aboutsummaryrefslogtreecommitdiffstats
path: root/Documentation/admin-guide/mm/memory-hotplug.rst
blob: 0f56ecd8ac054380bbea36dd6789cbe8eed127d9 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
.. _admin_guide_memory_hotplug:

==================
Memory Hot(Un)Plug
==================

This document describes generic Linux support for memory hot(un)plug with
a focus on System RAM, including ZONE_MOVABLE support.

.. contents:: :local:

Introduction
============

Memory hot(un)plug allows for increasing and decreasing the size of physical
memory available to a machine at runtime. In the simplest case, it consists of
physically plugging or unplugging a DIMM at runtime, coordinated with the
operating system.

Memory hot(un)plug is used for various purposes:

- The physical memory available to a machine can be adjusted at runtime, up- or
  downgrading the memory capacity. This dynamic memory resizing, sometimes
  referred to as "capacity on demand", is frequently used with virtual machines
  and logical partitions.

- Replacing hardware, such as DIMMs or whole NUMA nodes, without downtime. One
  example is replacing failing memory modules.

- Reducing energy consumption either by physically unplugging memory modules or
  by logically unplugging (parts of) memory modules from Linux.

Further, the basic memory hot(un)plug infrastructure in Linux is nowadays also
used to expose persistent memory, other performance-differentiated memory and
reserved memory regions as ordinary system RAM to Linux.

Linux only supports memory hot(un)plug on selected 64 bit architectures, such as
x86_64, arm64, ppc64, s390x and ia64.

Memory Hot(Un)Plug Granularity
------------------------------

Memory hot(un)plug in Linux uses the SPARSEMEM memory model, which divides the
physical memory address space into chunks of the same size: memory sections. The
size of a memory section is architecture dependent. For example, x86_64 uses
128 MiB and ppc64 uses 16 MiB.

Memory sections are combined into chunks referred to as "memory blocks". The
size of a memory block is architecture dependent and corresponds to the smallest
granularity that can be hot(un)plugged. The default size of a memory block is
the same as memory section size, unless an architecture specifies otherwise.

All memory blocks have the same size.

Phases of Memory Hotplug
------------------------

Memory hotplug consists of two phases:

(1) Adding the memory to Linux
(2) Onlining memory blocks

In the first phase, metadata, such as the memory map ("memmap") and page tables
for the direct mapping, is allocated and initialized, and memory blocks are
created; the latter also creates sysfs files for managing newly created memory
blocks.

In the second phase, added memory is exposed to the page allocator. After this
phase, the memory is visible in memory statistics, such as free and total
memory, of the system.

Phases of Memory Hotunplug
--------------------------

Memory hotunplug consists of two phases:

(1) Offlining memory blocks
(2) Removing the memory from Linux

In the fist phase, memory is "hidden" from the page allocator again, for
example, by migrating busy memory to other memory locations and removing all
relevant free pages from the page allocator After this phase, the memory is no
longer visible in memory statistics of the system.

In the second phase, the memory blocks are removed and metadata is freed.

Memory Hotplug Notifications
============================

There are various ways how Linux is notified about memory hotplug events such
that it can start adding hotplugged memory. This description is limited to
systems that support ACPI; mechanisms specific to other firmware interfaces or
virtual machines are not described.

ACPI Notifications
------------------

Platforms that support ACPI, such as x86_64, can support memory hotplug
notifications via ACPI.

In general, a firmware supporting memory hotplug defines a memory class object
HID "PNP0C80". When notified about hotplug of a new memory device, the ACPI
driver will hotplug the memory to Linux.

If the firmware supports hotplug of NUMA nodes, it defines an object _HID
"ACPI0004", "PNP0A05", or "PNP0A06". When notified about an hotplug event, all
assigned memory devices are added to Linux by the ACPI driver.

Similarly, Linux can be notified about requests to hotunplug a memory device or
a NUMA node via ACPI. The ACPI driver will try offlining all relevant memory
blocks, and, if successful, hotunplug the memory from Linux.

