aboutsummaryrefslogtreecommitdiffstats
path: root/arch (follow)
AgeCommit message (Collapse)AuthorFilesLines
2018-06-21cpu/hotplug: Provide knobs to control SMTThomas Gleixner2-0/+4
Provide a command line and a sysfs knob to control SMT. The command line options are: 'nosmt': Enumerate secondary threads, but do not online them 'nosmt=force': Ignore secondary threads completely during enumeration via MP table and ACPI/MADT. The sysfs control file has the following states (read/write): 'on': SMT is enabled. Secondary threads can be freely onlined 'off': SMT is disabled. Secondary threads, even if enumerated cannot be onlined 'forceoff': SMT is permanentely disabled. Writes to the control file are rejected. 'notsupported': SMT is not supported by the CPU The command line option 'nosmt' sets the sysfs control to 'off'. This can be changed to 'on' to reenable SMT during runtime. The command line option 'nosmt=force' sets the sysfs control to 'forceoff'. This cannot be changed during runtime. When SMT is 'on' and the control file is changed to 'off' then all online secondary threads are offlined and attempts to online a secondary thread later on are rejected. When SMT is 'off' and the control file is changed to 'on' then secondary threads can be onlined again. The 'off' -> 'on' transition does not automatically online the secondary threads. When the control file is set to 'forceoff', the behaviour is the same as setting it to 'off', but the operation is irreversible and later writes to the control file are rejected. When the control status is 'notsupported' then writes to the control file are rejected. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Acked-by: Ingo Molnar <mingo@kernel.org>
2018-06-21x86/topology: Provide topology_smt_supported()Thomas Gleixner2-0/+10
Provide information whether SMT is supoorted by the CPUs. Preparatory patch for SMT control mechanism. Suggested-by: Dave Hansen <dave.hansen@intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Ingo Molnar <mingo@kernel.org>
2018-06-21x86/smp: Provide topology_is_primary_thread()Thomas Gleixner4-1/+33
If the CPU is supporting SMT then the primary thread can be found by checking the lower APIC ID bits for zero. smp_num_siblings is used to build the mask for the APIC ID bits which need to be taken into account. This uses the MPTABLE or ACPI/MADT supplied APIC ID, which can be different than the initial APIC ID in CPUID. But according to AMD the lower bits have to be consistent. Intel gave a tentative confirmation as well. Preparatory patch to support disabling SMT at boot/runtime. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Acked-by: Ingo Molnar <mingo@kernel.org>
2018-06-21x86/bugs: Move the l1tf function and define pr_fmt properlyKonrad Rzeszutek Wilk1-26/+29
The pr_warn in l1tf_select_mitigation would have used the prior pr_fmt which was defined as "Spectre V2 : ". Move the function to be past SSBD and also define the pr_fmt. Fixes: 17dbca119312 ("x86/speculation/l1tf: Add sysfs reporting for l1tf") Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2018-06-20x86/speculation/l1tf: Limit swap file size to MAX_PA/2Andi Kleen1-0/+15
For the L1TF workaround its necessary to limit the swap file size to below MAX_PA/2, so that the higher bits of the swap offset inverted never point to valid memory. Add a mechanism for the architecture to override the swap file size check in swapfile.c and add a x86 specific max swapfile check function that enforces that limit. The check is only enabled if the CPU is vulnerable to L1TF. In VMs with 42bit MAX_PA the typical limit is 2TB now, on a native system with 46bit PA it is 32TB. The limit is only per individual swap file, so it's always possible to exceed these limits with multiple swap files or partitions. Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Dave Hansen <dave.hansen@intel.com>
2018-06-20x86/speculation/l1tf: Disallow non privileged high MMIO PROT_NONE mappingsAndi Kleen2-0/+29
For L1TF PROT_NONE mappings are protected by inverting the PFN in the page table entry. This sets the high bits in the CPU's address space, thus making sure to point to not point an unmapped entry to valid cached memory. Some server system BIOSes put the MMIO mappings high up in the physical address space. If such an high mapping was mapped to unprivileged users they could attack low memory by setting such a mapping to PROT_NONE. This could happen through a special device driver which is not access protected. Normal /dev/mem is of course access protected. To avoid this forbid PROT_NONE mappings or mprotect for high MMIO mappings. Valid page mappings are allowed because the system is then unsafe anyways. It's not expected that users commonly use PROT_NONE on MMIO. But to minimize any impact this is only enforced if the mapping actually refers to a high MMIO address (defined as the MAX_PA-1 bit being set), and also skip the check for root. For mmaps this is straight forward and can be handled in vm_insert_pfn and in remap_pfn_range(). For mprotect it's a bit trickier. At the point where the actual PTEs are accessed a lot of state has been changed and it would be difficult to undo on an error. Since this is a uncommon case use a separate early page talk walk pass for MMIO PROT_NONE mappings that checks for this condition early. For non MMIO and non PROT_NONE there are no changes. Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com> Acked-by: Dave Hansen <dave.hansen@intel.com>
2018-06-20x86/speculation/l1tf: Add sysfs reporting for l1tfAndi Kleen4-0/+67
L1TF core kernel workarounds are cheap and normally always enabled, However they still should be reported in sysfs if the system is vulnerable or mitigated. Add the necessary CPU feature/bug bits. - Extend the existing checks for Meltdowns to determine if the system is vulnerable. All CPUs which are not vulnerable to Meltdown are also not vulnerable to L1TF - Check for 32bit non PAE and emit a warning as there is no practical way for mitigation due to the limited physical address bits - If the system has more than MAX_PA/2 physical memory the invert page workarounds don't protect the system against the L1TF attack anymore, because an inverted physical address will also point to valid memory. Print a warning in this case and report that the system is vulnerable. Add a function which returns the PFN limit for the L1TF mitigation, which will be used in follow up patches for sanity and range checks. [ tglx: Renamed the CPU feature bit to L1TF_PTEINV ] Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com> Acked-by: Dave Hansen <dave.hansen@intel.com>
2018-06-20x86/speculation/l1tf: Make sure the first page is always reservedAndi Kleen1-0/+6
The L1TF workaround doesn't make any attempt to mitigate speculate accesses to the first physical page for zeroed PTEs. Normally it only contains some data from the early real mode BIOS. It's not entirely clear that the first page is reserved in all configurations, so add an extra reservation call to make sure it is really reserved. In most configurations (e.g. with the standard reservations) it's likely a nop. Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com> Acked-by: Dave Hansen <dave.hansen@intel.com>
2018-06-20x86/speculation/l1tf: Protect PROT_NONE PTEs against speculationAndi Kleen5-13/+84
When PTEs are set to PROT_NONE the kernel just clears the Present bit and preserves the PFN, which creates attack surface for L1TF speculation speculation attacks. This is important inside guests, because L1TF speculation bypasses physical page remapping. While the host has its own migitations preventing leaking data from other VMs into the guest, this would still risk leaking the wrong page inside the current guest. This uses the same technique as Linus' swap entry patch: while an entry is is in PROTNONE state invert the complete PFN part part of it. This ensures that the the highest bit will point to non existing memory. The invert is done by pte/pmd_modify and pfn/pmd/pud_pte for PROTNONE and pte/pmd/pud_pfn undo it. This assume that no code path touches the PFN part of a PTE directly without using these primitives. This doesn't handle the case that MMIO is on the top of the CPU physical memory. If such an MMIO region was exposed by an unpriviledged driver for mmap it would be possible to attack some real memory. However this situation is all rather unlikely. For 32bit non PAE the inversion is not done because there are really not enough bits to protect anything. Q: Why does the guest need to be protected when the HyperVisor already has L1TF mitigations? A: Here's an example: Physical pages 1 2 get mapped into a guest as GPA 1 -> PA 2 GPA 2 -> PA 1 through EPT. The L1TF speculation ignores the EPT remapping. Now the guest kernel maps GPA 1 to process A and GPA 2 to process B, and they belong to different users and should be isolated. A sets the GPA 1 PA 2 PTE to PROT_NONE to bypass the EPT remapping and gets read access to the underlying physical page. Which in this case points to PA 2, so it can read process B's data, if it happened to be in L1, so isolation inside the guest is broken. There's nothing the hypervisor can do about this. This mitigation has to be done in the guest itself. [ tglx: Massaged changelog ] Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Dave Hansen <dave.hansen@intel.com>
