aboutsummaryrefslogtreecommitdiffstats
path: root/security/keys/permission.c (follow)
AgeCommit message (Collapse)AuthorFilesLines
2020-05-19keys: Make the KEY_NEED_* perms an enum rather than a maskDavid Howells1-7/+24
Since the meaning of combining the KEY_NEED_* constants is undefined, make it so that you can't do that by turning them into an enum. The enum is also given some extra values to represent special circumstances, such as: (1) The '0' value is reserved and causes a warning to trap the parameter being unset. (2) The key is to be unlinked and we require no permissions on it, only the keyring, (this replaces the KEY_LOOKUP_FOR_UNLINK flag). (3) An override due to CAP_SYS_ADMIN. (4) An override due to an instantiation token being present. (5) The permissions check is being deferred to later key_permission() calls. The extra values give the opportunity for LSMs to audit these situations. [Note: This really needs overhauling so that lookup_user_key() tells key_task_permission() and the LSM what operation is being done and leaves it to those functions to decide how to map that onto the available permits. However, I don't really want to make these change in the middle of the notifications patchset.] Signed-off-by: David Howells <dhowells@redhat.com> cc: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com> cc: Paul Moore <paul@paul-moore.com> cc: Stephen Smalley <stephen.smalley.work@gmail.com> cc: Casey Schaufler <casey@schaufler-ca.com> cc: keyrings@vger.kernel.org cc: selinux@vger.kernel.org
2019-07-10Revert "Merge tag 'keys-acl-20190703' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs"Linus Torvalds1-325/+36
This reverts merge 0f75ef6a9cff49ff612f7ce0578bced9d0b38325 (and thus effectively commits 7a1ade847596 ("keys: Provide KEYCTL_GRANT_PERMISSION") 2e12256b9a76 ("keys: Replace uid/gid/perm permissions checking with an ACL") that the merge brought in). It turns out that it breaks booting with an encrypted volume, and Eric biggers reports that it also breaks the fscrypt tests [1] and loading of in-kernel X.509 certificates [2]. The root cause of all the breakage is likely the same, but David Howells is off email so rather than try to work it out it's getting reverted in order to not impact the rest of the merge window. [1] https://lore.kernel.org/lkml/20190710011559.GA7973@sol.localdomain/ [2] https://lore.kernel.org/lkml/20190710013225.GB7973@sol.localdomain/ Link: https://lore.kernel.org/lkml/CAHk-=wjxoeMJfeBahnWH=9zShKp2bsVy527vo3_y8HfOdhwAAw@mail.gmail.com/ Reported-by: Eric Biggers <ebiggers@kernel.org> Cc: David Howells <dhowells@redhat.com> Cc: James Morris <jmorris@namei.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-08Merge tag 'keys-acl-20190703' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fsLinus Torvalds1-36/+325
Pull keyring ACL support from David Howells: "This changes the permissions model used by keys and keyrings to be based on an internal ACL by the following means: - Replace the permissions mask internally with an ACL that contains a list of ACEs, each with a specific subject with a permissions mask. Potted default ACLs are available for new keys and keyrings. ACE subjects can be macroised to indicate the UID and GID specified on the key (which remain). Future commits will be able to add additional subject types, such as specific UIDs or domain tags/namespaces. Also split a number of permissions to give finer control. Examples include splitting the revocation permit from the change-attributes permit, thereby allowing someone to be granted permission to revoke a key without allowing them to change the owner; also the ability to join a keyring is split from the ability to link to it, thereby stopping a process accessing a keyring by joining it and thus acquiring use of possessor permits. - Provide a keyctl to allow the granting or denial of one or more permits to a specific subject. Direct access to the ACL is not granted, and the ACL cannot be viewed" * tag 'keys-acl-20190703' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs: keys: Provide KEYCTL_GRANT_PERMISSION keys: Replace uid/gid/perm permissions checking with an ACL
2019-07-03keys: Provide KEYCTL_GRANT_PERMISSIONDavid Howells1-0/+119
