlock(&cache_chain_mutex);
+ mutex_unlock(&slab_mutex);
put_online_cpus();
return ret;
}
@@ -2736,15 +2789,15 @@ void kmem_cache_destroy(struct kmem_cache *cachep)
/* Find the cache in the chain of caches. */
get_online_cpus();
- mutex_lock(&cache_chain_mutex);
+ mutex_lock(&slab_mutex);
/*
* the chain is never empty, cache_cache is never destroyed
*/
- list_del(&cachep->next);
+ list_del(&cachep->list);
if (__cache_shrink(cachep)) {
slab_error(cachep, "Can't free all objects");
- list_add(&cachep->next, &cache_chain);
- mutex_unlock(&cache_chain_mutex);
+ list_add(&cachep->list, &slab_caches);
+ mutex_unlock(&slab_mutex);
put_online_cpus();
return;
}
@@ -2753,7 +2806,7 @@ void kmem_cache_destroy(struct kmem_cache *cachep)
rcu_barrier();
__kmem_cache_destroy(cachep);
- mutex_unlock(&cache_chain_mutex);
+ mutex_unlock(&slab_mutex);
put_online_cpus();
}
EXPORT_SYMBOL(kmem_cache_destroy);
@@ -2840,10 +2893,10 @@ static void cache_init_objs(struct kmem_cache *cachep,
slab_error(cachep, "constructor overwrote the"
" start of an object");
}
- if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
+ if ((cachep->size % PAGE_SIZE) == 0 &&
OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
kernel_map_pages(virt_to_page(objp),
- cachep->buffer_size / PAGE_SIZE, 0);
+ cachep->size / PAGE_SIZE, 0);
#else
if (cachep->ctor)
cachep->ctor(objp);
@@ -2857,9 +2910,9 @@ static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
{
if (CONFIG_ZONE_DMA_FLAG) {
if (flags & GFP_DMA)
- BUG_ON(!(cachep->gfpflags & GFP_DMA));
+ BUG_ON(!(cachep->allocflags & GFP_DMA));
else
- BUG_ON(cachep->gfpflags & GFP_DMA);
+ BUG_ON(cachep->allocflags & GFP_DMA);
}
}
@@ -2918,8 +2971,8 @@ static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
nr_pages <<= cache->gfporder;
do {
- page_set_cache(page, cache);
- page_set_slab(page, slab);
+ page->slab_cache = cache;
+ page->slab_page = slab;
page++;
} while (--nr_pages);
}
@@ -3057,7 +3110,7 @@ static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
kfree_debugcheck(objp);
page = virt_to_head_page(objp);
- slabp = page_get_slab(page);
+ slabp = page->slab_page;
if (cachep->flags & SLAB_RED_ZONE) {
verify_redzone_free(cachep, objp);
@@ -3077,10 +3130,10 @@ static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
#endif
if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
- if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
+ if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
store_stackinfo(cachep, objp, (unsigned long)caller);
kernel_map_pages(virt_to_page(objp),
- cachep->buffer_size / PAGE_SIZE, 0);
+ cachep->size / PAGE_SIZE, 0);
} else {
poison_obj(cachep, objp, POISON_FREE);
}
@@ -3120,16 +3173,19 @@ bad:
#define check_slabp(x,y) do { } while(0)
#endif
-static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
+static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
+ bool force_refill)
{
int batchcount;
struct kmem_list3 *l3;
struct array_cache *ac;
int node;
-retry:
check_irq_off();
node = numa_mem_id();
+ if (unlikely(force_refill))
+ goto force_grow;
+retry:
ac = cpu_cache_get(cachep);
batchcount = ac->batchcount;
if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
@@ -3179,8 +3235,8 @@ retry:
STATS_INC_ACTIVE(cachep);
STATS_SET_HIGH(cachep);
- ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
- node);
+ ac_put_obj(cachep, ac, slab_get_obj(cachep, slabp,
+ node));
}
check_slabp(cachep, slabp);
@@ -3199,18 +3255,22 @@ alloc_done:
if (unlikely(!ac->avail)) {
int x;
+force_grow:
x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
/* cache_grow can reenable interrupts, then ac could change. */
ac = cpu_cache_get(cachep);
- if (!x && ac->avail == 0) /* no objects in sight? abort */
+
+ /* no objects in sight? abort */
+ if (!x && (ac->avail == 0 || force_refill))
return NULL;
if (!ac->avail) /* objects refilled by interrupt? */
goto retry;
}
ac->touched = 1;
- return ac->entry[--ac->avail];
+
+ return ac_get_obj(cachep, ac, flags, force_refill);
}
static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
@@ -3230,9 +3290,9 @@ static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
return objp;
if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
- if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
+ if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
kernel_map_pages(virt_to_page(objp),
