aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/gpu/drm/amd/display/dc/dml/dcn321/dcn321_fpu.c
blob: 432b4ecd01a710c7b14eb8ad7a946479631538f7 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
// SPDX-License-Identifier: MIT
/*
 * Copyright 2022 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 *
 * Authors: AMD
 *
 */

#include "clk_mgr.h"
#include "resource.h"
#include "dcn321_fpu.h"
#include "dcn32/dcn32_resource.h"
#include "dcn321/dcn321_resource.h"
#include "dml/dcn32/display_mode_vba_util_32.h"

#define DCN3_2_DEFAULT_DET_SIZE 256

struct _vcs_dpi_ip_params_st dcn3_21_ip = {
	.gpuvm_enable = 0,
	.gpuvm_max_page_table_levels = 4,
	.hostvm_enable = 0,
	.rob_buffer_size_kbytes = 128,
	.det_buffer_size_kbytes = DCN3_2_DEFAULT_DET_SIZE,
	.config_return_buffer_size_in_kbytes = 1280,
	.compressed_buffer_segment_size_in_kbytes = 64,
	.meta_fifo_size_in_kentries = 22,
	.zero_size_buffer_entries = 512,
	.compbuf_reserved_space_64b = 256,
	.compbuf_reserved_space_zs = 64,
	.dpp_output_buffer_pixels = 2560,
	.opp_output_buffer_lines = 1,
	.pixel_chunk_size_kbytes = 8,
	.alpha_pixel_chunk_size_kbytes = 4,
	.min_pixel_chunk_size_bytes = 1024,
	.dcc_meta_buffer_size_bytes = 6272,
	.meta_chunk_size_kbytes = 2,
	.min_meta_chunk_size_bytes = 256,
	.writeback_chunk_size_kbytes = 8,
	.ptoi_supported = false,
	.num_dsc = 4,
	.maximum_dsc_bits_per_component = 12,
	.maximum_pixels_per_line_per_dsc_unit = 6016,
	.dsc422_native_support = true,
	.is_line_buffer_bpp_fixed = true,
	.line_buffer_fixed_bpp = 57,
	.line_buffer_size_bits = 1171920,
	.max_line_buffer_lines = 32,
	.writeback_interface_buffer_size_kbytes = 90,
	.max_num_dpp = 4,
	.max_num_otg = 4,
	.max_num_hdmi_frl_outputs = 1,
	.max_num_wb = 1,
	.max_dchub_pscl_bw_pix_per_clk = 4,
	.max_pscl_lb_bw_pix_per_clk = 2,
	.max_lb_vscl_bw_pix_per_clk = 4,
	.max_vscl_hscl_bw_pix_per_clk = 4,
	.max_hscl_ratio = 6,
	.max_vscl_ratio = 6,
	.max_hscl_taps = 8,
	.max_vscl_taps = 8,
	.dpte_buffer_size_in_pte_reqs_luma = 64,
	.dpte_buffer_size_in_pte_reqs_chroma = 34,
	.dispclk_ramp_margin_percent = 1,
	.max_inter_dcn_tile_repeaters = 8,
	.cursor_buffer_size = 16,
	.cursor_chunk_size = 2,
	.writeback_line_buffer_buffer_size = 0,
	.writeback_min_hscl_ratio = 1,
	.writeback_min_vscl_ratio = 1,
	.writeback_max_hscl_ratio = 1,
	.writeback_max_vscl_ratio = 1,
	.writeback_max_hscl_taps = 1,
	.writeback_max_vscl_taps = 1,
	.dppclk_delay_subtotal = 47,
	.dppclk_delay_scl = 50,
	.dppclk_delay_scl_lb_only = 16,
	.dppclk_delay_cnvc_formatter = 28,
	.dppclk_delay_cnvc_cursor = 6,
	.dispclk_delay_subtotal = 125,
	.dynamic_metadata_vm_enabled = false,
	.odm_combine_4to1_supported = false,
	.dcc_supported = true,
	.max_num_dp2p0_outputs = 2,
	.max_num_dp2p0_streams = 4,
};