Provide a keyctl() operation to grant/remove permissions. The grant operation, wrapped by libkeyutils, looks like: int ret = keyctl_grant_permission(key_serial_t key, enum key_ace_subject_type type, unsigned int subject, unsigned int perm); Where key is the key to be modified, type and subject represent the subject to which permission is to be granted (or removed) and perm is the set of permissions to be granted. 0 is returned on success. SET_SECURITY permission is required for this. The subject type currently must be KEY_ACE_SUBJ_STANDARD for the moment (other subject types will come along later). For subject type KEY_ACE_SUBJ_STANDARD, the following subject values are available: KEY_ACE_POSSESSOR The possessor of the key KEY_ACE_OWNER The owner of the key KEY_ACE_GROUP The key's group KEY_ACE_EVERYONE Everyone perm lists the permissions to be granted: KEY_ACE_VIEW Can view the key metadata KEY_ACE_READ Can read the key content KEY_ACE_WRITE Can update/modify the key content KEY_ACE_SEARCH Can find the key by searching/requesting KEY_ACE_LINK Can make a link to the key KEY_ACE_SET_SECURITY Can set security KEY_ACE_INVAL Can invalidate KEY_ACE_REVOKE Can revoke KEY_ACE_JOIN Can join this keyring KEY_ACE_CLEAR Can clear this keyring If an ACE already exists for the subject, then the permissions mask will be overwritten; if perm is 0, it will be deleted. Currently, the internal ACL is limited to a maximum of 16 entries. For example: int ret = keyctl_grant_permission(key, KEY_ACE_SUBJ_STANDARD, KEY_ACE_OWNER, KEY_ACE_VIEW | KEY_ACE_READ); Signed-off-by: David Howells <dhowells@redhat.com>
2019-06-27keys: Replace uid/gid/perm permissions checking with an ACLDavid Howells1-36/+206
Replace the uid/gid/perm permissions checking on a key with an ACL to allow the SETATTR and SEARCH permissions to be split. This will also allow a greater range of subjects to represented. ============ WHY DO THIS? ============ The problem is that SETATTR and SEARCH cover a slew of actions, not all of which should be grouped together. For SETATTR, this includes actions that are about controlling access to a key: (1) Changing a key's ownership. (2) Changing a key's security information. (3) Setting a keyring's restriction. And actions that are about managing a key's lifetime: (4) Setting an expiry time. (5) Revoking a key. and (proposed) managing a key as part of a cache: (6) Invalidating a key. Managing a key's lifetime doesn't really have anything to do with controlling access to that key. Expiry time is awkward since it's more about the lifetime of the content and so, in some ways goes better with WRITE permission. It can, however, be set unconditionally by a process with an appropriate authorisation token for instantiating a key, and can also be set by the key type driver when a key is instantiated, so lumping it with the access-controlling actions is probably okay. As for SEARCH permission, that currently covers: (1) Finding keys in a keyring tree during a search. (2) Permitting keyrings to be joined. (3) Invalidation. But these don't really belong together either, since these actions really need to be controlled separately. Finally, there are number of special cases to do with granting the administrator special rights to invalidate or clear keys that I would like to handle with the ACL rather than key flags and special checks. =============== WHAT IS CHANGED =============== The SETATTR permission is split to create two new permissions: (1) SET_SECURITY - which allows the key's owner, group and ACL to be changed and a restriction to be placed on a keyring. (2) REVOKE - which allows a key to be revoked. The SEARCH permission is split to create: (1) SEARCH - which allows a keyring to be search and a key to be found. (2) JOIN - which allows a keyring to be joined as a session keyring. (3) INVAL - which allows a key to be invalidated. The WRITE permission is also split to create: (1) WRITE - which allows a key's content to be altered and links to be added, removed and replaced in a keyring. (2) CLEAR - which allows a keyring to be cleared completely. This is split out to make it possible to give just this to an administrator. (3) REVOKE - see above. Keys acquire ACLs which consist of a series of ACEs, and all that apply are unioned together. An ACE specifies a subject, such as: (*) Possessor - permitted to anyone who 'possesses' a key (*) Owner - permitted to the key owner (*) Group - permitted to the key group (*) Everyone - permitted to everyone Note that 'Other' has been replaced with 'Everyone' on the assumption that you wouldn't grant a permit to 'Other' that you wouldn't also grant to everyone else. Further subjects may be made available by later patches. The ACE also specifies a permissions mask. The set of permissions is now: VIEW Can view the key metadata READ Can read the key content WRITE Can update/modify the key content SEARCH Can find the key by searching/requesting LINK Can make a link to the key SET_SECURITY Can change owner, ACL, expiry INVAL Can invalidate REVOKE Can revoke JOIN Can join this keyring CLEAR Can clear this keyring The KEYCTL_SETPERM function is then deprecated. The KEYCTL_SET_TIMEOUT function then is permitted if SET_SECURITY is set, or if the caller has a valid instantiation auth token. The KEYCTL_INVALIDATE function then requires INVAL. The KEYCTL_REVOKE function then requires REVOKE. The