aboutsummaryrefslogtreecommitdiffstats
path: root/arch/x86/crypto/polyval-clmulni_asm.S
blob: a6ebe4e7dd2b77747c88217f34514299650db8a8 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
/* SPDX-License-Identifier: GPL-2.0 */
/*
 * Copyright 2021 Google LLC
 */
/*
 * This is an efficient implementation of POLYVAL using intel PCLMULQDQ-NI
 * instructions. It works on 8 blocks at a time, by precomputing the first 8
 * keys powers h^8, ..., h^1 in the POLYVAL finite field. This precomputation
 * allows us to split finite field multiplication into two steps.
 *
 * In the first step, we consider h^i, m_i as normal polynomials of degree less
 * than 128. We then compute p(x) = h^8m_0 + ... + h^1m_7 where multiplication
 * is simply polynomial multiplication.
 *
 * In the second step, we compute the reduction of p(x) modulo the finite field
 * modulus g(x) = x^128 + x^127 + x^126 + x^121 + 1.
 *
 * This two step process is equivalent to computing h^8m_0 + ... + h^1m_7 where
 * multiplication is finite field multiplication. The advantage is that the
 * two-step process  only requires 1 finite field reduction for every 8
 * polynomial multiplications. Further parallelism is gained by interleaving the
 * multiplications and polynomial reductions.
 */

#include <linux/linkage.h>
#include <asm/frame.h>

#define STRIDE_BLOCKS 8

#define GSTAR %xmm7
#define PL %xmm8
#define PH %xmm9
#define TMP_XMM %xmm11
#define LO %xmm12
#define HI %xmm13
#define MI %xmm14
#define SUM %xmm15

#define KEY_POWERS %rdi
#define MSG %rsi
#define BLOCKS_LEFT %rdx
#define ACCUMULATOR %rcx
#define TMP %rax

.section    .rodata.cst16.gstar, "aM", @progbits, 16
.align 16

.Lgstar:
	.quad 0xc200000000000000, 0xc200000000000000

.text

/*
 * Performs schoolbook1_iteration on two lists of 128-bit polynomials of length
 * count pointed to by MSG and KEY_POWERS.
 */
.macro schoolbook1 count
	.set i, 0
	.rept (\count)
		schoolbook1_iteration i 0
		.set i, (i +1)
	.endr
.endm

/*
 * Computes the product of two 128-bit polynomials at the memory locations
 * specified by (MSG + 16*i) and (KEY_POWERS + 16*i) and XORs the components of
 * the 256-bit product into LO, MI, HI.
 *
 * Given:
 *   X = [X_1 : X_0]
 *   Y = [Y_1 : Y_0]
 *
 * We compute:
 *   LO += X_0 * Y_0
 *   MI += X_0 * Y_1 + X_1 * Y_0
 *   HI += X_1 * Y_1
 *
 * Later, the 256-bit result can be extracted as:
 *   [HI_1 : HI_0 + MI_1 : LO_1 + MI_0 : LO_0]
 * This step is done when computing the polynomial reduction for efficiency
 * reasons.
 *
 * If xor_sum == 1, then also XOR the value of SUM into m_0.  This avoids an
 * extra multiplication of SUM and h^8.
 */
.macro schoolbook1_iteration i xor_sum
	movups (16*\i)(MSG), %xmm0
	.if (\i == 0 && \xor_sum == 1)
		pxor SUM, %xmm0
	.endif
	vpclmulqdq $0x01, (16*\i)(KEY_POWERS), %xmm0, %xmm2
	vpclmulqdq $0x00, (16*\i)(KEY_POWERS), %xmm0, %xmm1
	vpclmulqdq $0x10, (16*\i)(KEY_POWERS), %xmm0, %xmm3
	vpclmulqdq $0x11, (16*\i)(KEY_POWERS), %xmm0, %xmm4
	vpxor %xmm2, MI, MI
	vpxor %xmm1, LO, LO
	vpxor %xmm4, HI, HI
	vpxor %xmm3, MI, MI
.endm

/*
 * Performs the same computation as schoolbook1_iteration, except we expect the
 * arguments to already be loaded into xmm0 and xmm1 and we set the result
 * registers LO, MI, and HI directly rather than XOR'ing into them.
 */
.macro schoolbook1_noload
	vpclmulqdq $0x01, %xmm0, %xmm1, MI
	vpclmulqdq $0x10, %xmm0, %xmm1, %xmm2
	vpclmulqdq $0x00, %xmm0, %xmm1, LO
	vpclmulqdq $0x11, %xmm0, %xmm1, HI
	vpxor %xmm2, MI, MI
.endm

