aboutsummaryrefslogtreecommitdiffstats
path: root/Documentation/networking/device_drivers/netronome/nfp.rst
blob: ada611fb427c2de26a25f496d765ce82f5f0cdf3 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
.. SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)

=============================================
Netronome Flow Processor (NFP) Kernel Drivers
=============================================

Copyright (c) 2019, Netronome Systems, Inc.

Contents
========

- `Overview`_
- `Acquiring Firmware`_

Overview
========

This driver supports Netronome's line of Flow Processor devices,
including the NFP4000, NFP5000, and NFP6000 models, which are also
incorporated in the company's family of Agilio SmartNICs. The SR-IOV
physical and virtual functions for these devices are supported by
the driver.

Acquiring Firmware
==================

The NFP4000 and NFP6000 devices require application specific firmware
to function.  Application firmware can be located either on the host file system
or in the device flash (if supported by management firmware).

Firmware files on the host filesystem contain card type (`AMDA-*` string), media
config etc.  They should be placed in `/lib/firmware/netronome` directory to
load firmware from the host file system.

Firmware for basic NIC operation is available in the upstream
`linux-firmware.git` repository.

Firmware in NVRAM
-----------------

Recent versions of management firmware supports loading application
firmware from flash when the host driver gets probed.  The firmware loading
policy configuration may be used to configure this feature appropriately.

Devlink or ethtool can be used to update the application firmware on the device
flash by providing the appropriate `nic_AMDA*.nffw` file to the respective
command.  Users need to take care to write the correct firmware image for the
card and media configuration to flash.

Available storage space in flash depends on the card being used.

Dealing with multiple projects
------------------------------

NFP hardware is fully programmable therefore there can be different
firmware images targeting different applications.

When using application firmware from host, we recommend placing
actual firmware files in application-named subdirectories in
`/lib/firmware/netronome` and linking the desired files, e.g.::

    $ tree /lib/firmware/netronome/
    /lib/firmware/netronome/
    ├── bpf
    │   ├── nic_AMDA0081-0001_1x40.nffw
    │   └── nic_AMDA0081-0001_4x10.nffw
    ├── flower
    │   ├── nic_AMDA0081-0001_1x40.nffw
    │   └── nic_AMDA0081-0001_4x10.nffw
    ├── nic
    │   ├── nic_AMDA0081-0001_1x40.nffw
    │   └── nic_AMDA0081-0001_4x10.nffw
    ├── nic_AMDA0081-0001_1x40.nffw -> bpf/nic_AMDA0081-0001_1x40.nffw
    └── nic_AMDA0081-0001_4x10.nffw -> bpf/nic_AMDA0081-0001_4x10.nffw

    3 directories, 8 files

You may need to use hard instead of symbolic links on distributions
which use old `mkinitrd` command instead of `dracut` (e.g. Ubuntu).

After changing firmware files you may need to regenerate the initramfs
image.  Initramfs contains drivers and firmware files your system may
need to boot.  Refer to the documentation of your distribution to find
out how to update initramfs.  Good indication of stale initramfs
is system loading wrong driver or firmware on boot, but when driver is
later reloaded manually everything works correctly.

Selecting firmware per device
-----------------------------

Most commonly all cards on the system use the same type of firmware.
If you want to load specific firmware image for a specific card, you
can use either the PCI bus address or serial number.  Driver will print
which files it's looking for when it recognizes a NFP device::

    nfp: Looking for firmware file in order of priority:
    nfp:  netronome/serial-00-12-34-aa-bb-cc-10-ff.nffw: not found
    nfp:  netronome/pci-0000:02:00.0.nffw: not found
    nfp:  netronome/nic_AMDA0081-0001_1x40.nffw: found, loading...

In this case if file (or link) called *serial-00-12-34-aa-bb-5d-10-ff.nffw*
or *pci-0000:02:00.0.nffw* is present in `/lib/firmware/netronome` this
firmware file will take precedence over `nic_AMDA*` files.

Note that `serial-*` and `pci-*` files are **not** automatically included
in initramfs, you will have to refer to documentation of appropriate tools
to find out how to include them.