Manual Probing
--------------

On some architectures, the firmware may not be able to notify the operating
system about a memory hotplug event. Instead, the memory has to be manually
probed from user space.

The probe interface is located at::

	/sys/devices/system/memory/probe

Only complete memory blocks can be probed. Individual memory blocks are probed
by providing the physical start address of the memory block::

	% echo addr > /sys/devices/system/memory/probe

Which results in a memory block for the range [addr, addr + memory_block_size)
being created.

.. note::

  Using the probe interface is discouraged as it is easy to crash the kernel,
  because Linux cannot validate user input; this interface might be removed in
  the future.

Onlining and Offlining Memory Blocks
====================================

After a memory block has been created, Linux has to be instructed to actually
make use of that memory: the memory block has to be "online".

Before a memory block can be removed, Linux has to stop using any memory part of
the memory block: the memory block has to be "offlined".

The Linux kernel can be configured to automatically online added memory blocks
and drivers automatically trigger offlining of memory blocks when trying
hotunplug of memory. Memory blocks can only be removed once offlining succeeded
and drivers may trigger offlining of memory blocks when attempting hotunplug of
memory.

Onlining Memory Blocks Manually
-------------------------------

If auto-onlining of memory blocks isn't enabled, user-space has to manually
trigger onlining of memory blocks. Often, udev rules are used to automate this
task in user space.

Onlining of a memory block can be triggered via::

	% echo online > /sys/devices/system/memory/memoryXXX/state

Or alternatively::

	% echo 1 > /sys/devices/system/memory/memoryXXX/online

The kernel will select the target zone automatically, depending on the
configured ``online_policy``.

One can explicitly request to associate an offline memory block with
ZONE_MOVABLE by::

	% echo online_movable > /sys/devices/system/memory/memoryXXX/state

Or one can explicitly request a kernel zone (usually ZONE_NORMAL) by::

	% echo online_kernel > /sys/devices/system/memory/memoryXXX/state

In any case, if onlining succeeds, the state of the memory block is changed to
be "online". If it fails, the state of the memory block will remain unchanged
and the above commands will fail.

Onlining Memory Blocks Automatically
------------------------------------

The kernel can be configured to try auto-onlining of newly added memory blocks.
If this feature is disabled, the memory blocks will stay offline until
explicitly onlined from user space.

The configured auto-online behavior can be observed via::

	% cat /sys/devices/system/memory/auto_online_blocks

Auto-onlining can be enabled by writing ``online``, ``online_kernel`` or
``online_movable`` to that file, like::

	% echo online > /sys/devices/system/memory/auto_online_blocks

Similarly to manual onlining, with ``online`` the kernel will select the
target zone automatically, depending on the configured ``online_policy``.

Modifying the auto-online behavior will only affect all subsequently added
memory blocks only.

.. note::

  In corner cases, auto-onlining can fail. The kernel won't retry. Note that
  auto-onlining is not expected to fail in default configurations.

.. note::

  DLPAR on ppc64 ignores the ``offline`` setting and will still online added
  memory blocks; if onlining fails, memory blocks are removed again.

Offlining Memory Blocks
-----------------------

In the current implementation, Linux's memory offlining will try migrating all
movable pages off the affected memory block. As most kernel allocations, such as
page tables, are unmovable, page migration can fail and, therefore, inhibit
memory offlining from succeeding.

Having the memory provided by memory block managed by ZONE_MOVABLE significantly
increases memory offlining reliability; still, memory offlining can fail in
some corner cases.

Further, memory offlining might retry for a long time (or even forever), until
aborted by the user.

Offlining of a memory block can be triggered via::

	% echo offline > /sys/devices/system/memory/memoryXXX/state

Or alternatively::

	% echo 0 > /sys/devices/system/memory/memoryXXX/online

If offlining succeeds, the state of the memory block is changed to be "offline".
If it fails, the state of the memory block will remain unchanged and the above
commands will fail, for example, via::

	bash: echo: write error: Device or resource busy

or via::

	bash: echo: write error: Invalid argument

Observing the State of Memory Blocks
------------------------------------

The state (online/offline/going-offline) of a memory block can be observed
either via::

	% cat /sys/device/system/memory/memoryXXX/state

Or alternatively (1/0) via::

	% cat /sys/device/system/memory/memoryXXX/online

For an online memory block, the managing zone can be observed via::

	% cat /sys/device/system/memory/memoryXXX/valid_zones

Configuring Memory Hot(Un)Plug
==============================

There are various ways how system administrators can configure memory
hot(un)plug and interact with memory blocks, especially, to online them.