2018-06-20x86/speculation/l1tf: Protect swap entries against L1TFLinus Torvalds1-3/+8
With L1 terminal fault the CPU speculates into unmapped PTEs, and resulting side effects allow to read the memory the PTE is pointing too, if its values are still in the L1 cache. For swapped out pages Linux uses unmapped PTEs and stores a swap entry into them. To protect against L1TF it must be ensured that the swap entry is not pointing to valid memory, which requires setting higher bits (between bit 36 and bit 45) that are inside the CPUs physical address space, but outside any real memory. To do this invert the offset to make sure the higher bits are always set, as long as the swap file is not too big. Note there is no workaround for 32bit !PAE, or on systems which have more than MAX_PA/2 worth of memory. The later case is very unlikely to happen on real systems. [AK: updated description and minor tweaks by. Split out from the original patch ] Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Andi Kleen <ak@linux.intel.com> Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Dave Hansen <dave.hansen@intel.com>
2018-06-20x86/speculation/l1tf: Change order of offset/type in swap entryLinus Torvalds1-11/+20
If pages are swapped out, the swap entry is stored in the corresponding PTE, which has the Present bit cleared. CPUs vulnerable to L1TF speculate on PTE entries which have the present bit set and would treat the swap entry as phsyical address (PFN). To mitigate that the upper bits of the PTE must be set so the PTE points to non existent memory. The swap entry stores the type and the offset of a swapped out page in the PTE. type is stored in bit 9-13 and offset in bit 14-63. The hardware ignores the bits beyond the phsyical address space limit, so to make the mitigation effective its required to start 'offset' at the lowest possible bit so that even large swap offsets do not reach into the physical address space limit bits. Move offset to bit 9-58 and type to bit 59-63 which are the bits that hardware generally doesn't care about. That, in turn, means that if you on desktop chip with only 40 bits of physical addressing, now that the offset starts at bit 9, there needs to be 30 bits of offset actually *in use* until bit 39 ends up being set, which means when inverted it will again point into existing memory. So that's 4 terabyte of swap space (because the offset is counted in pages, so 30 bits of offset is 42 bits of actual coverage). With bigger physical addressing, that obviously grows further, until the limit of the offset is hit (at 50 bits of offset - 62 bits of actual swap file coverage). This is a preparatory change for the actual swap entry inversion to protect against L1TF. [ AK: Updated description and minor tweaks. Split into two parts ] [ tglx: Massaged changelog ] Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Andi Kleen <ak@linux.intel.com> Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Dave Hansen <dave.hansen@intel.com>
2018-06-20x86/speculation/l1tf: Increase 32bit PAE __PHYSICAL_PAGE_SHIFTAndi Kleen1-2/+7
L1 Terminal Fault (L1TF) is a speculation related vulnerability. The CPU speculates on PTE entries which do not have the PRESENT bit set, if the content of the resulting physical address is available in the L1D cache. The OS side mitigation makes sure that a !PRESENT PTE entry points to a physical address outside the actually existing and cachable memory space. This is achieved by inverting the upper bits of the PTE. Due to the address space limitations this only works for 64bit and 32bit PAE kernels, but not for 32bit non PAE. This mitigation applies to both host and guest kernels, but in case of a 64bit host (hypervisor) and a 32bit PAE guest, inverting the upper bits of the PAE address space (44bit) is not enough if the host has more than 43 bits of populated memory address space, because the speculation treats the PTE content as a physical host address bypassing EPT. The host (hypervisor) protects itself against the guest by flushing L1D as needed, but pages inside the guest are not protected against attacks from other processes inside the same guest. For the guest the inverted PTE mask has to match the host to provide the full protection for all pages the host could possibly map into the guest. The hosts populated address space is not known to the guest, so the mask must cover the possible maximal host address space, i.e. 52 bit. On 32bit PAE the maximum PTE mask is currently set to 44 bit because that is the limit imposed by 32bit unsigned long PFNs in the VMs. This limits the mask to be below what the host could possible use for physical pages. The L1TF PROT_NONE protection code uses the PTE masks to determine which bits to invert to make sure the higher bits are set for unmapped entries to prevent L1TF speculation attacks against EPT inside guests. In order to invert all bits that could be used by the host, increase __PHYSICAL_PAGE_SHIFT to 52 to match 64bit. The real limit for a 32bit PAE kernel is still 44 bits because all Linux PTEs are created from unsigned long PFNs, so they cannot be higher than 44 bits on a 32bit kernel. So these extra PFN bits should be never set. The only users of this macro are using it to look at PTEs, so it's safe. [ tglx: Massaged changelog ] Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Dave Hansen <dave.hansen@intel.com>
2018-06-17Merge tag 'docs-broken-links' of git://linuxtv.org/mchehab/experimentalLinus Torvalds12-13/+13
Pull documentation fixes from Mauro Carvalho Chehab: "This solves a series of broken links for files under Documentation, and improves a script meant to detect such broken links (see scripts/documentation-file-ref-check). The changes on this series are: - can.rst: fix a footnote reference; - crypto_engine.rst: Fix two parsing warnings; - Fix a lot of broken references to Documentation/*; - improve the scripts/documentation-file-ref-check script, in order to help detecting/fixing broken references, preventing false-positives. After this patch series, only 33 broken references to doc files are detected by scripts/documentation-file-ref-check" * tag 'docs-broken-links' of git://linuxtv.org/mchehab/experimental: (26 commits) fix a series of Documentation/ broken file name references Documentation: rstFlatTable.py: fix a broken reference ABI: sysfs-devices-system-cpu: remove a broken reference devicetree: fix a series of wrong file references devicetree: fix name of pinctrl-bindings.txt devicetree: fix some bindings file names MAINTAINERS: fix location of DT npcm files MAINTAINERS: fix location of some display DT bindings kernel-parameters.txt: fix pointers to sound parameters bindings: nvmem/zii: Fix location of nvmem.txt docs: Fix more broken references scripts/documentation-file-ref-check: check tools/*/Documentation scripts/documentation-file-ref-check: get rid of false-positives scripts/documentation-file-ref-check: hint: dash or underline scripts/documentation-file-ref-check: add a fix logic for DT scripts/documentation-file-ref-check: accept more wildcards at filenames scripts/documentation-file-ref-check: fix help message media: max2175: fix location of driver's companion documentation media: v4l: fix broken video4linux docs locations media: dvb: point to the location of the old README.dvb-usb file ...