/*
 * Computes the 256-bit polynomial represented by LO, HI, MI. Stores
 * the result in PL, PH.
 *   [PH : PL] = [HI_1 : HI_0 + MI_1 : LO_1 + MI_0 : LO_0]
 */
.macro schoolbook2
	vpslldq $8, MI, PL
	vpsrldq $8, MI, PH
	pxor LO, PL
	pxor HI, PH
.endm

/*
 * Computes the 128-bit reduction of PH : PL. Stores the result in dest.
 *
 * This macro computes p(x) mod g(x) where p(x) is in montgomery form and g(x) =
 * x^128 + x^127 + x^126 + x^121 + 1.
 *
 * We have a 256-bit polynomial PH : PL = P_3 : P_2 : P_1 : P_0 that is the
 * product of two 128-bit polynomials in Montgomery form.  We need to reduce it
 * mod g(x).  Also, since polynomials in Montgomery form have an "extra" factor
 * of x^128, this product has two extra factors of x^128.  To get it back into
 * Montgomery form, we need to remove one of these factors by dividing by x^128.
 *
 * To accomplish both of these goals, we add multiples of g(x) that cancel out
 * the low 128 bits P_1 : P_0, leaving just the high 128 bits. Since the low
 * bits are zero, the polynomial division by x^128 can be done by right shifting.
 *
 * Since the only nonzero term in the low 64 bits of g(x) is the constant term,
 * the multiple of g(x) needed to cancel out P_0 is P_0 * g(x).  The CPU can
 * only do 64x64 bit multiplications, so split P_0 * g(x) into x^128 * P_0 +
 * x^64 * g*(x) * P_0 + P_0, where g*(x) is bits 64-127 of g(x).  Adding this to
 * the original polynomial gives P_3 : P_2 + P_0 + T_1 : P_1 + T_0 : 0, where T
 * = T_1 : T_0 = g*(x) * P_0.  Thus, bits 0-63 got "folded" into bits 64-191.
 *
 * Repeating this same process on the next 64 bits "folds" bits 64-127 into bits
 * 128-255, giving the answer in bits 128-255. This time, we need to cancel P_1
 * + T_0 in bits 64-127. The multiple of g(x) required is (P_1 + T_0) * g(x) *
 * x^64. Adding this to our previous computation gives P_3 + P_1 + T_0 + V_1 :
 * P_2 + P_0 + T_1 + V_0 : 0 : 0, where V = V_1 : V_0 = g*(x) * (P_1 + T_0).
 *
 * So our final computation is:
 *   T = T_1 : T_0 = g*(x) * P_0
 *   V = V_1 : V_0 = g*(x) * (P_1 + T_0)
 *   p(x) / x^{128} mod g(x) = P_3 + P_1 + T_0 + V_1 : P_2 + P_0 + T_1 + V_0
 *
 * The implementation below saves a XOR instruction by computing P_1 + T_0 : P_0
 * + T_1 and XORing into dest, rather than separately XORing P_1 : P_0 and T_0 :
 * T_1 into dest.  This allows us to reuse P_1 + T_0 when computing V.
 */
.macro montgomery_reduction dest
	vpclmulqdq $0x00, PL, GSTAR, TMP_XMM	# TMP_XMM = T_1 : T_0 = P_0 * g*(x)
	pshufd $0b01001110, TMP_XMM, TMP_XMM	# TMP_XMM = T_0 : T_1
	pxor PL, TMP_XMM			# TMP_XMM = P_1 + T_0 : P_0 + T_1
	pxor TMP_XMM, PH			# PH = P_3 + P_1 + T_0 : P_2 + P_0 + T_1
	pclmulqdq $0x11, GSTAR, TMP_XMM		# TMP_XMM = V_1 : V_0 = V = [(P_1 + T_0) * g*(x)]
	vpxor TMP_XMM, PH, \dest
.endm

