1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
|
/*
* arch/alpha/lib/divide.S
*
* (C) 1995 Linus Torvalds
*
* Alpha division..
*/
/*
* The alpha chip doesn't provide hardware division, so we have to do it
* by hand. The compiler expects the functions
*
* __divqu: 64-bit unsigned long divide
* __remqu: 64-bit unsigned long remainder
* __divqs/__remqs: signed 64-bit
* __divlu/__remlu: unsigned 32-bit
* __divls/__remls: signed 32-bit
*
* These are not normal C functions: instead of the normal
* calling sequence, these expect their arguments in registers
* $24 and $25, and return the result in $27. Register $28 may
* be clobbered (assembly temporary), anything else must be saved.
*
* In short: painful.
*
* This is a rather simple bit-at-a-time algorithm: it's very good
* at dividing random 64-bit numbers, but the more usual case where
* the divisor is small is handled better by the DEC algorithm
* using lookup tables. This uses much less memory, though, and is
* nicer on the cache.. Besides, I don't know the copyright status
* of the DEC code.
*/
/*
* My temporaries:
* $0 - current bit
* $1 - shifted divisor
* $2 - modulus/quotient
*
* $23 - return address
* $24 - dividend
* $25 - divisor
*
* $27 - quotient/modulus
* $28 - compare status
*/
#define halt .long 0
/*
* Select function type and registers
*/
#define mask $0
#define divisor $1
#define compare $28
#define tmp1 $3
#define tmp2 $4
#ifdef DIV
#define DIV_ONLY(x,y...) x,##y
#define MOD_ONLY(x,y...)
#define func(x) __div##x
#define modulus $2
#define quotient $27
#define GETSIGN(x) xor $24,$25,x
#define STACK 48
#else
#define DIV_ONLY(x,y...)
#define MOD_ONLY(x,y...) x,##y
#define func(x) __rem##x
#define modulus $27
#define quotient $2
#define GETSIGN(x) bis $24,$24,x
#define STACK 32
#endif
/*
* For 32-bit operations, we need to extend to 64-bit
*/
#ifdef INTSIZE
#define ufunction func(lu)
#define sfunction func(l)
#define LONGIFY(x) zapnot x,15,x
#define SLONGIFY(x) addl x,0,x
#else
#define ufunction func(qu)
#define sfunction func(q)
#define LONGIFY(x)
#define SLONGIFY(x)
#endif
.set noat
.align 3
.globl ufunction
.ent ufunction
ufunction:
subq $30,STACK,$30
.frame $30,STACK,$23
.prologue 0
7: stq $1, 0($30)
bis $25,$25,divisor
stq $2, 8($30)
bis $24,$24,modulus
stq $0,16($30)
bis $31,$31,quotient
LONGIFY(divisor)
stq tmp1,24($30)
LONGIFY(modulus)
bis $31,1,mask
DIV_ONLY(stq tmp2,32($30))
beq divisor, 9f /* div by zero */
#ifdef INTSIZE
/*
* shift divisor left, using 3-bit shifts for
* 32-bit divides as we can't overflow. Three-bit
* shifts will result in looping three times less
* here, but can result in two loops more later.
* Thus using a large shift isn't worth it (and
* s8add pairs better than a sll..)
*/
1: cmpult divisor,modulus,compare
s8addq divisor,$31,divisor
s8addq mask,$31,mask
bne compare,1b
#else
1: cmpult divisor,modulus,compare
blt divisor, 2f
addq divisor,divisor,divisor
addq mask,mask,mask
bne compare,1b
unop
#endif
/* ok, start to go right again.. */
2: DIV_ONLY(addq quotient,mask,tmp2)
srl mask,1,mask
cmpule divisor,modulus,compare
subq modulus,divisor,tmp1
DIV_ONLY(cmovne compare,tmp2,quotient)
srl divisor,1,divisor
cmovne compare,tmp1,modulus
bne mask,2b
9: ldq $1, 0($30)
ldq $2, 8($30)
ldq $0,16($30)
ldq tmp1,24($30)
DIV_ONLY(ldq tmp2,32($30))
addq $30,STACK,$30
ret $31,($23),1
.end ufunction
/*
* Uhh.. Ugly signed division. I'd rather not have it at all, but
* it's needed in some circumstances. There are different ways to
* handle this, really. This does:
* -a / b = a / -b = -(a / b)
* -a % b = -(a % b)
* a % -b = a % b
* which is probably not the best solution, but at least should
* have the property that (x/y)*y + (x%y) = x.
*/
.align 3
.globl sfunction
.ent sfunction
sfunction:
subq $30,STACK,$30
.frame $30,STACK,$23
.prologue 0
bis $24,$25,$28
SLONGIFY($28)
bge $28,7b
stq $24,0($30)
subq $31,$24,$28
stq $25,8($30)
cmovlt $24,$28,$24 /* abs($24) */
stq $23,16($30)
subq $31,$25,$28
stq tmp1,24($30)
cmovlt $25,$28,$25 /* abs($25) */
unop
bsr $23,ufunction
ldq $24,0($30)
ldq $25,8($30)
GETSIGN($28)
subq $31,$27,tmp1
SLONGIFY($28)
ldq $23,16($30)
cmovlt $28,tmp1,$27
ldq tmp1,24($30)
addq $30,STACK,$30
ret $31,($23),1
.end sfunction
|