2018-06-16Merge branch 'for-linus-4.18-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rw/umlLinus Torvalds4-29/+14
Pull uml updates from Richard Weinberger: "Minor updates for UML: - fixes for our new vector network driver by Anton - initcall cleanup by Alexander - We have a new mailinglist, sourceforge.net sucks" * 'for-linus-4.18-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rw/uml: um: Fix raw interface options um: Fix initialization of vector queues um: remove uml initcalls um: Update mailing list address
2018-06-16Merge tag 'riscv-for-linus-4.18-merge_window' of git://git.kernel.org/pub/scm/linux/kernel/git/palmer/riscv-linuxLinus Torvalds15-14/+626
Pull RISC-V updates from Palmer Dabbelt: "This contains some small RISC-V updates I'd like to target for 4.18. They are all fairly small this time. Here's a short summary, there's more info in the commits/merges: - a fix to __clear_user to respect the passed arguments. - enough support for the perf subsystem to work with RISC-V's ISA defined performance counters. - support for sparse and cleanups suggested by it. - support for R_RISCV_32 (a relocation, not the 32-bit ISA). - some MAINTAINERS cleanups. - the addition of CONFIG_HVC_RISCV_SBI to our defconfig, as it's always present. I've given these a simple build+boot test" * tag 'riscv-for-linus-4.18-merge_window' of git://git.kernel.org/pub/scm/linux/kernel/git/palmer/riscv-linux: RISC-V: Add CONFIG_HVC_RISCV_SBI=y to defconfig RISC-V: Handle R_RISCV_32 in modules riscv/ftrace: Export _mcount when DYNAMIC_FTRACE isn't set riscv: add riscv-specific predefines to CHECKFLAGS riscv: split the declaration of __copy_user riscv: no __user for probe_kernel_address() riscv: use NULL instead of a plain 0 perf: riscv: Add Document for Future Porting Guide perf: riscv: preliminary RISC-V support MAINTAINERS: Update Albert's email, he's back at Berkeley MAINTAINERS: Add myself as a maintainer for SiFive's drivers riscv: Fix the bug in memory access fixup code
2018-06-16Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvmLinus Torvalds40-1233/+2313
Pull more kvm updates from Paolo Bonzini: "Mostly the PPC part of the release, but also switching to Arnd's fix for the hyperv config issue and a typo fix. Main PPC changes: - reimplement the MMIO instruction emulation - transactional memory support for PR KVM - improve radix page table handling" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (63 commits) KVM: x86: VMX: redo fix for link error without CONFIG_HYPERV KVM: x86: fix typo at kvm_arch_hardware_setup comment KVM: PPC: Book3S PR: Fix failure status setting in tabort. emulation KVM: PPC: Book3S PR: Enable use on POWER9 bare-metal hosts in HPT mode KVM: PPC: Book3S PR: Don't let PAPR guest set MSR hypervisor bit KVM: PPC: Book3S PR: Fix failure status setting in treclaim. emulation KVM: PPC: Book3S PR: Fix MSR setting when delivering interrupts KVM: PPC: Book3S PR: Handle additional interrupt types KVM: PPC: Book3S PR: Enable kvmppc_get/set_one_reg_pr() for HTM registers KVM: PPC: Book3S: Remove load/put vcpu for KVM_GET_REGS/KVM_SET_REGS KVM: PPC: Remove load/put vcpu for KVM_GET/SET_ONE_REG ioctl KVM: PPC: Move vcpu_load/vcpu_put down to each ioctl case in kvm_arch_vcpu_ioctl KVM: PPC: Book3S PR: Enable HTM for PR KVM for KVM_CHECK_EXTENSION ioctl KVM: PPC: Book3S PR: Support TAR handling for PR KVM HTM KVM: PPC: Book3S PR: Add guard code to prevent returning to guest with PR=0 and Transactional state KVM: PPC: Book3S PR: Add emulation for tabort. in privileged state KVM: PPC: Book3S PR: Add emulation for trechkpt. KVM: PPC: Book3S PR: Add emulation for treclaim. KVM: PPC: Book3S PR: Restore NV regs after emulating mfspr from TM SPRs KVM: PPC: Book3S PR: Always fail transactions in guest privileged state ...
2018-06-15docs: Fix some broken referencesMauro Carvalho Chehab8-9/+9
As we move stuff around, some doc references are broken. Fix some of them via this script: ./scripts/documentation-file-ref-check --fix Manually checked if the produced result is valid, removing a few false-positives. Acked-by: Takashi Iwai <tiwai@suse.de> Acked-by: Masami Hiramatsu <mhiramat@kernel.org> Acked-by: Stephen Boyd <sboyd@kernel.org> Acked-by: Charles Keepax <ckeepax@opensource.wolfsonmicro.com> Acked-by: Mathieu Poirier <mathieu.poirier@linaro.org> Reviewed-by: Coly Li <colyli@suse.de> Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org> Acked-by: Jonathan Corbet <corbet@lwn.net>
2018-06-15arch/*: Kconfig: fix documentation for NMI watchdogMauro Carvalho Chehab4-4/+4
Changeset 9919cba7ff71 ("watchdog: Update documentation") updated the documentation, removing the old nmi_watchdog.txt and adding a file with a new content. Update Kconfig files accordingly. Fixes: 9919cba7ff71 ("watchdog: Update documentation") Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org> Acked-by: Jonathan Corbet <corbet@lwn.net>
2018-06-15Merge branch 'akpm' (patches from Andrew)Linus Torvalds14-16/+29
Merge more updates from Andrew Morton: - MM remainders - various misc things - kcov updates * emailed patches from Andrew Morton <akpm@linux-foundation.org>: (27 commits) lib/test_printf.c: call wait_for_random_bytes() before plain %p tests hexagon: drop the unused variable zero_page_mask hexagon: fix printk format warning in setup.c mm: fix oom_kill event handling treewide: use PHYS_ADDR_MAX to avoid type casting ULLONG_MAX mm: use octal not symbolic permissions ipc: use new return type vm_fault_t sysvipc/sem: mitigate semnum index against spectre v1 fault-injection: reorder config entries arm: port KCOV to arm sched/core / kcov: avoid kcov_area during task switch kcov: prefault the kcov_area kcov: ensure irq code sees a valid area kernel/relay.c: change return type to vm_fault_t exofs: avoid VLA in structures coredump: fix spam with zero VMA process fat: use fat_fs_error() instead of BUG_ON() in __fat_get_block() proc: skip branch in /proc/*/* lookup mremap: remove LATENCY_LIMIT from mremap to reduce the number of TLB shootdowns mm/memblock: add missing include <linux/bootmem.h> ...