struct _vcs_dpi_soc_bounding_box_st dcn3_21_soc = {
	.clock_limits = {
		{
			.state = 0,
			.dcfclk_mhz = 1564.0,
			.fabricclk_mhz = 400.0,
			.dispclk_mhz = 2150.0,
			.dppclk_mhz = 2150.0,
			.phyclk_mhz = 810.0,
			.phyclk_d18_mhz = 667.0,
			.phyclk_d32_mhz = 625.0,
			.socclk_mhz = 1200.0,
			.dscclk_mhz = 716.667,
			.dram_speed_mts = 1600.0,
			.dtbclk_mhz = 1564.0,
		},
	},
	.num_states = 1,
	.sr_exit_time_us = 19.95,
	.sr_enter_plus_exit_time_us = 24.36,
	.sr_exit_z8_time_us = 285.0,
	.sr_enter_plus_exit_z8_time_us = 320,
	.writeback_latency_us = 12.0,
	.round_trip_ping_latency_dcfclk_cycles = 263,
	.urgent_latency_pixel_data_only_us = 9.35,
	.urgent_latency_pixel_mixed_with_vm_data_us = 9.35,
	.urgent_latency_vm_data_only_us = 9.35,
	.fclk_change_latency_us = 20,
	.usr_retraining_latency_us = 2,
	.smn_latency_us = 2,
	.mall_allocated_for_dcn_mbytes = 64,
	.urgent_out_of_order_return_per_channel_pixel_only_bytes = 4096,
	.urgent_out_of_order_return_per_channel_pixel_and_vm_bytes = 4096,
	.urgent_out_of_order_return_per_channel_vm_only_bytes = 4096,
	.pct_ideal_sdp_bw_after_urgent = 100.0,
	.pct_ideal_fabric_bw_after_urgent = 67.0,
	.pct_ideal_dram_sdp_bw_after_urgent_pixel_only = 20.0,
	.pct_ideal_dram_sdp_bw_after_urgent_pixel_and_vm = 60.0, // N/A, for now keep as is until DML implemented
	.pct_ideal_dram_sdp_bw_after_urgent_vm_only = 30.0, // N/A, for now keep as is until DML implemented
	.pct_ideal_dram_bw_after_urgent_strobe = 67.0,
	.max_avg_sdp_bw_use_normal_percent = 80.0,
	.max_avg_fabric_bw_use_normal_percent = 60.0,
	.max_avg_dram_bw_use_normal_strobe_percent = 50.0,
	.max_avg_dram_bw_use_normal_percent = 15.0,
	.num_chans = 8,
	.dram_channel_width_bytes = 2,
	.fabric_datapath_to_dcn_data_return_bytes = 64,
	.return_bus_width_bytes = 64,
	.downspread_percent = 0.38,
	.dcn_downspread_percent = 0.5,
	.dram_clock_change_latency_us = 400,
	.dispclk_dppclk_vco_speed_mhz = 4300.0,
	.do_urgent_latency_adjustment = true,
	.urgent_latency_adjustment_fabric_clock_component_us = 1.0,
	.urgent_latency_adjustment_fabric_clock_reference_mhz = 1000,
};

static void get_optimal_ntuple(struct _vcs_dpi_voltage_scaling_st *entry)
{
	if (entry->dcfclk_mhz > 0) {
		float bw_on_sdp = entry->dcfclk_mhz * dcn3_21_soc.return_bus_width_bytes * ((float)dcn3_21_soc.pct_ideal_sdp_bw_after_urgent / 100);

		entry->fabricclk_mhz = bw_on_sdp / (dcn3_21_soc.return_bus_width_bytes * ((float)dcn3_21_soc.pct_ideal_fabric_bw_after_urgent / 100));
		entry->dram_speed_mts = bw_on_sdp / (dcn3_21_soc.num_chans *
				dcn3_21_soc.dram_channel_width_bytes * ((float)dcn3_21_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100));
	} else if (entry->fabricclk_mhz > 0) {
		float bw_on_fabric = entry->fabricclk_mhz * dcn3_21_soc.return_bus_width_bytes * ((float)dcn3_21_soc.pct_ideal_fabric_bw_after_urgent / 100);

