aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/crypto/nx/nx-aes-xcbc.c
blob: 93923e4628c05b8af34bf19e90eb3cb692a4a0a0 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
/**
 * AES XCBC routines supporting the Power 7+ Nest Accelerators driver
 *
 * Copyright (C) 2011-2012 International Business Machines Inc.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; version 2 only.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 *
 * Author: Kent Yoder <yoder1@us.ibm.com>
 */

#include <crypto/internal/hash.h>
#include <crypto/aes.h>
#include <crypto/algapi.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/crypto.h>
#include <asm/vio.h>

#include "nx_csbcpb.h"
#include "nx.h"


struct xcbc_state {
	u8 state[AES_BLOCK_SIZE];
	unsigned int count;
	u8 buffer[AES_BLOCK_SIZE];
};

static int nx_xcbc_set_key(struct crypto_shash *desc,
			   const u8            *in_key,
			   unsigned int         key_len)
{
	struct nx_crypto_ctx *nx_ctx = crypto_shash_ctx(desc);

	switch (key_len) {
	case AES_KEYSIZE_128:
		nx_ctx->ap = &nx_ctx->props[NX_PROPS_AES_128];
		break;
	default:
		return -EINVAL;
	}

	memcpy(nx_ctx->priv.xcbc.key, in_key, key_len);

	return 0;
}

static int nx_xcbc_init(struct shash_desc *desc)
{
	struct xcbc_state *sctx = shash_desc_ctx(desc);
	struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
	struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
	struct nx_sg *out_sg;

	nx_ctx_init(nx_ctx, HCOP_FC_AES);

	memset(sctx, 0, sizeof *sctx);

	NX_CPB_SET_KEY_SIZE(csbcpb, NX_KS_AES_128);
	csbcpb->cpb.hdr.mode = NX_MODE_AES_XCBC_MAC;

	memcpy(csbcpb->cpb.aes_xcbc.key, nx_ctx->priv.xcbc.key, AES_BLOCK_SIZE);
	memset(nx_ctx->priv.xcbc.key, 0, sizeof *nx_ctx->priv.xcbc.key);

	out_sg = nx_build_sg_list(nx_ctx->out_sg, (u8 *)sctx->state,
				  AES_BLOCK_SIZE, nx_ctx->ap->sglen);
	nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);

	return 0;
}

static int nx_xcbc_update(struct shash_desc *desc,
			  const u8          *data,
			  unsigned int       len)
{
	struct xcbc_state *sctx = shash_desc_ctx(desc);
	struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
	struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
	struct nx_sg *in_sg;
	u32 to_process, leftover;
	int rc = 0;

	if (NX_CPB_FDM(csbcpb) & NX_FDM_CONTINUATION) {
		/* we've hit the nx chip previously and we're updating again,
		 * so copy over the partial digest */
		memcpy(csbcpb->cpb.aes_xcbc.cv,
		       csbcpb->cpb.aes_xcbc.out_cv_mac, AES_BLOCK_SIZE);
	}

	/* 2 cases for total data len:
	 *  1: <= AES_BLOCK_SIZE: copy into state, return 0
	 *  2: > AES_BLOCK_SIZE: process X blocks, copy in leftover
	 */
	if (len + sctx->count <= AES_BLOCK_SIZE) {
		memcpy(sctx->buffer + sctx->count, data, len);
		sctx->count += len;
		goto out;
	}

	/* to_process: the AES_BLOCK_SIZE data chunk to process in this
	 * update */
	to_process = (sctx->count + len) & ~(AES_BLOCK_SIZE - 1);
	leftover = (sctx->count + len) & (AES_BLOCK_SIZE - 1);