KEYCTL_JOIN_SESSION_KEYRING function then requires JOIN to join an existing keyring. The JOIN permission is enabled by default for session keyrings and manually created keyrings only. ====================== BACKWARD COMPATIBILITY ====================== To maintain backward compatibility, KEYCTL_SETPERM will translate the permissions mask it is given into a new ACL for a key - unless KEYCTL_SET_ACL has been called on that key, in which case an error will be returned. It will convert possessor, owner, group and other permissions into separate ACEs, if each portion of the mask is non-zero. SETATTR permission turns on all of INVAL, REVOKE and SET_SECURITY. WRITE permission turns on WRITE, REVOKE and, if a keyring, CLEAR. JOIN is turned on if a keyring is being altered. The KEYCTL_DESCRIBE function translates the ACL back into a permissions mask to return depending on possessor, owner, group and everyone ACEs. It will make the following mappings: (1) INVAL, JOIN -> SEARCH (2) SET_SECURITY -> SETATTR (3) REVOKE -> WRITE if SETATTR isn't already set (4) CLEAR -> WRITE Note that the value subsequently returned by KEYCTL_DESCRIBE may not match the value set with KEYCTL_SETATTR. ======= TESTING ======= This passes the keyutils testsuite for all but a couple of tests: (1) tests/keyctl/dh_compute/badargs: The first wrong-key-type test now returns EOPNOTSUPP rather than ENOKEY as READ permission isn't removed if the type doesn't have ->read(). You still can't actually read the key. (2) tests/keyctl/permitting/valid: The view-other-permissions test doesn't work as Other has been replaced with Everyone in the ACL. Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-30treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 152Thomas Gleixner1-5/+1
Based on 1 normalized pattern(s): this program is free software you can redistribute it and or modify it under the terms of the gnu general public license as published by the free software foundation either version 2 of the license or at your option any later version extracted by the scancode license scanner the SPDX license identifier GPL-2.0-or-later has been chosen to replace the boilerplate/reference in 3029 file(s). Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Allison Randal <allison@lohutok.net> Cc: linux-spdx@vger.kernel.org Link: https://lkml.kernel.org/r/20190527070032.746973796@linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-12-12security: audit and remove any unnecessary uses of module.hPaul Gortmaker1-1/+1
Historically a lot of these existed because we did not have a distinction between what was modular code and what was providing support to modules via EXPORT_SYMBOL and friends. That changed when we forked out support for the latter into the export.h file. This means we should be able to reduce the usage of module.h in code that is obj-y Makefile or bool Kconfig. The advantage in removing such instances is that module.h itself sources about 15 other headers; adding significantly to what we feed cpp, and it can obscure what headers we are effectively using. Since module.h might have been the implicit source for init.h (for __init) and for export.h (for EXPORT_SYMBOL) we consider each instance for the presence of either and replace as needed. Cc: James Morris <jmorris@namei.org> Cc: "Serge E. Hallyn" <serge@hallyn.com> Cc: John Johansen <john.johansen@canonical.com> Cc: Mimi Zohar <zohar@linux.ibm.com> Cc: Dmitry Kasatkin <dmitry.kasatkin@gmail.com> Cc: David Howells <dhowells@redhat.com> Cc: linux-security-module@vger.kernel.org Cc: linux-integrity@vger.kernel.org Cc: keyrings@vger.kernel.org Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com> Signed-off-by: James Morris <james.morris@microsoft.com>
2017-11-15security: keys: Replace time_t/timespec with time64_tBaolin Wang1-3/+2
The 'struct key' will use 'time_t' which we try to remove in the kernel, since 'time_t' is not year 2038 safe on 32bit systems. Also the 'struct keyring_search_context' will use 'timespec' type to record current time, which is also not year 2038 safe on 32bit systems. Thus this patch replaces 'time_t' with 'time64_t' which is year 2038 safe for 'struct key', and replace 'timespec' with 'time64_t' for the 'struct keyring_search_context', since we only look at the the seconds part of 'timespec' variable. Moreover we also change the codes where using the 'time_t' and 'timespec', and we can get current time by ktime_get_real_seconds() instead of current_kernel_time(), and use 'TIME64_MAX' macro to initialize the 'time64_t' type variable. Especially in proc.c file, we have replaced 'unsigned long' and 'timespec' type with 'u64' and 'time64_t' type to save the timeout value, which means user will get one 'u64' type timeout value by issuing proc_keys_show() function. Signed-off-by: Baolin Wang <baolin.wang@linaro.org> Reviewed-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: James Morris <james.l.morris@oracle.com>