Memory Hot(Un)Plug Configuration via Sysfs
------------------------------------------

Some memory hot(un)plug properties can be configured or inspected via sysfs in::

	/sys/devices/system/memory/

The following files are currently defined:

====================== =========================================================
``auto_online_blocks`` read-write: set or get the default state of new memory
		       blocks; configure auto-onlining.

		       The default value depends on the
		       CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE kernel configuration
		       option.

		       See the ``state`` property of memory blocks for details.
``block_size_bytes``   read-only: the size in bytes of a memory block.
``probe``	       write-only: add (probe) selected memory blocks manually
		       from user space by supplying the physical start address.

		       Availability depends on the CONFIG_ARCH_MEMORY_PROBE
		       kernel configuration option.
``uevent``	       read-write: generic udev file for device subsystems.
====================== =========================================================

.. note::

  When the CONFIG_MEMORY_FAILURE kernel configuration option is enabled, two
  additional files ``hard_offline_page`` and ``soft_offline_page`` are available
  to trigger hwpoisoning of pages, for example, for testing purposes. Note that
  this functionality is not really related to memory hot(un)plug or actual
  offlining of memory blocks.

Memory Block Configuration via Sysfs
------------------------------------

Each memory block is represented as a memory block device that can be
onlined or offlined. All memory blocks have their device information located in
sysfs. Each present memory block is listed under
``/sys/devices/system/memory`` as::

	/sys/devices/system/memory/memoryXXX

where XXX is the memory block id; the number of digits is variable.

A present memory block indicates that some memory in the range is present;
however, a memory block might span memory holes. A memory block spanning memory
holes cannot be offlined.

For example, assume 1 GiB memory block size. A device for a memory starting at
0x100000000 is ``/sys/device/system/memory/memory4``::

	(0x100000000 / 1Gib = 4)

This device covers address range [0x100000000 ... 0x140000000)

The following files are currently defined:

=================== ============================================================
``online``	    read-write: simplified interface to trigger onlining /
		    offlining and to observe the state of a memory block.
		    When onlining, the zone is selected automatically.
``phys_device``	    read-only: legacy interface only ever used on s390x to
		    expose the covered storage increment.
``phys_index``	    read-only: the memory block id (XXX).
``removable``	    read-only: legacy interface that indicated whether a memory
		    block was likely to be offlineable or not. Nowadays, the
		    kernel return ``1`` if and only if it supports memory
		    offlining.
``state``	    read-write: advanced interface to trigger onlining /
		    offlining and to observe the state of a memory block.

		    When writing, ``online``, ``offline``, ``online_kernel`` and
		    ``online_movable`` are supported.

		    ``online_movable`` specifies onlining to ZONE_MOVABLE.
		    ``online_kernel`` specifies onlining to the default kernel
		    zone for the memory block, such as ZONE_NORMAL.
                    ``online`` let's the kernel select the zone automatically.

		    When reading, ``online``, ``offline`` and ``going-offline``
		    may be returned.
``uevent``	    read-write: generic uevent file for devices.
``valid_zones``     read-only: when a block is online, shows the zone it
		    belongs to; when a block is offline, shows what zone will
		    manage it when the block will be onlined.

		    For online memory blocks, ``DMA``, ``DMA32``, ``Normal``,
		    ``Movable`` and ``none`` may be returned. ``none`` indicates
		    that memory provided by a memory block is managed by
		    multiple zones or spans multiple nodes; such memory blocks
		    cannot be offlined. ``Movable`` indicates ZONE_MOVABLE.
		    Other values indicate a kernel zone.

