aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/clocksource/arc_timer.c
blob: b29b5a75333ebfad968ef5a70f38a9471c1056be (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Copyright (C) 2016-17 Synopsys, Inc. (www.synopsys.com)
 * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
 */

/* ARC700 has two 32bit independent prog Timers: TIMER0 and TIMER1, Each can be
 * programmed to go from @count to @limit and optionally interrupt.
 * We've designated TIMER0 for clockevents and TIMER1 for clocksource
 *
 * ARCv2 based HS38 cores have RTC (in-core) and GFRC (inside ARConnect/MCIP)
 * which are suitable for UP and SMP based clocksources respectively
 */

#include <linux/interrupt.h>
#include <linux/bits.h>
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/clocksource.h>
#include <linux/clockchips.h>
#include <linux/cpu.h>
#include <linux/of.h>
#include <linux/of_irq.h>
#include <linux/sched_clock.h>

#include <soc/arc/timers.h>
#include <soc/arc/mcip.h>


static unsigned long arc_timer_freq;

static int noinline arc_get_timer_clk(struct device_node *node)
{
	struct clk *clk;
	int ret;

	clk = of_clk_get(node, 0);
	if (IS_ERR(clk)) {
		pr_err("timer missing clk\n");
		return PTR_ERR(clk);
	}

	ret = clk_prepare_enable(clk);
	if (ret) {
		pr_err("Couldn't enable parent clk\n");
		return ret;
	}

	arc_timer_freq = clk_get_rate(clk);

	return 0;
}

/********** Clock Source Device *********/

#ifdef CONFIG_ARC_TIMERS_64BIT

static u64 arc_read_gfrc(struct clocksource *cs)
{
	unsigned long flags;
	u32 l, h;

	/*
	 * From a programming model pov, there seems to be just one instance of
	 * MCIP_CMD/MCIP_READBACK however micro-architecturally there's
	 * an instance PER ARC CORE (not per cluster), and there are dedicated
	 * hardware decode logic (per core) inside ARConnect to handle
	 * simultaneous read/write accesses from cores via those two registers.
	 * So several concurrent commands to ARConnect are OK if they are
	 * trying to access two different sub-components (like GFRC,
	 * inter-core interrupt, etc...). HW also supports simultaneously
	 * accessing GFRC by multiple cores.
	 * That's why it is safe to disable hard interrupts on the local CPU
	 * before access to GFRC instead of taking global MCIP spinlock
	 * defined in arch/arc/kernel/mcip.c
	 */
	local_irq_save(flags);

	__mcip_cmd(CMD_GFRC_READ_LO, 0);
	l = read_aux_reg(ARC_REG_MCIP_READBACK);

	__mcip_cmd(CMD_GFRC_READ_HI, 0);
	h = read_aux_reg(ARC_REG_MCIP_READBACK);

	local_irq_restore(flags);

	return (((u64)h) << 32) | l;
}

static notrace u64 arc_gfrc_clock_read(void)
{
	return arc_read_gfrc(NULL);
}

static struct clocksource arc_counter_gfrc = {
	.name   = "ARConnect GFRC",
	.rating = 400,
	.read   = arc_read_gfrc,
	.mask   = CLOCKSOURCE_MASK(64),
	.flags  = CLOCK_SOURCE_IS_CONTINUOUS,
};

static int __init arc_cs_setup_gfrc(struct device_node *node)
{
	struct mcip_bcr mp;
	int ret;

	READ_BCR(ARC_REG_MCIP_BCR, mp);
	if (!mp.gfrc) {
		pr_warn("Global-64-bit-Ctr clocksource not detected\n");
		return -ENXIO;
	}

	ret = arc_get_timer_clk(node);
	if (ret)
		return ret;

	sched_clock_register(arc_gfrc_clock_read, 64, arc_timer_freq);

	return clocksource_register_hz(&arc_counter_gfrc, arc_timer_freq);
}
TIMER_OF_DECLARE(arc_gfrc, "snps,archs-timer-gfrc", arc_cs_setup_gfrc);