2017-10-18KEYS: load key flags and expiry time atomically in key_validate()Eric Biggers1-3/+4
In key_validate(), load the flags and expiry time once atomically, since these can change concurrently if key_validate() is called without the key semaphore held. And we don't want to get inconsistent results if a variable is referenced multiple times. For example, key->expiry was referenced in both 'if (key->expiry)' and in 'if (now.tv_sec >= key->expiry)', making it theoretically possible to see a spurious EKEYEXPIRED while the expiration time was being removed, i.e. set to 0. Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: David Howells <dhowells@redhat.com>
2014-03-14KEYS: Move the flags representing required permission to linux/key.hDavid Howells1-2/+2
Move the flags representing required permission to linux/key.h as the perm parameter of security_key_permission() is in terms of them - and not the permissions mask flags used in key->perm. Whilst we're at it: (1) Rename them to be KEY_NEED_xxx rather than KEY_xxx to avoid collisions with symbols in uapi/linux/input.h. (2) Don't use key_perm_t for a mask of required permissions, but rather limit it to the permissions mask attached to the key and arguments related directly to that. Signed-off-by: David Howells <dhowells@redhat.com> Tested-by: Dmitry Kasatkin <d.kasatkin@samsung.com>
2012-09-13userns: Convert security/keys to the new userns infrastructureEric W. Biederman1-10/+4
- Replace key_user ->user_ns equality checks with kuid_has_mapping checks. - Use from_kuid to generate key descriptions - Use kuid_t and kgid_t and the associated helpers instead of uid_t and gid_t - Avoid potential problems with file descriptor passing by displaying keys in the user namespace of the opener of key status proc files. Cc: linux-security-module@vger.kernel.org Cc: keyrings@linux-nfs.org Cc: David Howells <dhowells@redhat.com> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2012-05-23Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespaceLinus Torvalds1-2/+3
Pull user namespace enhancements from Eric Biederman: "This is a course correction for the user namespace, so that we can reach an inexpensive, maintainable, and reasonably complete implementation. Highlights: - Config guards make it impossible to enable the user namespace and code that has not been converted to be user namespace safe. - Use of the new kuid_t type ensures the if you somehow get past the config guards the kernel will encounter type errors if you enable user namespaces and attempt to compile in code whose permission checks have not been updated to be user namespace safe. - All uids from child user namespaces are mapped into the initial user namespace before they are processed. Removing the need to add an additional check to see if the user namespace of the compared uids remains the same. - With the user namespaces compiled out the performance is as good or better than it is today. - For most operations absolutely nothing changes performance or operationally with the user namespace enabled. - The worst case performance I could come up with was timing 1 billion cache cold stat operations with the user namespace code enabled. This went from 156s to 164s on my laptop (or 156ns to 164ns per stat operation). - (uid_t)-1 and (gid_t)-1 are reserved as an internal error value. Most uid/gid setting system calls treat these value specially anyway so attempting to use -1 as a uid would likely cause entertaining failures in userspace. - If setuid is called with a uid that can not be mapped setuid fails. I have looked at sendmail, login, ssh and every other program I could think of that would call setuid and they all check for and handle the case where setuid fails. - If stat or a similar system call is called from a context in which we can not map a uid we lie and return overflowuid. The LFS experience suggests not lying and returning an error code might be better, but the historical precedent with uids is different and I can not think of anything that would break by lying about a uid we can't map. - Capabilities are localized to the current user namespace making it safe to give the initial user in a user namespace all capabilities. My git tree covers all of the modifications needed to convert the core kernel and enough changes to make a system bootable to runlevel 1." Fix up trivial conflicts due to nearby independent changes in fs/stat.c * 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace: (46 commits) userns: Silence silly gcc warning. cred: use correct cred accessor with regards to rcu read lock userns: Convert the move_pages, and migrate_pages permission checks to use uid_eq userns: Convert cgroup permission checks to use uid_eq userns: Convert tmpfs to use kuid and kgid where appropriate userns: Convert sysfs to use kgid/kuid where appropriate userns: Convert sysctl permission checks to use kuid and kgids. userns: Convert proc to use kuid/kgid where appropriate userns: Convert ext4 to user kuid/kgid where appropriate userns: Convert ext3 to use kuid/kgid where appropriate userns: Convert ext2 to use kuid/kgid where appropriate. userns: Convert devpts to use kuid/kgid where appropriate userns: Convert binary formats to use kuid/kgid where appropriate userns: Add negative depends on entries to avoid building code that is userns unsafe userns: signal remove unnecessary map_cred_ns userns: Teach inode_capable to understand inodes whose uids map to other namespaces. userns: Fail exec for suid and sgid binaries with ids outside our user namespace. userns: Convert stat to return values mapped from kuids and kgids userns: Convert user specfied uids and gids in chown into kuids and kgid userns: Use uid_eq gid_eq helpers when comparing kuids and kgids in the vfs ...
2012-05-16KEYS: Don't check for NULL key pointer in key_validate()David Howells1-24/+16
Don't bother checking for NULL key pointer in key_validate() as all of the places that call it will crash anyway if the relevant key pointer is NULL by the time they call key_validate(). Therefore, the checking must be done prior to calling here. Whilst we're at it, simplify the key_validate() function a bit and mark its argument const. Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: David Howells <dhowells@redhat.com> cc: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: James Morris <james.l.morris@oracle.com>
2012-05-11KEYS: Add invalidation supportDavid Howells1-5/+10
Add support for invalidating a key - which renders it immediately invisible to further searches and causes the garbage collector to immediately wake up, remove it from keyrings and then destroy it when it's no longer referenced. It's better not to do this with keyctl_revoke() as that marks the key to start returning -EKEYREVOKED to searches when what is actually desired is to have the key refetched. To invalidate a key the caller must be granted SEARCH permission by the key. This may be too strict. It may be better to also permit invalidation if the caller has any of READ, WRITE or SETATTR permission. The primary use for this is to evict keys that are cached in special keyrings, such as the DNS resolver or an ID mapper. Signed-off-by: David Howells <dhowells@redhat.com>
2012-05-03userns: Convert group_info values from gid_t to kgid_t.Eric W. Biederman1-1/+2
As a first step to converting struct cred to be all kuid_t and kgid_t values convert the group values stored in group_info to always be kgid_t values. Unless user namespaces are used this change should have no effect. Acked-by: Serge Hallyn <serge.hallyn@canonical.com> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2012-04-07userns: Use cred->user_ns instead of cred->user->user_nsEric W. Biederman1-1/+1
Optimize performance and prepare for the removal of the user_ns reference from user_struct. Remove the slow long walk through cred->user->user_ns and instead go straight to cred->user_ns. Acked-by: Serge Hallyn <serge.hallyn@canonical.com> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2011-01-21KEYS: Fix up comments in key management codeDavid Howells1-10/+15
Fix up comments in the key management code. No functional changes. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-21KEYS: Do some style cleanup in the key management code.David Howells1-6/+2
Do a bit of a style clean up in the key management code. No functional changes. Done using: perl -p -i -e 's!^/[*]*/\n!!' security/keys/*.c perl -p -i -e 's!} /[*] end [a-z0-9_]*[(][)] [*]/\n!}\n!' security/keys/*.c sed -i -s -e ": next" -e N -e 's/^\n[}]$/}/' -e t -e P -e 's/^.*\n//' -e "b next" security/keys/*.c To remove /*****/ lines, remove comments on the closing brace of a function to name the function and remove blank lines before the closing brace of a function. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-04-23security: whitespace coding style fixesJustin P. Mattock1-1/+1
Whitespace coding style fixes. Signed-off-by: Justin P. Mattock <justinmattock@gmail.com> Signed-off-by: James Morris <jmorris@namei.org>
2009-02-27keys: consider user namespace in key_permissionSerge E. Hallyn1-0/+5
If a key is owned by another user namespace, then treat the key as though it is owned by both another uid and gid. Signed-off-by: Serge E. Hallyn <serue@us.ibm.com> Acked-by: David Howells <dhowells@redhat.com> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14CRED: Inaugurate COW credentialsDavid Howells1-11/+13
