aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/net/dsa/sja1105/sja1105_tas.c (follow)
AgeCommit message (Collapse)AuthorFilesLines
2021-05-24net: dsa: sja1105: parameterize the number of portsVladimir Oltean1-6/+8
The sja1105 driver will gain support for the next-gen SJA1110 switch, which is very similar except for the fact it has more than 5 ports. So we need to replace the hardcoded SJA1105_NUM_PORTS in this driver with ds->num_ports. This patch is as mechanical as possible (save for the fact that ds->num_ports is not an integer constant expression). Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-06-19net: dsa: sja1105: Use struct_size() in kzalloc()Gustavo A. R. Silva1-2/+1
Make use of the struct_size() helper instead of an open-coded version in order to avoid any potential type mistakes. This code was detected with the help of Coccinelle and, audited and fixed manually. Addresses-KSPP-ID: https://github.com/KSPP/linux/issues/83 Signed-off-by: Gustavo A. R. Silva <gustavoars@kernel.org> Acked-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-05-07net: dsa: sja1105: implement tc-gate using time-triggered virtual linksVladimir Oltean1-15/+112
Restrict the TTEthernet hardware support on this switch to operate as closely as possible to IEEE 802.1Qci as possible. This means that it can perform PTP-time-based ingress admission control on streams identified by {DMAC, VID, PCP}, which is useful when trying to ensure the determinism of traffic scheduled via IEEE 802.1Qbv. The oddity comes from the fact that in hardware (and in TTEthernet at large), virtual links always need a full-blown action, including not only the type of policing, but also the list of destination ports. So in practice, a single tc-gate action will result in all packets getting dropped. Additional actions (either "trap" or "redirect") need to be specified in the same filter rule such that the conforming packets are actually forwarded somewhere. Apart from the VL Lookup, Policing and Forwarding tables which need to be programmed for each flow (virtual link), the Schedule engine also needs to be told to open/close the admission gates for each individual virtual link. A fairly accurate (and detailed) description of how that works is already present in sja1105_tas.c, since it is already used to trigger the egress gates for the tc-taprio offload (IEEE 802.1Qbv). Key point here, we remember that the schedule engine supports 8 "subschedules" (execution threads that iterate through the global schedule in parallel, and that no 2 hardware threads must execute a schedule entry at the same time). For tc-taprio, each egress port used one of these 8 subschedules, leaving a total of 4 subschedules unused. In principle we could have allocated 1 subschedule for the tc-gate offload of each ingress port, but actually the schedules of all virtual links installed on each ingress port would have needed to be merged together, before they could have been programmed to hardware. So simplify our life and just merge the entire tc-gate configuration, for all virtual links on all ingress ports, into a single subschedule. Be sure to check that against the usual hardware scheduling conflicts, and program it to hardware alongside any tc-taprio subschedule that may be present. The following scenarios were tested: 1. Quantitative testing: tc qdisc add dev swp2 clsact tc filter add dev swp2 ingress flower skip_sw \ dst_mac 42:be:24:9b:76:20 \ action gate index 1 base-time 0 \ sched-entry OPEN 1200 -1 -1 \ sched-entry CLOSE 1200 -1 -1 \ action trap ping 192.168.1.2 -f PING 192.168.1.2 (192.168.1.2) 56(84) bytes of data. ............................. --- 192.168.1.2 ping statistics --- 948 packets transmitted, 467 received, 50.7384% packet loss, time 9671ms 2. Qualitative testing (with a phase-aligned schedule - the clocks are synchronized by ptp4l, not shown here): Receiver (sja1105): tc qdisc add dev swp2 clsact now=$(phc_ctl /dev/ptp1 get | awk '/clock time is/ {print $5}') && \ sec=$(echo $now | awk -F. '{print $1}') && \ base_time="$(((sec + 2) * 1000000000))" && \ echo "base time ${base_time}" tc filter add dev swp2 ingress flower skip_sw \ dst_mac 42:be:24:9b:76:20 \ action gate base-time ${base_time} \ sched-entry OPEN 60000 -1 -1 \ sched-entry CLOSE 40000 -1 -1 \ action trap Sender (enetc): now=$(phc_ctl /dev/ptp0 get | awk '/clock time is/ {print $5}') && \ sec=$(echo $now | awk -F. '{print $1}') && \ base_time="$(((sec + 2) * 1000000000))" && \ echo "base time ${base_time}" tc qdisc add dev eno0 parent root taprio \ num_tc 8 \ map 0 1 2 3 4 5 6 7 \ queues 1@0 1@1 1@2 1@3 1@4 1@5 1@6 1@7 \ base-time ${base_time} \ sched-entry S 01 50000 \ sched-entry S 00 50000 \ flags 2 ping -A 192.168.1.1 PING 192.168.1.1 (192.168.1.1): 56 data bytes ... ^C --- 192.168.1.1 ping statistics --- 1425 packets transmitted, 1424 packets received, 0% packet loss round-trip min/avg/max = 0.322/0.361/0.990 ms And just for comparison, with the tc-taprio schedule deleted: ping -A 192.168.1.1 PING 192.168.1.1 (192.168.1.1): 56 data bytes ... ^C --- 192.168.1.1 ping statistics --- 33 packets transmitted, 19 packets received, 42% packet loss round-trip min/avg/max = 0.336/0.464/0.597 ms Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-23net: dsa: sja1105: make future_base_time a common helperVladimir Oltean1-27/+0