		entry->dcfclk_mhz = bw_on_fabric / (dcn3_21_soc.return_bus_width_bytes * ((float)dcn3_21_soc.pct_ideal_sdp_bw_after_urgent / 100));
		entry->dram_speed_mts = bw_on_fabric / (dcn3_21_soc.num_chans *
				dcn3_21_soc.dram_channel_width_bytes * ((float)dcn3_21_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100));
	} else if (entry->dram_speed_mts > 0) {
		float bw_on_dram = entry->dram_speed_mts * dcn3_21_soc.num_chans *
				dcn3_21_soc.dram_channel_width_bytes * ((float)dcn3_21_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100);

		entry->fabricclk_mhz = bw_on_dram / (dcn3_21_soc.return_bus_width_bytes * ((float)dcn3_21_soc.pct_ideal_fabric_bw_after_urgent / 100));
		entry->dcfclk_mhz = bw_on_dram / (dcn3_21_soc.return_bus_width_bytes * ((float)dcn3_21_soc.pct_ideal_sdp_bw_after_urgent / 100));
	}
}

static float calculate_net_bw_in_kbytes_sec(struct _vcs_dpi_voltage_scaling_st *entry)
{
	float memory_bw_kbytes_sec;
	float fabric_bw_kbytes_sec;
	float sdp_bw_kbytes_sec;
	float limiting_bw_kbytes_sec;

	memory_bw_kbytes_sec = entry->dram_speed_mts * dcn3_21_soc.num_chans *
			dcn3_21_soc.dram_channel_width_bytes * ((float)dcn3_21_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100);

	fabric_bw_kbytes_sec = entry->fabricclk_mhz * dcn3_21_soc.return_bus_width_bytes * ((float)dcn3_21_soc.pct_ideal_fabric_bw_after_urgent / 100);

	sdp_bw_kbytes_sec = entry->dcfclk_mhz * dcn3_21_soc.return_bus_width_bytes * ((float)dcn3_21_soc.pct_ideal_sdp_bw_after_urgent / 100);

	limiting_bw_kbytes_sec = memory_bw_kbytes_sec;

	if (fabric_bw_kbytes_sec < limiting_bw_kbytes_sec)
		limiting_bw_kbytes_sec = fabric_bw_kbytes_sec;

	if (sdp_bw_kbytes_sec < limiting_bw_kbytes_sec)
		limiting_bw_kbytes_sec = sdp_bw_kbytes_sec;

	return limiting_bw_kbytes_sec;
}

void dcn321_insert_entry_into_table_sorted(struct _vcs_dpi_voltage_scaling_st *table,
					   unsigned int *num_entries,
					   struct _vcs_dpi_voltage_scaling_st *entry)
{
	int i = 0;
	int index = 0;
	float net_bw_of_new_state = 0;

	dc_assert_fp_enabled();

	get_optimal_ntuple(entry);

	if (*num_entries == 0) {
		table[0] = *entry;
		(*num_entries)++;
	} else {
		net_bw_of_new_state = calculate_net_bw_in_kbytes_sec(entry);
		while (net_bw_of_new_state > calculate_net_bw_in_kbytes_sec(&table[index])) {
			index++;
			if (index >= *num_entries)
				break;
		}

		for (i = *num_entries; i > index; i--)
			table[i] = table[i - 1];

		table[index] = *entry;
		(*num_entries)++;
	}
}

static void remove_entry_from_table_at_index(struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries,
		unsigned int index)
{
	int i;

	if (*num_entries == 0)
		return;

	for (i = index; i < *num_entries - 1; i++) {
		table[i] = table[i + 1];
	}
	memset(&table[--(*num_entries)], 0, sizeof(struct _vcs_dpi_voltage_scaling_st));
}

static int build_synthetic_soc_states(struct clk_bw_params *bw_params,
		struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries)
{
	int i, j;
	struct _vcs_dpi_voltage_scaling_st entry = {0};