	/* the hardware will not accept a 0 byte operation for this algorithm
	 * and the operation MUST be finalized to be correct. So if we happen
	 * to get an update that falls on a block sized boundary, we must
	 * save off the last block to finalize with later. */
	if (!leftover) {
		to_process -= AES_BLOCK_SIZE;
		leftover = AES_BLOCK_SIZE;
	}

	if (sctx->count) {
		in_sg = nx_build_sg_list(nx_ctx->in_sg, sctx->buffer,
					 sctx->count, nx_ctx->ap->sglen);
		in_sg = nx_build_sg_list(in_sg, (u8 *)data,
					 to_process - sctx->count,
					 nx_ctx->ap->sglen);
		nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) *
					sizeof(struct nx_sg);
	} else {
		in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *)data, to_process,
					 nx_ctx->ap->sglen);
		nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) *
					sizeof(struct nx_sg);
	}

	NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE;

	if (!nx_ctx->op.inlen || !nx_ctx->op.outlen) {
		rc = -EINVAL;
		goto out;
	}

	rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
			   desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
	if (rc)
		goto out;

	atomic_inc(&(nx_ctx->stats->aes_ops));

	/* copy the leftover back into the state struct */
	memcpy(sctx->buffer, data + len - leftover, leftover);
	sctx->count = leftover;

	/* everything after the first update is continuation */
	NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION;
out:
	return rc;
}

static int nx_xcbc_final(struct shash_desc *desc, u8 *out)
{
	struct xcbc_state *sctx = shash_desc_ctx(desc);
	struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
	struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
	struct nx_sg *in_sg, *out_sg;
	int rc = 0;

	if (NX_CPB_FDM(csbcpb) & NX_FDM_CONTINUATION) {
		/* we've hit the nx chip previously, now we're finalizing,
		 * so copy over the partial digest */
		memcpy(csbcpb->cpb.aes_xcbc.cv,
		       csbcpb->cpb.aes_xcbc.out_cv_mac, AES_BLOCK_SIZE);
	} else if (sctx->count == 0) {
		/* we've never seen an update, so this is a 0 byte op. The
		 * hardware cannot handle a 0 byte op, so just copy out the
		 * known 0 byte result. This is cheaper than allocating a
		 * software context to do a 0 byte op */
		u8 data[] = { 0x75, 0xf0, 0x25, 0x1d, 0x52, 0x8a, 0xc0, 0x1c,
			      0x45, 0x73, 0xdf, 0xd5, 0x84, 0xd7, 0x9f, 0x29 };
		memcpy(out, data, sizeof(data));
		goto out;
	}

	/* final is represented by continuing the operation and indicating that
	 * this is not an intermediate operation */
	NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE;

	in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *)sctx->buffer,
				 sctx->count, nx_ctx->ap->sglen);
	out_sg = nx_build_sg_list(nx_ctx->out_sg, out, AES_BLOCK_SIZE,
				  nx_ctx->ap->sglen);

	nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg);
	nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);

	if (!nx_ctx->op.outlen) {
		rc = -EINVAL;
		goto out;
	}

	rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
			   desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
	if (rc)
		goto out;

	atomic_inc(&(nx_ctx->stats->aes_ops));

	memcpy(out, csbcpb->cpb.aes_xcbc.out_cv_mac, AES_BLOCK_SIZE);
out:
	return rc;
}

struct shash_alg nx_shash_aes_xcbc_alg = {
	.digestsize = AES_BLOCK_SIZE,
	.init       = nx_xcbc_init,
	.update     = nx_xcbc_update,
	.final      = nx_xcbc_final,
	.setkey     = nx_xcbc_set_key,
	.descsize   = sizeof(struct xcbc_state),
	.statesize  = sizeof(struct xcbc_state),
	.base       = {
		.cra_name        = "xcbc(aes)",
		.cra_driver_name = "xcbc-aes-nx",
		.cra_priority    = 300,
		.cra_flags       = CRYPTO_ALG_TYPE_SHASH,
		.cra_blocksize   = AES_BLOCK_SIZE,
		.cra_module      = THIS_MODULE,
		.cra_ctxsize     = sizeof(struct nx_crypto_ctx),
		.cra_init        = nx_crypto_ctx_aes_xcbc_init,
		.cra_exit        = nx_crypto_ctx_exit,
	}
};