#define AUX_RTC_CTRL	0x103
#define AUX_RTC_LOW	0x104
#define AUX_RTC_HIGH	0x105

static u64 arc_read_rtc(struct clocksource *cs)
{
	unsigned long status;
	u32 l, h;

	/*
	 * hardware has an internal state machine which tracks readout of
	 * low/high and updates the CTRL.status if
	 *  - interrupt/exception taken between the two reads
	 *  - high increments after low has been read
	 */
	do {
		l = read_aux_reg(AUX_RTC_LOW);
		h = read_aux_reg(AUX_RTC_HIGH);
		status = read_aux_reg(AUX_RTC_CTRL);
	} while (!(status & BIT(31)));

	return (((u64)h) << 32) | l;
}

static notrace u64 arc_rtc_clock_read(void)
{
	return arc_read_rtc(NULL);
}

static struct clocksource arc_counter_rtc = {
	.name   = "ARCv2 RTC",
	.rating = 350,
	.read   = arc_read_rtc,
	.mask   = CLOCKSOURCE_MASK(64),
	.flags  = CLOCK_SOURCE_IS_CONTINUOUS,
};

static int __init arc_cs_setup_rtc(struct device_node *node)
{
	struct bcr_timer timer;
	int ret;

	READ_BCR(ARC_REG_TIMERS_BCR, timer);
	if (!timer.rtc) {
		pr_warn("Local-64-bit-Ctr clocksource not detected\n");
		return -ENXIO;
	}

	/* Local to CPU hence not usable in SMP */
	if (IS_ENABLED(CONFIG_SMP)) {
		pr_warn("Local-64-bit-Ctr not usable in SMP\n");
		return -EINVAL;
	}

	ret = arc_get_timer_clk(node);
	if (ret)
		return ret;

	write_aux_reg(AUX_RTC_CTRL, 1);

	sched_clock_register(arc_rtc_clock_read, 64, arc_timer_freq);

	return clocksource_register_hz(&arc_counter_rtc, arc_timer_freq);
}
TIMER_OF_DECLARE(arc_rtc, "snps,archs-timer-rtc", arc_cs_setup_rtc);

#endif

/*
 * 32bit TIMER1 to keep counting monotonically and wraparound
 */

static u64 arc_read_timer1(struct clocksource *cs)
{
	return (u64) read_aux_reg(ARC_REG_TIMER1_CNT);
}

static notrace u64 arc_timer1_clock_read(void)
{
	return arc_read_timer1(NULL);
}

static struct clocksource arc_counter_timer1 = {
	.name   = "ARC Timer1",
	.rating = 300,
	.read   = arc_read_timer1,
	.mask   = CLOCKSOURCE_MASK(32),
	.flags  = CLOCK_SOURCE_IS_CONTINUOUS,
};

static int __init arc_cs_setup_timer1(struct device_node *node)
{
	int ret;

	/* Local to CPU hence not usable in SMP */
	if (IS_ENABLED(CONFIG_SMP))
		return -EINVAL;

	ret = arc_get_timer_clk(node);
	if (ret)
		return ret;

	write_aux_reg(ARC_REG_TIMER1_LIMIT, ARC_TIMERN_MAX);
	write_aux_reg(ARC_REG_TIMER1_CNT, 0);
	write_aux_reg(ARC_REG_TIMER1_CTRL, TIMER_CTRL_NH);

	sched_clock_register(arc_timer1_clock_read, 32, arc_timer_freq);

	return clocksource_register_hz(&arc_counter_timer1, arc_timer_freq);
}

/********** Clock Event Device *********/

static int arc_timer_irq;

