aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/clocksource/timer-atmel-st.c
blob: 73e8aee445da8093e14e8a71939a60a0094dfb6b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
// SPDX-License-Identifier: GPL-2.0-or-later
/*
 * linux/arch/arm/mach-at91/at91rm9200_time.c
 *
 *  Copyright (C) 2003 SAN People
 *  Copyright (C) 2003 ATMEL
 */

#include <linux/kernel.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/clk.h>
#include <linux/clockchips.h>
#include <linux/export.h>
#include <linux/mfd/syscon.h>
#include <linux/mfd/syscon/atmel-st.h>
#include <linux/of_irq.h>
#include <linux/regmap.h>

static unsigned long last_crtr;
static u32 irqmask;
static struct clock_event_device clkevt;
static struct regmap *regmap_st;
static int timer_latch;

/*
 * The ST_CRTR is updated asynchronously to the master clock ... but
 * the updates as seen by the CPU don't seem to be strictly monotonic.
 * Waiting until we read the same value twice avoids glitching.
 */
static inline unsigned long read_CRTR(void)
{
	unsigned int x1, x2;

	regmap_read(regmap_st, AT91_ST_CRTR, &x1);
	do {
		regmap_read(regmap_st, AT91_ST_CRTR, &x2);
		if (x1 == x2)
			break;
		x1 = x2;
	} while (1);
	return x1;
}

/*
 * IRQ handler for the timer.
 */
static irqreturn_t at91rm9200_timer_interrupt(int irq, void *dev_id)
{
	u32 sr;

	regmap_read(regmap_st, AT91_ST_SR, &sr);
	sr &= irqmask;

	/*
	 * irqs should be disabled here, but as the irq is shared they are only
	 * guaranteed to be off if the timer irq is registered first.
	 */
	WARN_ON_ONCE(!irqs_disabled());

	/* simulate "oneshot" timer with alarm */
	if (sr & AT91_ST_ALMS) {
		clkevt.event_handler(&clkevt);
		return IRQ_HANDLED;
	}

	/* periodic mode should handle delayed ticks */
	if (sr & AT91_ST_PITS) {
		u32	crtr = read_CRTR();

		while (((crtr - last_crtr) & AT91_ST_CRTV) >= timer_latch) {
			last_crtr += timer_latch;
			clkevt.event_handler(&clkevt);
		}
		return IRQ_HANDLED;
	}

	/* this irq is shared ... */
	return IRQ_NONE;
}

static u64 read_clk32k(struct clocksource *cs)
{
	return read_CRTR();
}

static struct clocksource clk32k = {
	.name		= "32k_counter",
	.rating		= 150,
	.read		= read_clk32k,
	.mask		= CLOCKSOURCE_MASK(20),
	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
};

static void clkdev32k_disable_and_flush_irq(void)
{
	unsigned int val;

	/* Disable and flush pending timer interrupts */
	regmap_write(regmap_st, AT91_ST_IDR, AT91_ST_PITS | AT91_ST_ALMS);
	regmap_read(regmap_st, AT91_ST_SR, &val);
	last_crtr = read_CRTR();
}

static int clkevt32k_shutdown(struct clock_event_device *evt)
{
	clkdev32k_disable_and_flush_irq();
	irqmask = 0;
	regmap_write(regmap_st, AT91_ST_IER, irqmask);
	return 0;
}

static int clkevt32k_set_oneshot(struct clock_event_device *dev)
{
	clkdev32k_disable_and_flush_irq();

	/*
	 * ALM for oneshot irqs, set by next_event()
	 * before 32 seconds have passed.
	 */
	irqmask = AT91_ST_ALMS;
	regmap_write(regmap_st, AT91_ST_RTAR, last_crtr);
	regmap_write(regmap_st, AT91_ST_IER, irqmask);
	return 0;
}

static int clkevt32k_set_periodic(struct clock_event_device *dev)
{
	clkdev32k_disable_and_flush_irq();

	/* PIT for periodic irqs; fixed rate of 1/HZ */
	irqmask = AT91_ST_PITS;
	regmap_write(regmap_st, AT91_ST_PIMR, timer_latch);
	regmap_write(regmap_st, AT91_ST_IER, irqmask);
	return 0;
}

static int
clkevt32k_next_event(unsigned long delta, struct clock_event_device *dev)
{
	u32		alm;
	unsigned int	val;