	unsigned int max_dcfclk_mhz = 0, max_dispclk_mhz = 0, max_dppclk_mhz = 0,
			max_phyclk_mhz = 0, max_dtbclk_mhz = 0, max_fclk_mhz = 0, max_uclk_mhz = 0;

	unsigned int min_dcfclk_mhz = 199, min_fclk_mhz = 299;

	static const unsigned int num_dcfclk_stas = 5;
	unsigned int dcfclk_sta_targets[DC__VOLTAGE_STATES] = {199, 615, 906, 1324, 1564};

	unsigned int num_uclk_dpms = 0;
	unsigned int num_fclk_dpms = 0;
	unsigned int num_dcfclk_dpms = 0;

	for (i = 0; i < MAX_NUM_DPM_LVL; i++) {
		if (bw_params->clk_table.entries[i].dcfclk_mhz > max_dcfclk_mhz)
			max_dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz;
		if (bw_params->clk_table.entries[i].fclk_mhz > max_fclk_mhz)
			max_fclk_mhz = bw_params->clk_table.entries[i].fclk_mhz;
		if (bw_params->clk_table.entries[i].memclk_mhz > max_uclk_mhz)
			max_uclk_mhz = bw_params->clk_table.entries[i].memclk_mhz;
		if (bw_params->clk_table.entries[i].dispclk_mhz > max_dispclk_mhz)
			max_dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz;
		if (bw_params->clk_table.entries[i].dppclk_mhz > max_dppclk_mhz)
			max_dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz;
		if (bw_params->clk_table.entries[i].phyclk_mhz > max_phyclk_mhz)
			max_phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz;
		if (bw_params->clk_table.entries[i].dtbclk_mhz > max_dtbclk_mhz)
			max_dtbclk_mhz = bw_params->clk_table.entries[i].dtbclk_mhz;

		if (bw_params->clk_table.entries[i].memclk_mhz > 0)
			num_uclk_dpms++;
		if (bw_params->clk_table.entries[i].fclk_mhz > 0)
			num_fclk_dpms++;
		if (bw_params->clk_table.entries[i].dcfclk_mhz > 0)
			num_dcfclk_dpms++;
	}

	if (!max_dcfclk_mhz || !max_dispclk_mhz || !max_dtbclk_mhz)
		return -1;

	if (max_dppclk_mhz == 0)
		max_dppclk_mhz = max_dispclk_mhz;

	if (max_fclk_mhz == 0)
		max_fclk_mhz = max_dcfclk_mhz * dcn3_21_soc.pct_ideal_sdp_bw_after_urgent / dcn3_21_soc.pct_ideal_fabric_bw_after_urgent;

	if (max_phyclk_mhz == 0)
		max_phyclk_mhz = dcn3_21_soc.clock_limits[0].phyclk_mhz;

	*num_entries = 0;
	entry.dispclk_mhz = max_dispclk_mhz;
	entry.dscclk_mhz = max_dispclk_mhz / 3;
	entry.dppclk_mhz = max_dppclk_mhz;
	entry.dtbclk_mhz = max_dtbclk_mhz;
	entry.phyclk_mhz = max_phyclk_mhz;
	entry.phyclk_d18_mhz = dcn3_21_soc.clock_limits[0].phyclk_d18_mhz;
	entry.phyclk_d32_mhz = dcn3_21_soc.clock_limits[0].phyclk_d32_mhz;

	// Insert all the DCFCLK STAs
	for (i = 0; i < num_dcfclk_stas; i++) {
		entry.dcfclk_mhz = dcfclk_sta_targets[i];
		entry.fabricclk_mhz = 0;
		entry.dram_speed_mts = 0;

		dcn321_insert_entry_into_table_sorted(table, num_entries, &entry);
	}

	// Insert the max DCFCLK
	entry.dcfclk_mhz = max_dcfclk_mhz;
	entry.fabricclk_mhz = 0;
	entry.dram_speed_mts = 0;

	dcn321_insert_entry_into_table_sorted(table, num_entries, &entry);