- cachep->buffer_size / PAGE_SIZE, 1);
+ cachep->size / PAGE_SIZE, 1);
else
check_poison_obj(cachep, objp);
#else
@@ -3261,8 +3321,8 @@ static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
struct slab *slabp;
unsigned objnr;
- slabp = page_get_slab(virt_to_head_page(objp));
- objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
+ slabp = virt_to_head_page(objp)->slab_page;
+ objnr = (unsigned)(objp - slabp->s_mem) / cachep->size;
slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
}
#endif
@@ -3285,30 +3345,42 @@ static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
if (cachep == &cache_cache)
return false;
- return should_failslab(obj_size(cachep), flags, cachep->flags);
+ return should_failslab(cachep->object_size, flags, cachep->flags);
}
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
{
void *objp;
struct array_cache *ac;
+ bool force_refill = false;
check_irq_off();
ac = cpu_cache_get(cachep);
if (likely(ac->avail)) {
- STATS_INC_ALLOCHIT(cachep);
ac->touched = 1;
- objp = ac->entry[--ac->avail];
- } else {
- STATS_INC_ALLOCMISS(cachep);
- objp = cache_alloc_refill(cachep, flags);
+ objp = ac_get_obj(cachep, ac, flags, false);
+
/*
- * the 'ac' may be updated by cache_alloc_refill(),
- * and kmemleak_erase() requires its correct value.
+ * Allow for the possibility all avail objects are not allowed
+ * by the current flags
*/
- ac = cpu_cache_get(cachep);
+ if (objp) {
+ STATS_INC_ALLOCHIT(cachep);
+ goto out;
+ }
+ force_refill = true;
}
+
+ STATS_INC_ALLOCMISS(cachep);
+ objp = cache_alloc_refill(cachep, flags, force_refill);
+ /*
+ * the 'ac' may be updated by cache_alloc_refill(),
+ * and kmemleak_erase() requires its correct value.
+ */
+ ac = cpu_cache_get(cachep);
+
+out:
/*
* To avoid a false negative, if an object that is in one of the
* per-CPU caches is leaked, we need to make sure kmemleak doesn't
@@ -3336,7 +3408,7 @@ static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
nid_alloc = cpuset_slab_spread_node();
else if (current->mempolicy)
- nid_alloc = slab_node(current->mempolicy);
+ nid_alloc = slab_node();
if (nid_alloc != nid_here)
return ____cache_alloc_node(cachep, flags, nid_alloc);
return NULL;
@@ -3368,7 +3440,7 @@ static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
retry_cpuset:
cpuset_mems_cookie = get_mems_allowed();
- zonelist = node_zonelist(slab_node(current->mempolicy), flags);
+ zonelist = node_zonelist(slab_node(), flags);
retry:
/*
@@ -3545,14 +3617,14 @@ __cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
out:
local_irq_restore(save_flags);
ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
- kmemleak_alloc_recursive(ptr, obj_size(cachep), 1, cachep->flags,
+ kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
flags);
if (likely(ptr))
- kmemcheck_slab_alloc(cachep, flags, ptr, obj_size(cachep));
+ kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
if (unlikely((flags & __GFP_ZERO) && ptr))
- memset(ptr, 0, obj_size(cachep));
+ memset(ptr, 0, cachep->object_size);
return ptr;
}
@@ -3607,15 +3679,15 @@ __cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
objp = __do_cache_alloc(cachep, flags);
local_irq_restore(save_flags);
objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
- kmemleak_alloc_recursive(objp, obj_size(cachep), 1, cachep->flags,
+ kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
flags);
prefetchw(objp);
if (likely(objp))
- kmemcheck_slab_alloc(cachep, flags, objp, obj_size(cachep));
+ kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
if (unlikely((flags & __GFP_ZERO) && objp))
- memset(objp, 0, obj_size(cachep));
+ memset(objp, 0, cachep->object_size);
return objp;
}
@@ -3630,9 +3702,12 @@ static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
struct kmem_list3 *l3;
for (i = 0; i < nr_objects; i++) {
- void *objp = objpp[i];
+ void *objp;
struct slab *slabp;
+ clear_obj_pfmemalloc(&objpp[i]);
+ objp = objpp[i];
+
slabp = virt_to_slab(objp);
l3 = cachep->nodelists[node];
list_del(&slabp->list);
@@ -3731,7 +3806,7 @@ static inline void __cache_free(struct kmem_cache *cachep, void *objp,
kmemleak_free_recursive(objp, cachep->flags);
objp = cache_free_debugcheck(cachep, objp, caller);
- kmemcheck_slab_free(cachep, objp, obj_size(cachep));
+ kmemcheck_slab_free(cachep, objp, cachep->object_size);
/*
* Skip calling cache_free_alien() when the platform is not numa.