	BUG_ON(delta < 2);

	/* The alarm IRQ uses absolute time (now+delta), not the relative
	 * time (delta) in our calling convention.  Like all clockevents
	 * using such "match" hardware, we have a race to defend against.
	 *
	 * Our defense here is to have set up the clockevent device so the
	 * delta is at least two.  That way we never end up writing RTAR
	 * with the value then held in CRTR ... which would mean the match
	 * wouldn't trigger until 32 seconds later, after CRTR wraps.
	 */
	alm = read_CRTR();

	/* Cancel any pending alarm; flush any pending IRQ */
	regmap_write(regmap_st, AT91_ST_RTAR, alm);
	regmap_read(regmap_st, AT91_ST_SR, &val);

	/* Schedule alarm by writing RTAR. */
	alm += delta;
	regmap_write(regmap_st, AT91_ST_RTAR, alm);

	return 0;
}

static struct clock_event_device clkevt = {
	.name			= "at91_tick",
	.features		= CLOCK_EVT_FEAT_PERIODIC |
				  CLOCK_EVT_FEAT_ONESHOT,
	.rating			= 150,
	.set_next_event		= clkevt32k_next_event,
	.set_state_shutdown	= clkevt32k_shutdown,
	.set_state_periodic	= clkevt32k_set_periodic,
	.set_state_oneshot	= clkevt32k_set_oneshot,
	.tick_resume		= clkevt32k_shutdown,
};

/*
 * ST (system timer) module supports both clockevents and clocksource.
 */
static int __init atmel_st_timer_init(struct device_node *node)
{
	struct clk *sclk;
	unsigned int sclk_rate, val;
	int irq, ret;

	regmap_st = syscon_node_to_regmap(node);
	if (IS_ERR(regmap_st)) {
		pr_err("Unable to get regmap\n");
		return PTR_ERR(regmap_st);
	}

	/* Disable all timer interrupts, and clear any pending ones */
	regmap_write(regmap_st, AT91_ST_IDR,
		AT91_ST_PITS | AT91_ST_WDOVF | AT91_ST_RTTINC | AT91_ST_ALMS);
	regmap_read(regmap_st, AT91_ST_SR, &val);

	/* Get the interrupts property */
	irq  = irq_of_parse_and_map(node, 0);
	if (!irq) {
		pr_err("Unable to get IRQ from DT\n");
		return -EINVAL;
	}

	/* Make IRQs happen for the system timer */
	ret = request_irq(irq, at91rm9200_timer_interrupt,
			  IRQF_SHARED | IRQF_TIMER | IRQF_IRQPOLL,
			  "at91_tick", regmap_st);
	if (ret) {
		pr_err("Unable to setup IRQ\n");
		return ret;
	}

	sclk = of_clk_get(node, 0);
	if (IS_ERR(sclk)) {
		pr_err("Unable to get slow clock\n");
		return PTR_ERR(sclk);
	}

	ret = clk_prepare_enable(sclk);
	if (ret) {
		pr_err("Could not enable slow clock\n");
		return ret;
	}

	sclk_rate = clk_get_rate(sclk);
	if (!sclk_rate) {
		pr_err("Invalid slow clock rate\n");
		return -EINVAL;
	}
	timer_latch = (sclk_rate + HZ / 2) / HZ;

	/* The 32KiHz "Slow Clock" (tick every 30517.58 nanoseconds) is used
	 * directly for the clocksource and all clockevents, after adjusting
	 * its prescaler from the 1 Hz default.
	 */
	regmap_write(regmap_st, AT91_ST_RTMR, 1);

	/* Setup timer clockevent, with minimum of two ticks (important!!) */
	clkevt.cpumask = cpumask_of(0);
	clockevents_config_and_register(&clkevt, sclk_rate,
					2, AT91_ST_ALMV);

	/* register clocksource */
	return clocksource_register_hz(&clk32k, sclk_rate);
}
TIMER_OF_DECLARE(atmel_st_timer, "atmel,at91rm9200-st",
		       atmel_st_timer_init);