2018-06-15hexagon: drop the unused variable zero_page_maskAnshuman Khandual2-4/+0
Hexagon arch does not seem to have subscribed to _HAVE_COLOR_ZERO_PAGE framework. Hence zero_page_mask variable is not needed. Link: http://lkml.kernel.org/r/20180517061105.30447-1-khandual@linux.vnet.ibm.com Signed-off-by: Anshuman Khandual <khandual@linux.vnet.ibm.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-15hexagon: fix printk format warning in setup.cRandy Dunlap1-1/+1
Fix printk format warning in hexagon/kernel/setup.c: ../arch/hexagon/kernel/setup.c: In function 'setup_arch': ../arch/hexagon/kernel/setup.c:69:2: warning: format '%x' expects argument of type 'unsigned int', but argument 2 has type 'long unsigned int' [-Wformat] where: extern unsigned long __phys_offset; #define PHYS_OFFSET __phys_offset Link: http://lkml.kernel.org/r/adce8db5-4b01-dc10-7fbb-6a64e0787eb5@infradead.org Signed-off-by: Randy Dunlap <rdunlap@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-15treewide: use PHYS_ADDR_MAX to avoid type casting ULLONG_MAXStefan Agner6-9/+9
With PHYS_ADDR_MAX there is now a type safe variant for all bits set. Make use of it. Patch created using a semantic patch as follows: // <smpl> @@ typedef phys_addr_t; @@ -(phys_addr_t)ULLONG_MAX +PHYS_ADDR_MAX // </smpl> Link: http://lkml.kernel.org/r/20180419214204.19322-1-stefan@agner.ch Signed-off-by: Stefan Agner <stefan@agner.ch> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Acked-by: Catalin Marinas <catalin.marinas@arm.com> [arm64] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-15arm: port KCOV to armDmitry Vyukov4-1/+16
KCOV is code coverage collection facility used, in particular, by syzkaller system call fuzzer. There is some interest in using syzkaller on arm devices. So port KCOV to arm. On implementation level this merely declares that KCOV is supported and disables instrumentation of 3 special cases. Reasons for disabling are commented in code. Tested with qemu-system-arm/vexpress-a15. Link: http://lkml.kernel.org/r/20180511143248.112484-1-dvyukov@google.com Signed-off-by: Dmitry Vyukov <dvyukov@google.com> Acked-by: Mark Rutland <mark.rutland@arm.com> Cc: Russell King <linux@armlinux.org.uk> Cc: Abbott Liu <liuwenliang@huawei.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Koguchi Takuo <takuo.koguchi.sw@hitachi.com> Cc: <syzkaller@googlegroups.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-15mm: fix devmem_is_allowed() for sub-page System RAM intersectionsDan Williams1-1/+3
Hussam reports: I was poking around and for no real reason, I did cat /dev/mem and strings /dev/mem. Then I saw the following warning in dmesg. I saved it and rebooted immediately. memremap attempted on mixed range 0x000000000009c000 size: 0x1000 ------------[ cut here ]------------ WARNING: CPU: 0 PID: 11810 at kernel/memremap.c:98 memremap+0x104/0x170 [..] Call Trace: xlate_dev_mem_ptr+0x25/0x40 read_mem+0x89/0x1a0 __vfs_read+0x36/0x170 The memremap() implementation checks for attempts to remap System RAM with MEMREMAP_WB and instead redirects those mapping attempts to the linear map. However, that only works if the physical address range being remapped is page aligned. In low memory we have situations like the following: 00000000-00000fff : Reserved 00001000-0009fbff : System RAM 0009fc00-0009ffff : Reserved ...where System RAM intersects Reserved ranges on a sub-page page granularity. Given that devmem_is_allowed() special cases any attempt to map System RAM in the first 1MB of memory, replace page_is_ram() with the more precise region_intersects() to trap attempts to map disallowed ranges. Link: https://bugzilla.kernel.org/show_bug.cgi?id=199999 Link: http://lkml.kernel.org/r/152856436164.18127.2847888121707136898.stgit@dwillia2-desk3.amr.corp.intel.com Fixes: 92281dee825f ("arch: introduce memremap()") Signed-off-by: Dan Williams <dan.j.williams@intel.com> Reported-by: Hussam Al-Tayeb <me@hussam.eu.org> Tested-by: Hussam Al-Tayeb <me@hussam.eu.org> Cc: Christoph Hellwig <hch@lst.de> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-15Kbuild: rename HAVE_CC_STACKPROTECTOR config variableMasahiro Yamada7-8/+8
HAVE_CC_STACKPROTECTOR should be selected by architectures with stack canary implementation. It is not about the compiler support. For the consistency with commit 050e9baa9dc9 ("Kbuild: rename CC_STACKPROTECTOR[_STRONG] config variables"), remove 'CC_' from the config symbol. I moved the 'select' lines to keep the alphabetical sorting. Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com> Acked-by: Kees Cook <keescook@chromium.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-15x86: fix dependency of X86_32_LAZY_GSMasahiro Yamada1-1/+1
Commit 2a61f4747eea ("stack-protector: test compiler capability in Kconfig and drop AUTO mode") replaced the 'choice' with two boolean symbols, so CC_STACKPROTECTOR_NONE no longer exists. Prior to commit 2bc2f688fdf8 ("Makefile: move stack-protector availability out of Kconfig"), this line was like this: depends on X86_32 && !CC_STACKPROTECTOR The CC_ prefix was dropped by commit 050e9baa9dc9 ("Kbuild: rename CC_STACKPROTECTOR[_STRONG] config variables"), so the dependency now should be: depends on X86_32 && !STACKPROTECTOR Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com> Acked-by: Kees Cook <keescook@chromium.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-14KVM: x86: VMX: redo fix for link error without CONFIG_HYPERVArnd Bergmann1-4/+2
Arnd had sent this patch to the KVM mailing list, but it slipped through the cracks of maintainers hand-off, and therefore wasn't included in the pull request. The same issue had been fixed by Linus in commit dbee3d0 ("KVM: x86: VMX: fix build without hyper-v", 2018-06-12) as a self-described "quick-and-hacky build fix". However, checking the compile-time configuration symbol with IS_ENABLED is cleaner and it is enough to avoid the link error, so switch to Arnd's solution. Signed-off-by: Arnd Bergmann <arnd@arndb.de> [Rewritten commit message. - Paolo] Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-06-14Merge tag 'kvm-ppc-next-4.18-2' of git://git.kernel.org/pub/scm/linux/kernel/git/paulus/powerpc into HEADPaolo Bonzini38-1228/+2310
2018-06-14KVM: x86: fix typo at kvm_arch_hardware_setup commentMarcelo Tosatti1-1/+1
Fix typo in sentence about min value calculation. Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-06-14Merge branch 'i2c/for-4.18' of git://git.kernel.org/pub/scm/linux/kernel/git/wsa/linuxLinus Torvalds17-17/+17
Pull i2c updates from Wolfram Sang: - mainly feature additions to drivers (stm32f7, qup, xlp9xx, mlxcpld, ...) - conversion to use the i2c_8bit_addr_from_msg macro consistently - move includes to platform_data - core updates to allow the (still in review) I3C subsystem to connect - and the regular share of smaller driver updates * 'i2c/for-4.18' of git://git.kernel.org/pub/scm/linux/kernel/git/wsa/linux: (68 commits) i2c: qup: fix building without CONFIG_ACPI i2c: tegra: Remove suspend-resume i2c: imx-lpi2c: Switch to SPDX identifier i2c: mxs: Switch to SPDX identifier i2c: busses: make use of i2c_8bit_addr_from_msg i2c: algos: make use of i2c_8bit_addr_from_msg i2c: rcar: document R8A77980 bindings i2c: qup: Add command-line parameter to override SCL frequency i2c: qup: Correct duty cycle for FM and FM+ i2c: qup: Add support for Fast Mode Plus i2c: qup: add probe path for Centriq ACPI devices i2c: robotfuzz-osif: drop pointless test i2c: robotfuzz-osif: remove pointless local variable i2c: rk3x: Don't print visible virtual mapping MMIO address i2c: opal: don't check number of messages in the driver i2c: ibm_iic: don't check number of messages in the driver i2c: imx: Switch to SPDX identifier i2c: mux: pca954x: merge calls to of_match_device and of_device_get_match_data i2c: mux: demux-pinctrl: use proper parent device for demux adapter i2c: mux: improve error message for failed symlink ...