/*
 * Arm the timer to interrupt after @cycles
 * The distinction for oneshot/periodic is done in arc_event_timer_ack() below
 */
static void arc_timer_event_setup(unsigned int cycles)
{
	write_aux_reg(ARC_REG_TIMER0_LIMIT, cycles);
	write_aux_reg(ARC_REG_TIMER0_CNT, 0);	/* start from 0 */

	write_aux_reg(ARC_REG_TIMER0_CTRL, TIMER_CTRL_IE | TIMER_CTRL_NH);
}


static int arc_clkevent_set_next_event(unsigned long delta,
				       struct clock_event_device *dev)
{
	arc_timer_event_setup(delta);
	return 0;
}

static int arc_clkevent_set_periodic(struct clock_event_device *dev)
{
	/*
	 * At X Hz, 1 sec = 1000ms -> X cycles;
	 *		      10ms -> X / 100 cycles
	 */
	arc_timer_event_setup(arc_timer_freq / HZ);
	return 0;
}

static DEFINE_PER_CPU(struct clock_event_device, arc_clockevent_device) = {
	.name			= "ARC Timer0",
	.features		= CLOCK_EVT_FEAT_ONESHOT |
				  CLOCK_EVT_FEAT_PERIODIC,
	.rating			= 300,
	.set_next_event		= arc_clkevent_set_next_event,
	.set_state_periodic	= arc_clkevent_set_periodic,
};

static irqreturn_t timer_irq_handler(int irq, void *dev_id)
{
	/*
	 * Note that generic IRQ core could have passed @evt for @dev_id if
	 * irq_set_chip_and_handler() asked for handle_percpu_devid_irq()
	 */
	struct clock_event_device *evt = this_cpu_ptr(&arc_clockevent_device);
	int irq_reenable = clockevent_state_periodic(evt);

	/*
	 * 1. ACK the interrupt
	 *    - For ARC700, any write to CTRL reg ACKs it, so just rewrite
	 *      Count when [N]ot [H]alted bit.
	 *    - For HS3x, it is a bit subtle. On taken count-down interrupt,
	 *      IP bit [3] is set, which needs to be cleared for ACK'ing.
	 *      The write below can only update the other two bits, hence
	 *      explicitly clears IP bit
	 * 2. Re-arm interrupt if periodic by writing to IE bit [0]
	 */
	write_aux_reg(ARC_REG_TIMER0_CTRL, irq_reenable | TIMER_CTRL_NH);

	evt->event_handler(evt);

	return IRQ_HANDLED;
}


static int arc_timer_starting_cpu(unsigned int cpu)
{
	struct clock_event_device *evt = this_cpu_ptr(&arc_clockevent_device);

	evt->cpumask = cpumask_of(smp_processor_id());

	clockevents_config_and_register(evt, arc_timer_freq, 0, ARC_TIMERN_MAX);
	enable_percpu_irq(arc_timer_irq, 0);
	return 0;
}

static int arc_timer_dying_cpu(unsigned int cpu)
{
	disable_percpu_irq(arc_timer_irq);
	return 0;
}

/*
 * clockevent setup for boot CPU
 */
static int __init arc_clockevent_setup(struct device_node *node)
{
	struct clock_event_device *evt = this_cpu_ptr(&arc_clockevent_device);
	int ret;

	arc_timer_irq = irq_of_parse_and_map(node, 0);
	if (arc_timer_irq <= 0) {
		pr_err("clockevent: missing irq\n");
		return -EINVAL;
	}

	ret = arc_get_timer_clk(node);
	if (ret) {
		pr_err("clockevent: missing clk\n");
		return ret;
	}

	/* Needs apriori irq_set_percpu_devid() done in intc map function */
	ret = request_percpu_irq(arc_timer_irq, timer_irq_handler,
				 "Timer0 (per-cpu-tick)", evt);
	if (ret) {
		pr_err("clockevent: unable to request irq\n");
		return ret;
	}

	ret = cpuhp_setup_state(CPUHP_AP_ARC_TIMER_STARTING,
				"clockevents/arc/timer:starting",
				arc_timer_starting_cpu,
				arc_timer_dying_cpu);
	if (ret) {
		pr_err("Failed to setup hotplug state\n");
		return ret;
	}
	return 0;
}

static int __init arc_of_timer_init(struct device_node *np)
{
	static int init_count = 0;
	int ret;

	if (!init_count) {
		init_count = 1;
		ret = arc_clockevent_setup(np);
	} else {
		ret = arc_cs_setup_timer1(np);
	}

	return ret;
}
TIMER_OF_DECLARE(arc_clkevt, "snps,arc-timer", arc_of_timer_init);