@@ -3750,7 +3825,7 @@ static inline void __cache_free(struct kmem_cache *cachep, void *objp,
cache_flusharray(cachep, ac);
}
- ac->entry[ac->avail++] = objp;
+ ac_put_obj(cachep, ac, objp);
}
/**
@@ -3766,7 +3841,7 @@ void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
trace_kmem_cache_alloc(_RET_IP_, ret,
- obj_size(cachep), cachep->buffer_size, flags);
+ cachep->object_size, cachep->size, flags);
return ret;
}
@@ -3794,7 +3869,7 @@ void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
__builtin_return_address(0));
trace_kmem_cache_alloc_node(_RET_IP_, ret,
- obj_size(cachep), cachep->buffer_size,
+ cachep->object_size, cachep->size,
flags, nodeid);
return ret;
@@ -3876,7 +3951,7 @@ static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
ret = __cache_alloc(cachep, flags, caller);
trace_kmalloc((unsigned long) caller, ret,
- size, cachep->buffer_size, flags);
+ size, cachep->size, flags);
return ret;
}
@@ -3916,9 +3991,9 @@ void kmem_cache_free(struct kmem_cache *cachep, void *objp)
unsigned long flags;
local_irq_save(flags);
- debug_check_no_locks_freed(objp, obj_size(cachep));
+ debug_check_no_locks_freed(objp, cachep->object_size);
if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
- debug_check_no_obj_freed(objp, obj_size(cachep));
+ debug_check_no_obj_freed(objp, cachep->object_size);
__cache_free(cachep, objp, __builtin_return_address(0));
local_irq_restore(flags);
@@ -3947,8 +4022,9 @@ void kfree(const void *objp)
local_irq_save(flags);
kfree_debugcheck(objp);
c = virt_to_cache(objp);
- debug_check_no_locks_freed(objp, obj_size(c));
- debug_check_no_obj_freed(objp, obj_size(c));
+ debug_check_no_locks_freed(objp, c->object_size);
+
+ debug_check_no_obj_freed(objp, c->object_size);
__cache_free(c, (void *)objp, __builtin_return_address(0));
local_irq_restore(flags);
}
@@ -3956,7 +4032,7 @@ EXPORT_SYMBOL(kfree);
unsigned int kmem_cache_size(struct kmem_cache *cachep)
{
- return obj_size(cachep);
+ return cachep->object_size;
}
EXPORT_SYMBOL(kmem_cache_size);
@@ -4030,7 +4106,7 @@ static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
return 0;
fail:
- if (!cachep->next.next) {
+ if (!cachep->list.next) {
/* Cache is not active yet. Roll back what we did */
node--;
while (node >= 0) {
@@ -4065,7 +4141,7 @@ static void do_ccupdate_local(void *info)
new->new[smp_processor_id()] = old;
}
-/* Always called with the cache_chain_mutex held */
+/* Always called with the slab_mutex held */
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
int batchcount, int shared, gfp_t gfp)
{
@@ -4109,7 +4185,7 @@ static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
return alloc_kmemlist(cachep, gfp);
}
-/* Called with cache_chain_mutex held always */
+/* Called with slab_mutex held always */
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
{
int err;
@@ -4124,13 +4200,13 @@ static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
* The numbers are guessed, we should auto-tune as described by
* Bonwick.
*/
- if (cachep->buffer_size > 131072)
+ if (cachep->size > 131072)
limit = 1;
- else if (cachep->buffer_size > PAGE_SIZE)
+ else if (cachep->size > PAGE_SIZE)
limit = 8;
- else if (cachep->buffer_size > 1024)
+ else if (cachep->size > 1024)
limit = 24;
- else if (cachep->buffer_size > 256)
+ else if (cachep->size > 256)
limit = 54;
else
limit = 120;
@@ -4145,7 +4221,7 @@ static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
* to a larger limit. Thus disabled by default.