2018-06-14Kbuild: rename CC_STACKPROTECTOR[_STRONG] config variablesLinus Torvalds25-30/+30
The changes to automatically test for working stack protector compiler support in the Kconfig files removed the special STACKPROTECTOR_AUTO option that picked the strongest stack protector that the compiler supported. That was all a nice cleanup - it makes no sense to have the AUTO case now that the Kconfig phase can just determine the compiler support directly. HOWEVER. It also meant that doing "make oldconfig" would now _disable_ the strong stackprotector if you had AUTO enabled, because in a legacy config file, the sane stack protector configuration would look like CONFIG_HAVE_CC_STACKPROTECTOR=y # CONFIG_CC_STACKPROTECTOR_NONE is not set # CONFIG_CC_STACKPROTECTOR_REGULAR is not set # CONFIG_CC_STACKPROTECTOR_STRONG is not set CONFIG_CC_STACKPROTECTOR_AUTO=y and when you ran this through "make oldconfig" with the Kbuild changes, it would ask you about the regular CONFIG_CC_STACKPROTECTOR (that had been renamed from CONFIG_CC_STACKPROTECTOR_REGULAR to just CONFIG_CC_STACKPROTECTOR), but it would think that the STRONG version used to be disabled (because it was really enabled by AUTO), and would disable it in the new config, resulting in: CONFIG_HAVE_CC_STACKPROTECTOR=y CONFIG_CC_HAS_STACKPROTECTOR_NONE=y CONFIG_CC_STACKPROTECTOR=y # CONFIG_CC_STACKPROTECTOR_STRONG is not set CONFIG_CC_HAS_SANE_STACKPROTECTOR=y That's dangerously subtle - people could suddenly find themselves with the weaker stack protector setup without even realizing. The solution here is to just rename not just the old RECULAR stack protector option, but also the strong one. This does that by just removing the CC_ prefix entirely for the user choices, because it really is not about the compiler support (the compiler support now instead automatially impacts _visibility_ of the options to users). This results in "make oldconfig" actually asking the user for their choice, so that we don't have any silent subtle security model changes. The end result would generally look like this: CONFIG_HAVE_CC_STACKPROTECTOR=y CONFIG_CC_HAS_STACKPROTECTOR_NONE=y CONFIG_STACKPROTECTOR=y CONFIG_STACKPROTECTOR_STRONG=y CONFIG_CC_HAS_SANE_STACKPROTECTOR=y where the "CC_" versions really are about internal compiler infrastructure, not the user selections. Acked-by: Masahiro Yamada <yamada.masahiro@socionext.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-13Merge tag 'kbuild-v4.18-2' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuildLinus Torvalds11-69/+47
Pull more Kbuild updates from Masahiro Yamada: - fix some bugs introduced by the recent Kconfig syntax extension - add some symbols about compiler information in Kconfig, such as CC_IS_GCC, CC_IS_CLANG, GCC_VERSION, etc. - test compiler capability for the stack protector in Kconfig, and clean-up Makefile - test compiler capability for GCC-plugins in Kconfig, and clean-up Makefile - allow to enable GCC-plugins for COMPILE_TEST - test compiler capability for KCOV in Kconfig and correct dependency - remove auto-detect mode of the GCOV format, which is now more nicely handled in Kconfig - test compiler capability for mprofile-kernel on PowerPC, and clean-up Makefile - misc cleanups * tag 'kbuild-v4.18-2' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild: linux/linkage.h: replace VMLINUX_SYMBOL_STR() with __stringify() kconfig: fix localmodconfig sh: remove no-op macro VMLINUX_SYMBOL() powerpc/kbuild: move -mprofile-kernel check to Kconfig Documentation: kconfig: add recommended way to describe compiler support gcc-plugins: disable GCC_PLUGIN_STRUCTLEAK_BYREF_ALL for COMPILE_TEST gcc-plugins: allow to enable GCC_PLUGINS for COMPILE_TEST gcc-plugins: test plugin support in Kconfig and clean up Makefile gcc-plugins: move GCC version check for PowerPC to Kconfig kcov: test compiler capability in Kconfig and correct dependency gcov: remove CONFIG_GCOV_FORMAT_AUTODETECT arm64: move GCC version check for ARCH_SUPPORTS_INT128 to Kconfig kconfig: add CC_IS_CLANG and CLANG_VERSION kconfig: add CC_IS_GCC and GCC_VERSION stack-protector: test compiler capability in Kconfig and drop AUTO mode kbuild: fix endless syncconfig in case arch Makefile sets CROSS_COMPILE
2018-06-12KVM: x86: VMX: fix build without hyper-vLinus Torvalds1-0/+3
Commit ceef7d10dfb6 ("KVM: x86: VMX: hyper-v: Enlightened MSR-Bitmap support") broke the build with Hyper-V disabled, because it accesses ms_hyperv.nested_features without checking if that exists. This is the quick-and-hacky build fix. I suspect the proper fix is to replace the static_branch_unlikely(&enable_evmcs) tests with an inline helper function that also checks that CONFIG_HYPERV is enabled, since without that, enable_evmcs makes no sense. But I want a working build environment first and foremost, and I'm upset this slipped through in the first place. My primary build tests missed it because I tend to build with everything enabled, but it should have been caught in the kvm tree. Fixes: ceef7d10dfb6 ("KVM: x86: VMX: hyper-v: Enlightened MSR-Bitmap support") Cc: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-12Merge tag 'overflow-v4.18-rc1-part2' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linuxLinus Torvalds77-131/+153
Pull more overflow updates from Kees Cook: "The rest of the overflow changes for v4.18-rc1. This includes the explicit overflow fixes from Silvio, further struct_size() conversions from Matthew, and a bug fix from Dan. But the bulk of it is the treewide conversions to use either the 2-factor argument allocators (e.g. kmalloc(a * b, ...) into kmalloc_array(a, b, ...) or the array_size() macros (e.g. vmalloc(a * b) into vmalloc(array_size(a, b)). Coccinelle was fighting me on several fronts, so I've done a bunch of manual whitespace updates in the patches as well. Summary: - Error path bug fix for overflow tests (Dan) - Additional struct_size() conversions (Matthew, Kees) - Explicitly reported overflow fixes (Silvio, Kees) - Add missing kvcalloc() function (Kees) - Treewide conversions of allocators to use either 2-factor argument variant when available, or array_size() and array3_size() as needed (Kees)" * tag 'overflow-v4.18-rc1-part2' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux: (26 commits) treewide: Use array_size in f2fs_kvzalloc() treewide: Use array_size() in f2fs_kzalloc() treewide: Use array_size() in f2fs_kmalloc() treewide: Use array_size() in sock_kmalloc() treewide: Use array_size() in kvzalloc_node() treewide: Use array_size() in vzalloc_node() treewide: Use array_size() in vzalloc() treewide: Use array_size() in vmalloc() treewide: devm_kzalloc() -> devm_kcalloc() treewide: devm_kmalloc() -> devm_kmalloc_array() treewide: kvzalloc() -> kvcalloc() treewide: kvmalloc() -> kvmalloc_array() treewide: kzalloc_node() -> kcalloc_node() treewide: kzalloc() -> kcalloc() treewide: kmalloc() -> kmalloc_array() mm: Introduce kvcalloc() video: uvesafb: Fix integer overflow in allocation UBIFS: Fix potential integer overflow in allocation leds: Use struct_size() in allocation Convert intel uncore to struct_size ...