/*
 * Compute schoolbook multiplication for 8 blocks
 * m_0h^8 + ... + m_7h^1
 *
 * If reduce is set, also computes the montgomery reduction of the
 * previous full_stride call and XORs with the first message block.
 * (m_0 + REDUCE(PL, PH))h^8 + ... + m_7h^1.
 * I.e., the first multiplication uses m_0 + REDUCE(PL, PH) instead of m_0.
 */
.macro full_stride reduce
	pxor LO, LO
	pxor HI, HI
	pxor MI, MI

	schoolbook1_iteration 7 0
	.if \reduce
		vpclmulqdq $0x00, PL, GSTAR, TMP_XMM
	.endif

	schoolbook1_iteration 6 0
	.if \reduce
		pshufd $0b01001110, TMP_XMM, TMP_XMM
	.endif

	schoolbook1_iteration 5 0
	.if \reduce
		pxor PL, TMP_XMM
	.endif

	schoolbook1_iteration 4 0
	.if \reduce
		pxor TMP_XMM, PH
	.endif

	schoolbook1_iteration 3 0
	.if \reduce
		pclmulqdq $0x11, GSTAR, TMP_XMM
	.endif

	schoolbook1_iteration 2 0
	.if \reduce
		vpxor TMP_XMM, PH, SUM
	.endif

	schoolbook1_iteration 1 0

	schoolbook1_iteration 0 1

	addq $(8*16), MSG
	schoolbook2
.endm

/*
 * Process BLOCKS_LEFT blocks, where 0 < BLOCKS_LEFT < STRIDE_BLOCKS
 */
.macro partial_stride
	mov BLOCKS_LEFT, TMP
	shlq $4, TMP
	addq $(16*STRIDE_BLOCKS), KEY_POWERS
	subq TMP, KEY_POWERS

	movups (MSG), %xmm0
	pxor SUM, %xmm0
	movaps (KEY_POWERS), %xmm1
	schoolbook1_noload
	dec BLOCKS_LEFT
	addq $16, MSG
	addq $16, KEY_POWERS

	test $4, BLOCKS_LEFT
	jz .Lpartial4BlocksDone
	schoolbook1 4
	addq $(4*16), MSG
	addq $(4*16), KEY_POWERS
.Lpartial4BlocksDone:
	test $2, BLOCKS_LEFT
	jz .Lpartial2BlocksDone
	schoolbook1 2
	addq $(2*16), MSG
	addq $(2*16), KEY_POWERS
.Lpartial2BlocksDone:
	test $1, BLOCKS_LEFT
	jz .LpartialDone
	schoolbook1 1
.LpartialDone:
	schoolbook2
	montgomery_reduction SUM
.endm

/*
 * Perform montgomery multiplication in GF(2^128) and store result in op1.
 *
 * Computes op1*op2*x^{-128} mod x^128 + x^127 + x^126 + x^121 + 1
 * If op1, op2 are in montgomery form, this computes the montgomery
 * form of op1*op2.
 *
 * void clmul_polyval_mul(u8 *op1, const u8 *op2);
 */
SYM_FUNC_START(clmul_polyval_mul)
	FRAME_BEGIN
	vmovdqa .Lgstar(%rip), GSTAR
	movups (%rdi), %xmm0
	movups (%rsi), %xmm1
	schoolbook1_noload
	schoolbook2
	montgomery_reduction SUM
	movups SUM, (%rdi)
	FRAME_END
	RET
SYM_FUNC_END(clmul_polyval_mul)

/*
 * Perform polynomial evaluation as specified by POLYVAL.  This computes:
 *	h^n * accumulator + h^n * m_0 + ... + h^1 * m_{n-1}
 * where n=nblocks, h is the hash key, and m_i are the message blocks.
 *
 * rdi - pointer to precomputed key powers h^8 ... h^1
 * rsi - pointer to message blocks
 * rdx - number of blocks to hash
 * rcx - pointer to the accumulator
 *
 * void clmul_polyval_update(const struct polyval_tfm_ctx *keys,
 *	const u8 *in, size_t nblocks, u8 *accumulator);
 */
SYM_FUNC_START(clmul_polyval_update)
	FRAME_BEGIN
	vmovdqa .Lgstar(%rip), GSTAR
	movups (ACCUMULATOR), SUM
	subq $STRIDE_BLOCKS, BLOCKS_LEFT
	js .LstrideLoopExit
	full_stride 0
	subq $STRIDE_BLOCKS, BLOCKS_LEFT
	js .LstrideLoopExitReduce
.LstrideLoop:
	full_stride 1
	subq $STRIDE_BLOCKS, BLOCKS_LEFT
	jns .LstrideLoop
.LstrideLoopExitReduce:
	montgomery_reduction SUM
.LstrideLoopExit:
	add $STRIDE_BLOCKS, BLOCKS_LEFT
	jz .LskipPartial
	partial_stride
.LskipPartial:
	movups SUM, (ACCUMULATOR)
	FRAME_END
	RET
SYM_FUNC_END(clmul_polyval_update)