Inaugurate copy-on-write credentials management. This uses RCU to manage the credentials pointer in the task_struct with respect to accesses by other tasks. A process may only modify its own credentials, and so does not need locking to access or modify its own credentials. A mutex (cred_replace_mutex) is added to the task_struct to control the effect of PTRACE_ATTACHED on credential calculations, particularly with respect to execve(). With this patch, the contents of an active credentials struct may not be changed directly; rather a new set of credentials must be prepared, modified and committed using something like the following sequence of events: struct cred *new = prepare_creds(); int ret = blah(new); if (ret < 0) { abort_creds(new); return ret; } return commit_creds(new); There are some exceptions to this rule: the keyrings pointed to by the active credentials may be instantiated - keyrings violate the COW rule as managing COW keyrings is tricky, given that it is possible for a task to directly alter the keys in a keyring in use by another task. To help enforce this, various pointers to sets of credentials, such as those in the task_struct, are declared const. The purpose of this is compile-time discouragement of altering credentials through those pointers. Once a set of credentials has been made public through one of these pointers, it may not be modified, except under special circumstances: (1) Its reference count may incremented and decremented. (2) The keyrings to which it points may be modified, but not replaced. The only safe way to modify anything else is to create a replacement and commit using the functions described in Documentation/credentials.txt (which will be added by a later patch). This patch and the preceding patches have been tested with the LTP SELinux testsuite. This patch makes several logical sets of alteration: (1) execve(). This now prepares and commits credentials in various places in the security code rather than altering the current creds directly. (2) Temporary credential overrides. do_coredump() and sys_faccessat() now prepare their own credentials and temporarily override the ones currently on the acting thread, whilst preventing interference from other threads by holding cred_replace_mutex on the thread being dumped. This will be replaced in a future patch by something that hands down the credentials directly to the functions being called, rather than altering the task's objective credentials. (3) LSM interface. A number of functions have been changed, added or removed: (*) security_capset_check(), ->capset_check() (*) security_capset_set(), ->capset_set() Removed in favour of security_capset(). (*) security_capset(), ->capset() New. This is passed a pointer to the new creds, a pointer to the old creds and the proposed capability sets. It should fill in the new creds or return an error. All pointers, barring the pointer to the new creds, are now const. (*) security_bprm_apply_creds(), ->bprm_apply_creds() Changed; now returns a value, which will cause the process to be killed if it's an error. (*) security_task_alloc(), ->task_alloc_security() Removed in favour of security_prepare_creds(). (*) security_cred_free(), ->cred_free() New. Free security data attached to cred->security. (*) security_prepare_creds(), ->cred_prepare() New. Duplicate any security data attached to cred->security. (*) security_commit_creds(), ->cred_commit() New. Apply any security effects for the upcoming installation of new security by commit_creds(). (*) security_task_post_setuid(), ->task_post_setuid() Removed in favour of security_task_fix_setuid(). (*) security_task_fix_setuid(), ->task_fix_setuid() Fix up the proposed new credentials for setuid(). This is used by cap_set_fix_setuid() to implicitly adjust capabilities in line with setuid() changes. Changes are made to the new credentials, rather than the task itself as in security_task_post_setuid(). (*) security_task_reparent_to_init(), ->task_reparent_to_init() Removed. Instead the task being reparented to init is referred directly to init's credentials. NOTE! This results in the loss of some state: SELinux's osid no longer records the sid of the thread that forked it. (*) security_key_alloc(), ->key_alloc() (*) security_key_permission(), ->key_permission() Changed. These now take cred pointers rather than task pointers to refer to the security context. (4) sys_capset(). This has been simplified and uses less locking. The LSM functions it calls have been merged. (5) reparent_to_kthreadd(). This gives the current thread the same credentials as init by simply using commit_thread() to point that way. (6) __sigqueue_alloc() and switch_uid() __sigqueue_alloc() can't stop the target task from changing its creds beneath it, so this function gets a reference to the currently applicable user_struct which it then passes into