		    For offline memory blocks, the first column shows the
		    zone the kernel would select when onlining the memory block
		    right now without further specifying a zone.

		    Availability depends on the CONFIG_MEMORY_HOTREMOVE
		    kernel configuration option.
=================== ============================================================

.. note::

  If the CONFIG_NUMA kernel configuration option is enabled, the memoryXXX/
  directories can also be accessed via symbolic links located in the
  ``/sys/devices/system/node/node*`` directories.

  For example::

	/sys/devices/system/node/node0/memory9 -> ../../memory/memory9

  A backlink will also be created::

	/sys/devices/system/memory/memory9/node0 -> ../../node/node0

Command Line Parameters
-----------------------

Some command line parameters affect memory hot(un)plug handling. The following
command line parameters are relevant:

======================== =======================================================
``memhp_default_state``	 configure auto-onlining by essentially setting
                         ``/sys/devices/system/memory/auto_online_blocks``.
``movable_node``	 configure automatic zone selection in the kernel when
			 using the ``contig-zones`` online policy. When
			 set, the kernel will default to ZONE_MOVABLE when
			 onlining a memory block, unless other zones can be kept
			 contiguous.
======================== =======================================================

See Documentation/admin-guide/kernel-parameters.txt for a more generic
description of these command line parameters.

Module Parameters
------------------

Instead of additional command line parameters or sysfs files, the
``memory_hotplug`` subsystem now provides a dedicated namespace for module
parameters. Module parameters can be set via the command line by predicating
them with ``memory_hotplug.`` such as::

	memory_hotplug.memmap_on_memory=1

and they can be observed (and some even modified at runtime) via::

	/sys/module/memory_hotplug/parameters/

The following module parameters are currently defined:

================================ ===============================================
``memmap_on_memory``		 read-write: Allocate memory for the memmap from
				 the added memory block itself. Even if enabled,
				 actual support depends on various other system
				 properties and should only be regarded as a
				 hint whether the behavior would be desired.

				 While allocating the memmap from the memory
				 block itself makes memory hotplug less likely
				 to fail and keeps the memmap on the same NUMA
				 node in any case, it can fragment physical
				 memory in a way that huge pages in bigger
				 granularity cannot be formed on hotplugged
				 memory.
``online_policy``		 read-write: Set the basic policy used for
				 automatic zone selection when onlining memory
				 blocks without specifying a target zone.
				 ``contig-zones`` has been the kernel default
				 before this parameter was added. After an
				 online policy was configured and memory was
				 online, the policy should not be changed
				 anymore.

				 When set to ``contig-zones``, the kernel will
				 try keeping zones contiguous. If a memory block
				 intersects multiple zones or no zone, the
				 behavior depends on the ``movable_node`` kernel
				 command line parameter: default to ZONE_MOVABLE
				 if set, default to the applicable kernel zone
				 (usually ZONE_NORMAL) if not set.

				 When set to ``auto-movable``, the kernel will
				 try onlining memory blocks to ZONE_MOVABLE if
				 possible according to the configuration and
				 memory device details. With this policy, one
				 can avoid zone imbalances when eventually
				 hotplugging a lot of memory later and still
				 wanting to be able to hotunplug as much as
				 possible reliably, very desirable in
				 virtualized environments. This policy ignores
				 the ``movable_node`` kernel command line
				 parameter and isn't really applicable in
				 environments that require it (e.g., bare metal
				 with hotunpluggable nodes) where hotplugged
				 memory might be exposed via the
				 firmware-provided memory map early during boot
				 to the system instead of getting detected,
				 added and onlined  later during boot (such as
				 done by virtio-mem or by some hypervisors
				 implementing emulated DIMMs). As one example, a
				 hotplugged DIMM will be onlined either
				 completely to ZONE_MOVABLE or completely to
				 ZONE_NORMAL, not a mixture.
				 As another example, as many memory blocks
				 belonging to a virtio-mem device will be
				 onlined to ZONE_MOVABLE as possible,
				 special-casing units of memory blocks that can
				 only get hotunplugged together. *This policy
				 does not protect from setups that are
				 problematic with ZONE_MOVABLE and does not
				 change the zone of memory blocks dynamically
				 after they were onlined.*
``auto_movable_ratio``		 read-write: Set the maximum MOVABLE:KERNEL
				 memory ratio in % for the ``auto-movable``
				 online policy. Whether the ratio applies only
				 for the system across all NUMA nodes or also
				 per NUMA nodes depends on the
				 ``auto_movable_numa_aware`` configuration.