*/
shared = 0;
- if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
+ if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
shared = 8;
#if DEBUG
@@ -4211,11 +4287,11 @@ static void cache_reap(struct work_struct *w)
int node = numa_mem_id();
struct delayed_work *work = to_delayed_work(w);
- if (!mutex_trylock(&cache_chain_mutex))
+ if (!mutex_trylock(&slab_mutex))
/* Give up. Setup the next iteration. */
goto out;
- list_for_each_entry(searchp, &cache_chain, next) {
+ list_for_each_entry(searchp, &slab_caches, list) {
check_irq_on();
/*
@@ -4253,7 +4329,7 @@ next:
cond_resched();
}
check_irq_on();
- mutex_unlock(&cache_chain_mutex);
+ mutex_unlock(&slab_mutex);
next_reap_node();
out:
/* Set up the next iteration */
@@ -4289,26 +4365,26 @@ static void *s_start(struct seq_file *m, loff_t *pos)
{
loff_t n = *pos;
- mutex_lock(&cache_chain_mutex);
+ mutex_lock(&slab_mutex);
if (!n)
print_slabinfo_header(m);
- return seq_list_start(&cache_chain, *pos);
+ return seq_list_start(&slab_caches, *pos);
}
static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
- return seq_list_next(p, &cache_chain, pos);
+ return seq_list_next(p, &slab_caches, pos);
}
static void s_stop(struct seq_file *m, void *p)
{
- mutex_unlock(&cache_chain_mutex);
+ mutex_unlock(&slab_mutex);
}
static int s_show(struct seq_file *m, void *p)
{
- struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
+ struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
struct slab *slabp;
unsigned long active_objs;
unsigned long num_objs;
@@ -4364,7 +4440,7 @@ static int s_show(struct seq_file *m, void *p)
printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
- name, active_objs, num_objs, cachep->buffer_size,
+ name, active_objs, num_objs, cachep->size,
cachep->num, (1 << cachep->gfporder));
seq_printf(m, " : tunables %4u %4u %4u",
cachep->limit, cachep->batchcount, cachep->shared);
@@ -4454,9 +4530,9 @@ static ssize_t slabinfo_write(struct file *file, const char __user *buffer,
return -EINVAL;
/* Find the cache in the chain of caches. */
- mutex_lock(&cache_chain_mutex);
+ mutex_lock(&slab_mutex);
res = -EINVAL;
- list_for_each_entry(cachep, &cache_chain, next) {
+ list_for_each_entry(cachep, &slab_caches, list) {
if (!strcmp(cachep->name, kbuf)) {
if (limit < 1 || batchcount < 1 ||
batchcount > limit || shared < 0) {
@@ -4469,7 +4545,7 @@ static ssize_t slabinfo_write(struct file *file, const char __user *buffer,
break;
}
}
- mutex_unlock(&cache_chain_mutex);
+ mutex_unlock(&slab_mutex);
if (res >= 0)
res = count;
return res;
@@ -4492,8 +4568,8 @@ static const struct file_operations proc_slabinfo_operations = {
static void *leaks_start(struct seq_file *m, loff_t *pos)
{
- mutex_lock(&cache_chain_mutex);
- return seq_list_start(&cache_chain, *pos);
+ mutex_lock(&slab_mutex);
+ return seq_list_start(&slab_caches, *pos);
}
static inline int add_caller(unsigned long *n, unsigned long v)
@@ -4532,7 +4608,7 @@ static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
int i;
if (n[0] == n[1])
return;
- for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
+ for (i = 0, p = s->s_mem; i < c->num; i++, p += c->size) {
if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
continue;
if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
@@ -4558,7 +4634,7 @@ static void show_symbol(struct seq_file *m, unsigned long address)
static int leaks_show(struct seq_file *m, void *p)
{
- struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
+ struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
struct slab *slabp;
struct kmem_list3 *l3;
const char *name;
@@ -4592,17 +4668,17 @@ static int leaks_show(struct seq_file *m, void *p)
name = cachep->name;
if (n[0] == n[1]) {
/* Increase the buffer size */
- mutex_unlock(&cache_chain_mutex);
+ mutex_unlock(&slab_mutex);
m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
if (!m->private) {
/* Too bad, we are really out */
m->private = n;
- mutex_lock(&cache_chain_mutex);
+ mutex_lock(&slab_mutex);
return -ENOMEM;
}
*(unsigned long *)m->private = n[0] * 2;
kfree(n);
- mutex_lock(&cache_chain_mutex);
+ mutex_lock(&slab_mutex);
/* Now make sure this entry will be retried */
m->count = m->size;
return 0;
@@ -4677,6 +4753,6 @@ size_t ksize(const void *objp)
if (unlikely(objp == ZERO_SIZE_PTR))
return 0;
- return obj_size(virt_to_cache(objp));
+ return virt_to_cache(objp)->object_size;
}
EXPORT_SYMBOL(ksize);