the sigqueue struct it returns if successful. switch_uid() is now called from commit_creds(), and possibly should be folded into that. commit_creds() should take care of protecting __sigqueue_alloc(). (7) [sg]et[ug]id() and co and [sg]et_current_groups. The set functions now all use prepare_creds(), commit_creds() and abort_creds() to build and check a new set of credentials before applying it. security_task_set[ug]id() is called inside the prepared section. This guarantees that nothing else will affect the creds until we've finished. The calling of set_dumpable() has been moved into commit_creds(). Much of the functionality of set_user() has been moved into commit_creds(). The get functions all simply access the data directly. (8) security_task_prctl() and cap_task_prctl(). security_task_prctl() has been modified to return -ENOSYS if it doesn't want to handle a function, or otherwise return the return value directly rather than through an argument. Additionally, cap_task_prctl() now prepares a new set of credentials, even if it doesn't end up using it. (9) Keyrings. A number of changes have been made to the keyrings code: (a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have all been dropped and built in to the credentials functions directly. They may want separating out again later. (b) key_alloc() and search_process_keyrings() now take a cred pointer rather than a task pointer to specify the security context. (c) copy_creds() gives a new thread within the same thread group a new thread keyring if its parent had one, otherwise it discards the thread keyring. (d) The authorisation key now points directly to the credentials to extend the search into rather pointing to the task that carries them. (e) Installing thread, process or session keyrings causes a new set of credentials to be created, even though it's not strictly necessary for process or session keyrings (they're shared). (10) Usermode helper. The usermode helper code now carries a cred struct pointer in its subprocess_info struct instead of a new session keyring pointer. This set of credentials is derived from init_cred and installed on the new process after it has been cloned. call_usermodehelper_setup() allocates the new credentials and call_usermodehelper_freeinfo() discards them if they haven't been used. A special cred function (prepare_usermodeinfo_creds()) is provided specifically for call_usermodehelper_setup() to call. call_usermodehelper_setkeys() adjusts the credentials to sport the supplied keyring as the new session keyring. (11) SELinux. SELinux has a number of changes, in addition to those to support the LSM interface changes mentioned above: (a) selinux_setprocattr() no longer does its check for whether the current ptracer can access processes with the new SID inside the lock that covers getting the ptracer's SID. Whilst this lock ensures that the check is done with the ptracer pinned, the result is only valid until the lock is released, so there's no point doing it inside the lock. (12) is_single_threaded(). This function has been extracted from selinux_setprocattr() and put into a file of its own in the lib/ directory as join_session_keyring() now wants to use it too. The code in SELinux just checked to see whether a task shared mm_structs with other tasks (CLONE_VM), but that isn't good enough. We really want to know if they're part of the same thread group (CLONE_THREAD). (13) nfsd. The NFS server daemon now has to use the COW credentials to set the credentials it is going to use. It really needs to pass the credentials down to the functions it calls, but it can't do that until other patches in this series have been applied. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14CRED: Use RCU to access another task's creds and to release a task's own credsDavid Howells1-4/+6
Use RCU to access another task's creds and to release a task's own creds. This means that it will be possible for the credentials of a task to be replaced without another task (a) requiring a full lock to read them, and (b) seeing deallocated memory. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Acked-by: Serge Hallyn <serue@us.ibm.com> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14CRED: Separate task security context from task_structDavid Howells1-5/+6
Separate the task security context from task_struct. At this point, the security data is temporarily embedded in the task_struct with two pointers pointing to it. Note that the Alpha arch is altered as it refers to (E)UID and (E)GID in entry.S via asm-offsets. With comment fixes Signed-off-by: Marc Dionne <marc.c.dionne@gmail.com> Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Acked-by: Serge Hallyn <serue@us.ibm.com> Signed-off-by: James Morris <jmorris@namei.org>