				 All accounting is based on present memory pages
				 in the zones combined with accounting per
				 memory device. Memory dedicated to the CMA
				 allocator is accounted as MOVABLE, although
				 residing on one of the kernel zones. The
				 possible ratio depends on the actual workload.
				 The kernel default is "301" %, for example,
				 allowing for hotplugging 24 GiB to a 8 GiB VM
				 and automatically onlining all hotplugged
				 memory to ZONE_MOVABLE in many setups. The
				 additional 1% deals with some pages being not
				 present, for example, because of some firmware
				 allocations.

				 Note that ZONE_NORMAL memory provided by one
				 memory device does not allow for more
				 ZONE_MOVABLE memory for a different memory
				 device. As one example, onlining memory of a
				 hotplugged DIMM to ZONE_NORMAL will not allow
				 for another hotplugged DIMM to get onlined to
				 ZONE_MOVABLE automatically. In contrast, memory
				 hotplugged by a virtio-mem device that got
				 onlined to ZONE_NORMAL will allow for more
				 ZONE_MOVABLE memory within *the same*
				 virtio-mem device.
``auto_movable_numa_aware``	 read-write: Configure whether the
				 ``auto_movable_ratio`` in the ``auto-movable``
				 online policy also applies per NUMA
				 node in addition to the whole system across all
				 NUMA nodes. The kernel default is "Y".

				 Disabling NUMA awareness can be helpful when
				 dealing with NUMA nodes that should be
				 completely hotunpluggable, onlining the memory
				 completely to ZONE_MOVABLE automatically if
				 possible.

				 Parameter availability depends on CONFIG_NUMA.
================================ ===============================================

ZONE_MOVABLE
============

ZONE_MOVABLE is an important mechanism for more reliable memory offlining.
Further, having system RAM managed by ZONE_MOVABLE instead of one of the
kernel zones can increase the number of possible transparent huge pages and
dynamically allocated huge pages.

Most kernel allocations are unmovable. Important examples include the memory
map (usually 1/64ths of memory), page tables, and kmalloc(). Such allocations
can only be served from the kernel zones.

Most user space pages, such as anonymous memory, and page cache pages are
movable. Such allocations can be served from ZONE_MOVABLE and the kernel zones.

Only movable allocations are served from ZONE_MOVABLE, resulting in unmovable
allocations being limited to the kernel zones. Without ZONE_MOVABLE, there is
absolutely no guarantee whether a memory block can be offlined successfully.

Zone Imbalances
---------------

Having too much system RAM managed by ZONE_MOVABLE is called a zone imbalance,
which can harm the system or degrade performance. As one example, the kernel
might crash because it runs out of free memory for unmovable allocations,
although there is still plenty of free memory left in ZONE_MOVABLE.

Usually, MOVABLE:KERNEL ratios of up to 3:1 or even 4:1 are fine. Ratios of 63:1
are definitely impossible due to the overhead for the memory map.

Actual safe zone ratios depend on the workload. Extreme cases, like excessive
long-term pinning of pages, might not be able to deal with ZONE_MOVABLE at all.

.. note::

  CMA memory part of a kernel zone essentially behaves like memory in
  ZONE_MOVABLE and similar considerations apply, especially when combining
  CMA with ZONE_MOVABLE.

ZONE_MOVABLE Sizing Considerations
----------------------------------

We usually expect that a large portion of available system RAM will actually
be consumed by user space, either directly or indirectly via the page cache. In
the normal case, ZONE_MOVABLE can be used when allocating such pages just fine.