Firmware loading policy
-----------------------

Firmware loading policy is controlled via three HWinfo parameters
stored as key value pairs in the device flash:

app_fw_from_flash
    Defines which firmware should take precedence, 'Disk' (0), 'Flash' (1) or
    the 'Preferred' (2) firmware. When 'Preferred' is selected, the management
    firmware makes the decision over which firmware will be loaded by comparing
    versions of the flash firmware and the host supplied firmware.
    This variable is configurable using the 'fw_load_policy'
    devlink parameter.

abi_drv_reset
    Defines if the driver should reset the firmware when
    the driver is probed, either 'Disk' (0) if firmware was found on disk,
    'Always' (1) reset or 'Never' (2) reset. Note that the device is always
    reset on driver unload if firmware was loaded when the driver was probed.
    This variable is configurable using the 'reset_dev_on_drv_probe'
    devlink parameter.

abi_drv_load_ifc
    Defines a list of PF devices allowed to load FW on the device.
    This variable is not currently user configurable.

Statistics
==========

Following device statistics are available through the ``ethtool -S`` interface:

.. flat-table:: NFP device statistics
   :header-rows: 1
   :widths: 3 1 11

   * - Name
     - ID
     - Meaning

   * - dev_rx_discards
     - 1
     - Packet can be discarded on the RX path for one of the following reasons:

        * The NIC is not in promisc mode, and the destination MAC address
          doesn't match the interfaces' MAC address.
        * The received packet is larger than the max buffer size on the host.
          I.e. it exceeds the Layer 3 MRU.
        * There is no freelist descriptor available on the host for the packet.
          It is likely that the NIC couldn't cache one in time.
        * A BPF program discarded the packet.
        * The datapath drop action was executed.
        * The MAC discarded the packet due to lack of ingress buffer space
          on the NIC.

   * - dev_rx_errors
     - 2
     - A packet can be counted (and dropped) as RX error for the following
       reasons:

       * A problem with the VEB lookup (only when SR-IOV is used).
       * A physical layer problem that causes Ethernet errors, like FCS or
         alignment errors. The cause is usually faulty cables or SFPs.

   * - dev_rx_bytes
     - 3
     - Total number of bytes received.

   * - dev_rx_uc_bytes
     - 4
     - Unicast bytes received.

   * - dev_rx_mc_bytes
     - 5
     - Multicast bytes received.

   * - dev_rx_bc_bytes
     - 6
     - Broadcast bytes received.

   * - dev_rx_pkts
     - 7
     - Total number of packets received.

   * - dev_rx_mc_pkts
     - 8
     - Multicast packets received.

   * - dev_rx_bc_pkts
     - 9
     - Broadcast packets received.

   * - dev_tx_discards
     - 10
     - A packet can be discarded in the TX direction if the MAC is
       being flow controlled and the NIC runs out of TX queue space.

   * - dev_tx_errors
     - 11
     - A packet can be counted as TX error (and dropped) for one for the
       following reasons:

       * The packet is an LSO segment, but the Layer 3 or Layer 4 offset
         could not be determined. Therefore LSO could not continue.
       * An invalid packet descriptor was received over PCIe.
       * The packet Layer 3 length exceeds the device MTU.
       * An error on the MAC/physical layer. Usually due to faulty cables or
         SFPs.
       * A CTM buffer could not be allocated.
       * The packet offset was incorrect and could not be fixed by the NIC.

   * - dev_tx_bytes
     - 12
     - Total number of bytes transmitted.

   * - dev_tx_uc_bytes
     - 13
     - Unicast bytes transmitted.

   * - dev_tx_mc_bytes
     - 14
     - Multicast bytes transmitted.

   * - dev_tx_bc_bytes
     - 15
     - Broadcast bytes transmitted.

   * - dev_tx_pkts
     - 16
     - Total number of packets transmitted.

   * - dev_tx_mc_pkts
     - 17
     - Multicast packets transmitted.

   * - dev_tx_bc_pkts
     - 18
     - Broadcast packets transmitted.

Note that statistics unknown to the driver will be displayed as
``dev_unknown_stat$ID``, where ``$ID`` refers to the second column
above.