2018-06-13KVM: PPC: Book3S PR: Fix failure status setting in tabort. emulationSimon Guo1-3/+3
tabort. will perform transaction failure recording and the recording depends on TEXASR FS bit. Currently the TEXASR FS bit is retrieved after tabort., when the TEXASR FS bit is already been updated by tabort. itself. This patch corrects this behavior by retrieving TEXASR val before tabort. tabort. will not immediately leads to transaction failure handling in suspend state. So this patch also remove the mtspr on TEXASR/TFIAR registers to avoid TM bad thing exception. Fixes: 26798f88d58d ("KVM: PPC: Book3S PR: Add emulation for tabort. in privileged state") Signed-off-by: Simon Guo <wei.guo.simon@gmail.com> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2018-06-13KVM: PPC: Book3S PR: Enable use on POWER9 bare-metal hosts in HPT modePaul Mackerras1-6/+2
It turns out that PR KVM has no dependency on the format of HPTEs, because it uses functions pointed to by mmu_hash_ops which do all the formatting and interpretation of HPTEs. Thus we can allow PR KVM to load on POWER9 bare-metal hosts as long as they are running in HPT mode. Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2018-06-13KVM: PPC: Book3S PR: Don't let PAPR guest set MSR hypervisor bitPaul Mackerras1-0/+4
PAPR guests run in supervisor mode and should not be able to set the MSR HV (hypervisor mode) bit or clear the ME (machine check enable) bit by mtmsrd or any other means. To enforce this, we force MSR_HV off and MSR_ME on in kvmppc_set_msr_pr. Without this, the guest can appear to be in hypervisor mode to itself and to userspace. This has been observed to cause a crash in QEMU when it tries to deliver a system reset interrupt to the guest. Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2018-06-13KVM: PPC: Book3S PR: Fix failure status setting in treclaim. emulationPaul Mackerras1-9/+11
The treclaim. emulation needs to record failure status in the TEXASR register if the transaction had not previously failed. However, the current code first does kvmppc_save_tm_pr() (which does a treclaim. itself) and then checks the failure summary bit in TEXASR after that. Since treclaim. itself causes transaction failure, the FS bit is always set, so we were never updating TEXASR with the failure cause supplied by the guest as the RA parameter to the treclaim. instruction. This caused the tm-unavailable test in tools/testing/selftests/powerpc/tm to fail. To fix this, we need to read TEXASR before calling kvmppc_save_tm_pr(), and base the final value of TEXASR on that value. Fixes: 03c81682a90b ("KVM: PPC: Book3S PR: Add emulation for treclaim.") Reviewed-by: Simon Guo <wei.guo.simon@gmail.com> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2018-06-13KVM: PPC: Book3S PR: Fix MSR setting when delivering interruptsPaul Mackerras2-33/+22
This makes sure that MSR "partial-function" bits are not transferred to SRR1 when delivering an interrupt. This was causing failures in guests running kernels that include commit f3d96e698ed0 ("powerpc/mm: Overhaul handling of bad page faults", 2017-07-19), which added code to check bits of SRR1 on instruction storage interrupts (ISIs) that indicate a bad page fault. The symptom was that a guest user program that handled a signal and attempted to return from the signal handler would get a SIGBUS signal and die. The code that generated ISIs and some other interrupts would previously set bits in the guest MSR to indicate the interrupt status and then call kvmppc_book3s_queue_irqprio(). This technique no longer works now that kvmppc_inject_interrupt() is masking off those bits. Instead we make kvmppc_core_queue_data_storage() and kvmppc_core_queue_inst_storage() call kvmppc_inject_interrupt() directly, and make sure that all the places that generate ISIs or DSIs call kvmppc_core_queue_{data,inst}_storage instead of kvmppc_book3s_queue_irqprio(). Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2018-06-13KVM: PPC: Book3S PR: Handle additional interrupt typesCameron Kaiser1-0/+3
This adds trivial handling for additional interrupt types that KVM-PR must support for proper virtualization on a POWER9 host in HPT mode, as a further prerequisite to enabling KVM-PR on that configuration. Signed-off-by: Cameron Kaiser <spectre@floodgap.com> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2018-06-12treewide: Use array_size() in vzalloc()Kees Cook3-3/+4
The vzalloc() function has no 2-factor argument form, so multiplication factors need to be wrapped in array_size(). This patch replaces cases of: vzalloc(a * b) with: vzalloc(array_size(a, b)) as well as handling cases of: vzalloc(a * b * c) with: vzalloc(array3_size(a, b, c)) This does, however, attempt to ignore constant size factors like: vzalloc(4 * 1024) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( vzalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | vzalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( vzalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | vzalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | vzalloc( - sizeof(char) * (COUNT) + COUNT , ...) | vzalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | vzalloc( - sizeof(u8) * COUNT + COUNT , ...) | vzalloc( - sizeof(__u8) * COUNT + COUNT , ...) | vzalloc( - sizeof(char) * COUNT + COUNT , ...) | vzalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( vzalloc( - sizeof(TYPE) * (COUNT_ID) + array_size(COUNT_ID, sizeof(TYPE)) , ...) | vzalloc( - sizeof(TYPE) * COUNT_ID + array_size(COUNT_ID, sizeof(TYPE)) , ...) | vzalloc( - sizeof(TYPE) * (COUNT_CONST) + array_size(COUNT_CONST, sizeof(TYPE)) , ...) | vzalloc( - sizeof(TYPE) * COUNT_CONST + array_size(COUNT_CONST, sizeof(TYPE)) , ...) | vzalloc( - sizeof(THING) * (COUNT_ID) + array_size(COUNT_ID, sizeof(THING)) , ...) | vzalloc( - sizeof(THING) * COUNT_ID + array_size(COUNT_ID, sizeof(THING)) , ...) | vzalloc( - sizeof(THING) * (COUNT_CONST) + array_size(COUNT_CONST, sizeof(THING)) , ...) | vzalloc( - sizeof(THING) * COUNT_CONST + array_size(COUNT_CONST, sizeof(THING)) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ vzalloc( - SIZE * COUNT + array_size(COUNT, SIZE) , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( vzalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | vzalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | vzalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | vzalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | vzalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | vzalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | vzalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | vzalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( vzalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | vzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | vzalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | vzalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | vzalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | vzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( vzalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | vzalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | vzalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | vzalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | vzalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | vzalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | vzalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | vzalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( vzalloc(C1 * C2 * C3, ...) | vzalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants. @@ expression E1, E2; constant C1, C2; @@ ( vzalloc(C1 * C2, ...) | vzalloc( - E1 * E2 + array_size(E1, E2) , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-12treewide: Use array_size() in vmalloc()Kees Cook8-10/+12