2006-01-08[PATCH] keys: Permit running process to instantiate keysDavid Howells1-0/+32
Make it possible for a running process (such as gssapid) to be able to instantiate a key, as was requested by Trond Myklebust for NFS4. The patch makes the following changes: (1) A new, optional key type method has been added. This permits a key type to intercept requests at the point /sbin/request-key is about to be spawned and do something else with them - passing them over the rpc_pipefs files or netlink sockets for instance. The uninstantiated key, the authorisation key and the intended operation name are passed to the method. (2) The callout_info is no longer passed as an argument to /sbin/request-key to prevent unauthorised viewing of this data using ps or by looking in /proc/pid/cmdline. This means that the old /sbin/request-key program will not work with the patched kernel as it will expect to see an extra argument that is no longer there. A revised keyutils package will be made available tomorrow. (3) The callout_info is now attached to the authorisation key. Reading this key will retrieve the information. (4) A new field has been added to the task_struct. This holds the authorisation key currently active for a thread. Searches now look here for the caller's set of keys rather than looking for an auth key in the lowest level of the session keyring. This permits a thread to be servicing multiple requests at once and to switch between them. Note that this is per-thread, not per-process, and so is usable in multithreaded programs. The setting of this field is inherited across fork and exec. (5) A new keyctl function (KEYCTL_ASSUME_AUTHORITY) has been added that permits a thread to assume the authority to deal with an uninstantiated key. Assumption is only permitted if the authorisation key associated with the uninstantiated key is somewhere in the thread's keyrings. This function can also clear the assumption. (6) A new magic key specifier has been added to refer to the currently assumed authorisation key (KEY_SPEC_REQKEY_AUTH_KEY). (7) Instantiation will only proceed if the appropriate authorisation key is assumed first. The assumed authorisation key is discarded if instantiation is successful. (8) key_validate() is moved from the file of request_key functions to the file of permissions functions. (9) The documentation is updated. From: <Valdis.Kletnieks@vt.edu> Build fix. Signed-off-by: David Howells <dhowells@redhat.com> Cc: Trond Myklebust <trond.myklebust@fys.uio.no> Cc: Alexander Zangerl <az@bond.edu.au> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-10-30[PATCH] Keys: Add LSM hooks for key management [try #3]David Howells1-1/+6
The attached patch adds LSM hooks for key management facilities. The notable changes are: (1) The key struct now supports a security pointer for the use of security modules. This will permit key labelling and restrictions on which programs may access a key. (2) Security modules get a chance to note (or abort) the allocation of a key. (3) The key permission checking can now be enhanced by the security modules; the permissions check consults LSM if all other checks bear out. (4) The key permissions checking functions now return an error code rather than a boolean value. (5) An extra permission has been added to govern the modification of attributes (UID, GID, permissions). Note that there isn't an LSM hook specifically for each keyctl() operation, but rather the permissions hook allows control of individual operations based on the permission request bits. Key management access control through LSM is enabled by automatically if both CONFIG_KEYS and CONFIG_SECURITY are enabled. This should be applied on top of the patch ensubjected: [PATCH] Keys: Possessor permissions should be additive Signed-Off-By: David Howells <dhowells@redhat.com> Signed-off-by: Chris Wright <chrisw@osdl.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-10-08[PATCH] Keys: Possessor permissions should be additiveDavid Howells1-6/+6
This patch makes the possessor permissions on a key additive with user/group/other permissions on the same key. This permits extra rights to be granted to the possessor of a key without taking away any rights conferred by them owning the key or having common group membership. Signed-Off-By: David Howells <dhowells@redhat.com> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-10-08[PATCH] Keys: Split key permissions checking into a .c fileDavid Howells1-0/+70
The attached patch splits key permissions checking out of key-ui.h and moves it into a .c file. It's quite large and called quite a lot, and it's about to get bigger with the addition of LSM support for keys... key_any_permission() is also discarded as it's no longer used. Signed-Off-By: David Howells <dhowells@redhat.com> Signed-off-by: Linus Torvalds <torvalds@osdl.org>