With that in mind, it makes sense that we can have a big portion of system RAM
managed by ZONE_MOVABLE. However, there are some things to consider when using
ZONE_MOVABLE, especially when fine-tuning zone ratios:

- Having a lot of offline memory blocks. Even offline memory blocks consume
  memory for metadata and page tables in the direct map; having a lot of offline
  memory blocks is not a typical case, though.

- Memory ballooning without balloon compaction is incompatible with
  ZONE_MOVABLE. Only some implementations, such as virtio-balloon and
  pseries CMM, fully support balloon compaction.

  Further, the CONFIG_BALLOON_COMPACTION kernel configuration option might be
  disabled. In that case, balloon inflation will only perform unmovable
  allocations and silently create a zone imbalance, usually triggered by
  inflation requests from the hypervisor.

- Gigantic pages are unmovable, resulting in user space consuming a
  lot of unmovable memory.

- Huge pages are unmovable when an architectures does not support huge
  page migration, resulting in a similar issue as with gigantic pages.

- Page tables are unmovable. Excessive swapping, mapping extremely large
  files or ZONE_DEVICE memory can be problematic, although only really relevant
  in corner cases. When we manage a lot of user space memory that has been
  swapped out or is served from a file/persistent memory/... we still need a lot
  of page tables to manage that memory once user space accessed that memory.

- In certain DAX configurations the memory map for the device memory will be
  allocated from the kernel zones.

- KASAN can have a significant memory overhead, for example, consuming 1/8th of
  the total system memory size as (unmovable) tracking metadata.

- Long-term pinning of pages. Techniques that rely on long-term pinnings
  (especially, RDMA and vfio/mdev) are fundamentally problematic with
  ZONE_MOVABLE, and therefore, memory offlining. Pinned pages cannot reside
  on ZONE_MOVABLE as that would turn these pages unmovable. Therefore, they
  have to be migrated off that zone while pinning. Pinning a page can fail
  even if there is plenty of free memory in ZONE_MOVABLE.

  In addition, using ZONE_MOVABLE might make page pinning more expensive,
  because of the page migration overhead.

By default, all the memory configured at boot time is managed by the kernel
zones and ZONE_MOVABLE is not used.

To enable ZONE_MOVABLE to include the memory present at boot and to control the
ratio between movable and kernel zones there are two command line options:
``kernelcore=`` and ``movablecore=``. See
Documentation/admin-guide/kernel-parameters.rst for their description.

Memory Offlining and ZONE_MOVABLE
---------------------------------

Even with ZONE_MOVABLE, there are some corner cases where offlining a memory
block might fail:

- Memory blocks with memory holes; this applies to memory blocks present during
  boot and can apply to memory blocks hotplugged via the XEN balloon and the
  Hyper-V balloon.

- Mixed NUMA nodes and mixed zones within a single memory block prevent memory
  offlining; this applies to memory blocks present during boot only.

- Special memory blocks prevented by the system from getting offlined. Examples
  include any memory available during boot on arm64 or memory blocks spanning
  the crashkernel area on s390x; this usually applies to memory blocks present
  during boot only.

- Memory blocks overlapping with CMA areas cannot be offlined, this applies to
  memory blocks present during boot only.

- Concurrent activity that operates on the same physical memory area, such as
  allocating gigantic pages, can result in temporary offlining failures.

- Out of memory when dissolving huge pages, especially when freeing unused
  vmemmap pages associated with each hugetlb page is enabled.

  Offlining code may be able to migrate huge page contents, but may not be able
  to dissolve the source huge page because it fails allocating (unmovable) pages
  for the vmemmap, because the system might not have free memory in the kernel
  zones left.

  Users that depend on memory offlining to succeed for movable zones should
  carefully consider whether the memory savings gained from this feature are
  worth the risk of possibly not being able to offline memory in certain
  situations.

Further, when running into out of memory situations while migrating pages, or
when still encountering permanently unmovable pages within ZONE_MOVABLE
(-> BUG), memory offlining will keep retrying until it eventually succeeds.

When offlining is triggered from user space, the offlining context can be
terminated by sending a fatal signal. A timeout based offlining can easily be
implemented via::

	% timeout $TIMEOUT offline_block | failure_handling