The vmalloc() function has no 2-factor argument form, so multiplication factors need to be wrapped in array_size(). This patch replaces cases of: vmalloc(a * b) with: vmalloc(array_size(a, b)) as well as handling cases of: vmalloc(a * b * c) with: vmalloc(array3_size(a, b, c)) This does, however, attempt to ignore constant size factors like: vmalloc(4 * 1024) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( vmalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | vmalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( vmalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | vmalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | vmalloc( - sizeof(char) * (COUNT) + COUNT , ...) | vmalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | vmalloc( - sizeof(u8) * COUNT + COUNT , ...) | vmalloc( - sizeof(__u8) * COUNT + COUNT , ...) | vmalloc( - sizeof(char) * COUNT + COUNT , ...) | vmalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( vmalloc( - sizeof(TYPE) * (COUNT_ID) + array_size(COUNT_ID, sizeof(TYPE)) , ...) | vmalloc( - sizeof(TYPE) * COUNT_ID + array_size(COUNT_ID, sizeof(TYPE)) , ...) | vmalloc( - sizeof(TYPE) * (COUNT_CONST) + array_size(COUNT_CONST, sizeof(TYPE)) , ...) | vmalloc( - sizeof(TYPE) * COUNT_CONST + array_size(COUNT_CONST, sizeof(TYPE)) , ...) | vmalloc( - sizeof(THING) * (COUNT_ID) + array_size(COUNT_ID, sizeof(THING)) , ...) | vmalloc( - sizeof(THING) * COUNT_ID + array_size(COUNT_ID, sizeof(THING)) , ...) | vmalloc( - sizeof(THING) * (COUNT_CONST) + array_size(COUNT_CONST, sizeof(THING)) , ...) | vmalloc( - sizeof(THING) * COUNT_CONST + array_size(COUNT_CONST, sizeof(THING)) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ vmalloc( - SIZE * COUNT + array_size(COUNT, SIZE) , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( vmalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | vmalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | vmalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | vmalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | vmalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | vmalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | vmalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | vmalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( vmalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | vmalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | vmalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | vmalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | vmalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | vmalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( vmalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | vmalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | vmalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | vmalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | vmalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | vmalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | vmalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | vmalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( vmalloc(C1 * C2 * C3, ...) | vmalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants. @@ expression E1, E2; constant C1, C2; @@ ( vmalloc(C1 * C2, ...) | vmalloc( - E1 * E2 + array_size(E1, E2) , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-12treewide: kvzalloc() -> kvcalloc()Kees Cook2-4/+6
The kvzalloc() function has a 2-factor argument form, kvcalloc(). This patch replaces cases of: kvzalloc(a * b, gfp) with: kvcalloc(a * b, gfp) as well as handling cases of: kvzalloc(a * b * c, gfp) with: kvzalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kvcalloc(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kvzalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kvzalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kvzalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kvzalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kvzalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kvzalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kvzalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kvzalloc( - sizeof(u8) * COUNT + COUNT , ...) | kvzalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kvzalloc( - sizeof(char) * COUNT + COUNT , ...) | kvzalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kvzalloc + kvcalloc ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kvzalloc + kvcalloc ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kvzalloc + kvcalloc ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kvzalloc + kvcalloc ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kvzalloc + kvcalloc ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kvzalloc + kvcalloc ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kvzalloc + kvcalloc ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kvzalloc + kvcalloc ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kvzalloc + kvcalloc ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kvzalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kvzalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kvzalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kvzalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kvzalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kvzalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kvzalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kvzalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kvzalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kvzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kvzalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kvzalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kvzalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kvzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kvzalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kvzalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kvzalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kvzalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kvzalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kvzalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kvzalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kvzalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kvzalloc(C1 * C2 * C3, ...) | kvzalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kvzalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kvzalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kvzalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kvzalloc(sizeof(THING) * C2, ...) | kvzalloc(sizeof(TYPE) * C2, ...) | kvzalloc(C1 * C2 * C3, ...) | kvzalloc(C1 * C2, ...) | - kvzalloc + kvcalloc ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kvzalloc + kvcalloc ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kvzalloc + kvcalloc ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kvzalloc + kvcalloc ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kvzalloc + kvcalloc ( - (E1) * E2 + E1, E2 , ...) | - kvzalloc + kvcalloc ( - (E1) * (E2) + E1, E2 , ...) | - kvzalloc + kvcalloc ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-12treewide: kzalloc() -> kcalloc()Kees Cook41-58/+60
The kzalloc() function has a 2-factor argument form, kcalloc(). This patch replaces cases of: kzalloc(a * b, gfp) with: kcalloc(a * b, gfp) as well as handling cases of: kzalloc(a * b * c, gfp) with: kzalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kzalloc_array(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kzalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kzalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kzalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kzalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(char) * COUNT + COUNT , ...) | kzalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kzalloc + kcalloc ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kzalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kzalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kzalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kzalloc(C1 * C2 * C3, ...) | kzalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kzalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kzalloc(sizeof(THING) * C2, ...) | kzalloc(sizeof(TYPE) * C2, ...) | kzalloc(C1 * C2 * C3, ...) | kzalloc(C1 * C2, ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - (E1) * E2 + E1, E2 , ...) | - kzalloc + kcalloc ( - (E1) * (E2) + E1, E2 , ...) | - kzalloc + kcalloc ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-12treewide: kmalloc() -> kmalloc_array()Kees Cook28-47/+61