Because the PTP_CLK pin starts toggling only at a time higher than the current PTP clock, this helper from the time-aware shaper code comes in handy here as well. We'll use it to transform generic user input for the perout request into valid input for the sja1105 hardware. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-12-30net: dsa: sja1105: Remove restriction of zero base-time for taprio offloadVladimir Oltean1-5/+0
The check originates from the initial implementation which was not based on PTP time but on a standalone clock source. In the meantime we can now program the PTPSCHTM register at runtime with the dynamic base time (actually with a value that is 200 ns smaller, to avoid writing DELTA=0 in the Schedule Entry Points Parameters Table). And we also have logic for moving the actual base time in the future of the PHC's current time base, so the check for zero serves no purpose, since even if the user will specify zero, that's not what will end up in the static config table where the limitation is. Fixes: 86db36a347b4 ("net: dsa: sja1105: Implement state machine for TAS with PTP clock source") Signed-off-by: Vladimir Oltean <olteanv@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-14net: dsa: sja1105: Implement state machine for TAS with PTP clock sourceVladimir Oltean1-10/+418
Tested using the following bash script and the tc from iproute2-next: #!/bin/bash set -e -u -o pipefail NSEC_PER_SEC="1000000000" gatemask() { local tc_list="$1" local mask=0 for tc in ${tc_list}; do mask=$((${mask} | (1 << ${tc}))) done printf "%02x" ${mask} } if ! systemctl is-active --quiet ptp4l; then echo "Please start the ptp4l service" exit fi now=$(phc_ctl /dev/ptp1 get | gawk '/clock time is/ { print $5; }') # Phase-align the base time to the start of the next second. sec=$(echo "${now}" | gawk -F. '{ print $1; }') base_time="$(((${sec} + 1) * ${NSEC_PER_SEC}))" tc qdisc add dev swp5 parent root handle 100 taprio \ num_tc 8 \ map 0 1 2 3 5 6 7 \ queues 1@0 1@1 1@2 1@3 1@4 1@5 1@6 1@7 \ base-time ${base_time} \ sched-entry S $(gatemask 7) 100000 \ sched-entry S $(gatemask "0 1 2 3 4 5 6") 400000 \ clockid CLOCK_TAI flags 2 The "state machine" is a workqueue invoked after each manipulation command on the PTP clock (reset, adjust time, set time, adjust frequency) which checks over the state of the time-aware scheduler. So it is not monitored periodically, only in reaction to a PTP command typically triggered from a userspace daemon (linuxptp). Otherwise there is no reason for things to go wrong. Now that the timecounter/cyclecounter has been replaced with hardware operations on the PTP clock, the TAS Kconfig now depends upon PTP and the standalone clocksource operating mode has been removed. Signed-off-by: Vladimir Oltean <olteanv@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-12net: dsa: sja1105: Print the reset reasonVladimir Oltean1-2/+2
Sometimes it can be quite opaque even for me why the driver decided to reset the switch. So instead of adding dump_stack() calls each time for debugging, just add a reset reason to sja1105_static_config_reload calls which gets printed to the console. Signed-off-by: Vladimir Oltean <olteanv@gmail.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-09-16net: dsa: sja1105: Configure the Time-Aware Scheduler via tc-taprio offloadVladimir Oltean1-0/+423
This qdisc offload is the closest thing to what the SJA1105 supports in hardware for time-based egress shaping. The switch core really is built around SAE AS6802/TTEthernet (a TTTech standard) but can be made to operate similarly to IEEE 802.1Qbv with some constraints: - The gate control list is a global list for all ports. There are 8 execution threads that iterate through this global list in parallel. I don't know why 8, there are only 4 front-panel ports. - Care must be taken by the user to make sure that two execution threads never get to execute a GCL entry simultaneously. I created a O(n^4) checker for this hardware limitation, prior to accepting a taprio offload configuration as valid. - The spec says that if a GCL entry's interval is shorter than the frame length, you shouldn't send it (and end up in head-of-line blocking). Well, this switch does anyway. - The switch has no concept of ADMIN and OPER configurations. Because it's so simple, the TAS settings are loaded through the static config tables interface, so there isn't even place for any discussion about 'graceful switchover between ADMIN and OPER'. You just reset the switch and upload a new OPER config. - The switch accepts multiple time sources for the gate events. Right now I am using the standalone clock source as opposed to PTP. So the base time parameter doesn't really do much. Support for the PTP clock source will be added in a future series. Signed-off-by: Vladimir Oltean <olteanv@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>