The kmalloc() function has a 2-factor argument form, kmalloc_array(). This patch replaces cases of: kmalloc(a * b, gfp) with: kmalloc_array(a * b, gfp) as well as handling cases of: kmalloc(a * b * c, gfp) with: kmalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kmalloc_array(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kmalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The tools/ directory was manually excluded, since it has its own implementation of kmalloc(). The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kmalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kmalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kmalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(u8) * COUNT + COUNT , ...) | kmalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kmalloc( - sizeof(char) * COUNT + COUNT , ...) | kmalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kmalloc + kmalloc_array ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kmalloc + kmalloc_array ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kmalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kmalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kmalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kmalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kmalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kmalloc(C1 * C2 * C3, ...) | kmalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kmalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kmalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kmalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kmalloc(sizeof(THING) * C2, ...) | kmalloc(sizeof(TYPE) * C2, ...) | kmalloc(C1 * C2 * C3, ...) | kmalloc(C1 * C2, ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - (E1) * E2 + E1, E2 , ...) | - kmalloc + kmalloc_array ( - (E1) * (E2) + E1, E2 , ...) | - kmalloc + kmalloc_array ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-12Convert intel uncore to struct_sizeMatthew Wilcox1-9/+10
Need to do a bit of rearranging to make this work. Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com> Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-12Merge tag 'mips_4.18' of git://git.kernel.org/pub/scm/linux/kernel/git/mips/linuxLinus Torvalds53-351/+301
Pull MIPS updates from James Hogan: "These are the main MIPS changes for 4.18. Rough overview: - MAINTAINERS: Add Paul Burton as MIPS co-maintainer - Misc: Generic compiler intrinsics, Y2038 improvements, Perf+MT fixes - Platform support: Netgear WNR1000 V3, Microsemi Ocelot integrated switch, Ingenic watchdog cleanups More detailed summary: Maintainers: - Add Paul Burton as MIPS co-maintainer, as I soon won't have access to much MIPS hardware, nor enough time to properly maintain MIPS on my own. Miscellaneous: - Use generic GCC library routines from lib/ - Add notrace to generic ucmpdi2 implementation - Rename compiler intrinsic selects to GENERIC_LIB_* - vmlinuz: Use generic ashldi3 - y2038: Convert update/read_persistent_clock() to *_clock64() - sni: Remove read_persistent_clock() - perf: Fix perf with MT counting other threads - Probe for per-TC perf counters in cpu-probe.c - Use correct VPE ID for VPE tracing Minor cleanups: - Avoid unneeded built-in.a in DTS dirs - sc-debugfs: Re-use kstrtobool_from_user - memset.S: Reinstate delay slot indentation - VPE: Fix spelling "uneeded" -> "Unneeded" Platform support: BCM47xx: - Add support for Netgear WNR1000 V3 - firmware: Support small NVRAM partitions - Use __initdata for LEDs platform data Ingenic: - Watchdog driver & platform code improvements: - Disable clock after stopping counter - Use devm_* functions - Drop module remove function - Move platform reset code to restart handler in driver - JZ4740: Convert watchdog instantiation to DT - JZ4780: Fix watchdog DT node - qi_lb60_defconfig: Enable watchdog driver Microsemi: - Ocelot: Add support for integrated switch - pcb123: Connect phys to ports" * tag 'mips_4.18' of git://git.kernel.org/pub/scm/linux/kernel/git/mips/linux: (30 commits) MAINTAINERS: Add Paul Burton as MIPS co-maintainer MIPS: ptrace: Make FPU context layout comments match reality MIPS: memset.S: Reinstate delay slot indentation MIPS: perf: Fix perf with MT counting other threads MIPS: perf: Use correct VPE ID when setting up VPE tracing MIPS: perf: More robustly probe for the presence of per-tc counters MIPS: Probe for MIPS MT perf counters per TC MIPS: mscc: Connect phys to ports on ocelot_pcb123 MIPS: mscc: Add switch to ocelot MIPS: JZ4740: Drop old platform reset code MIPS: qi_lb60: Enable the jz4740-wdt driver MIPS: JZ4780: dts: Fix watchdog node MIPS: JZ4740: dts: Add bindings for the jz4740-wdt driver watchdog: JZ4740: Drop module remove function watchdog: JZ4740: Register a restart handler watchdog: JZ4740: Use devm_* functions watchdog: JZ4740: Disable clock after stopping counter MIPS: VPE: Fix spelling mistake: "uneeded" -> "unneeded" MIPS: Re-use kstrtobool_from_user() MIPS: Convert update_persistent_clock() to update_persistent_clock64() ...
2018-06-12Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvmLinus Torvalds55-595/+1320
Pull KVM updates from Paolo Bonzini: "Small update for KVM: ARM: - lazy context-switching of FPSIMD registers on arm64 - "split" regions for vGIC redistributor s390: - cleanups for nested - clock handling - crypto - storage keys - control register bits x86: - many bugfixes - implement more Hyper-V super powers - implement lapic_timer_advance_ns even when the LAPIC timer is emulated using the processor's VMX preemption timer. - two security-related bugfixes at the top of the branch" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (79 commits) kvm: fix typo in flag name kvm: x86: use correct privilege level for sgdt/sidt/fxsave/fxrstor access KVM: x86: pass kvm_vcpu to kvm_read_guest_virt and kvm_write_guest_virt_system KVM: x86: introduce linear_{read,write}_system kvm: nVMX: Enforce cpl=0 for VMX instructions kvm: nVMX: Add support for "VMWRITE to any supported field" kvm: nVMX: Restrict VMX capability MSR changes KVM: VMX: Optimize tscdeadline timer latency KVM: docs: nVMX: Remove known limitations as they do not exist now KVM: docs: mmu: KVM support exposing SLAT to guests kvm: no need to check return value of debugfs_create functions kvm: Make VM ioctl do valloc for some archs kvm: Change return type to vm_fault_t KVM: docs: mmu: Fix link to NPT presentation from KVM Forum 2008 kvm: x86: Amend the KVM_GET_SUPPORTED_CPUID API documentation KVM: x86: hyperv: declare KVM_CAP_HYPERV_TLBFLUSH capability KVM: x86: hyperv: simplistic HVCALL_FLUSH_VIRTUAL_ADDRESS_{LIST,SPACE}_EX implementation KVM: x86: hyperv: simplistic HVCALL_FLUSH_VIRTUAL_ADDRESS_{LIST,SPACE} implementation KVM: introduce kvm_make_vcpus_request_mask() API KVM: x86: hyperv: do rep check for each hypercall separately ...
2018-06-12kvm: fix typo in flag nameMichael S. Tsirkin1-2/+2
KVM_X86_DISABLE_EXITS_HTL really refers to exit on halt. Obviously a typo: should be named KVM_X86_DISABLE_EXITS_HLT. Fixes: caa057a2cad ("KVM: X86: Provide a capability to disable HLT intercepts") Cc: stable@vger.kernel.org Signed-off-by: Michael S. Tsirkin <mst@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-06-12kvm: x86: use correct privilege level for sgdt/sidt/fxsave/fxrstor accessPaolo Bonzini3-14/+26
The functions that were used in the emulation of fxrstor, fxsave, sgdt and sidt were originally meant for task switching, and as such they did not check privilege levels. This is very bad when the same functions are used in the emulation of unprivileged instructions. This is CVE-2018-10853. The obvious fix is to add a new argument to ops->read_std and ops->write_std, which decides whether the access is a "system" access or should use the processor's CPL. Fixes: 129a72a0d3c8 ("KVM: x86: Introduce segmented_write_std", 2017-01-12) Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>