	// Insert the UCLK DPMS
	for (i = 0; i < num_uclk_dpms; i++) {
		entry.dcfclk_mhz = 0;
		entry.fabricclk_mhz = 0;
		entry.dram_speed_mts = bw_params->clk_table.entries[i].memclk_mhz * 16;

		dcn321_insert_entry_into_table_sorted(table, num_entries, &entry);
	}

	// If FCLK is coarse grained, insert individual DPMs.
	if (num_fclk_dpms > 2) {
		for (i = 0; i < num_fclk_dpms; i++) {
			entry.dcfclk_mhz = 0;
			entry.fabricclk_mhz = bw_params->clk_table.entries[i].fclk_mhz;
			entry.dram_speed_mts = 0;

			dcn321_insert_entry_into_table_sorted(table, num_entries, &entry);
		}
	}
	// If FCLK fine grained, only insert max
	else {
		entry.dcfclk_mhz = 0;
		entry.fabricclk_mhz = max_fclk_mhz;
		entry.dram_speed_mts = 0;

		dcn321_insert_entry_into_table_sorted(table, num_entries, &entry);
	}

	// At this point, the table contains all "points of interest" based on
	// DPMs from PMFW, and STAs.  Table is sorted by BW, and all clock
	// ratios (by derate, are exact).

	// Remove states that require higher clocks than are supported
	for (i = *num_entries - 1; i >= 0 ; i--) {
		if (table[i].dcfclk_mhz > max_dcfclk_mhz ||
				table[i].fabricclk_mhz > max_fclk_mhz ||
				table[i].dram_speed_mts > max_uclk_mhz * 16)
			remove_entry_from_table_at_index(table, num_entries, i);
	}

	// At this point, the table only contains supported points of interest
	// it could be used as is, but some states may be redundant due to
	// coarse grained nature of some clocks, so we want to round up to
	// coarse grained DPMs and remove duplicates.

	// Round up UCLKs
	for (i = *num_entries - 1; i >= 0 ; i--) {
		for (j = 0; j < num_uclk_dpms; j++) {
			if (bw_params->clk_table.entries[j].memclk_mhz * 16 >= table[i].dram_speed_mts) {
				table[i].dram_speed_mts = bw_params->clk_table.entries[j].memclk_mhz * 16;
				break;
			}
		}
	}

	// If FCLK is coarse grained, round up to next DPMs
	if (num_fclk_dpms > 2) {
		for (i = *num_entries - 1; i >= 0 ; i--) {
			for (j = 0; j < num_fclk_dpms; j++) {
				if (bw_params->clk_table.entries[j].fclk_mhz >= table[i].fabricclk_mhz) {
					table[i].fabricclk_mhz = bw_params->clk_table.entries[j].fclk_mhz;
					break;
				}
			}
		}
	}
	// Otherwise, round up to minimum.
	else {
		for (i = *num_entries - 1; i >= 0 ; i--) {
			if (table[i].fabricclk_mhz < min_fclk_mhz) {
				table[i].fabricclk_mhz = min_fclk_mhz;
				break;
			}
		}
	}

	// Round DCFCLKs up to minimum
	for (i = *num_entries - 1; i >= 0 ; i--) {
		if (table[i].dcfclk_mhz < min_dcfclk_mhz) {
			table[i].dcfclk_mhz = min_dcfclk_mhz;
			break;
		}
	}

	// Remove duplicate states, note duplicate states are always neighbouring since table is sorted.
	i = 0;
	while (i < *num_entries - 1) {
		if (table[i].dcfclk_mhz == table[i + 1].dcfclk_mhz &&
				table[i].fabricclk_mhz == table[i + 1].fabricclk_mhz &&
				table[i].dram_speed_mts == table[i + 1].dram_speed_mts)
			remove_entry_from_table_at_index(table, num_entries, i + 1);
		else
			i++;
	}

	// Fix up the state indicies
	for (i = *num_entries - 1; i >= 0 ; i--) {
		table[i].state = i;
	}

	return 0;
}

static void dcn321_get_optimal_dcfclk_fclk_for_uclk(unsigned int uclk_mts,
		unsigned int *optimal_dcfclk,
		unsigned int *optimal_fclk)
{
	double bw_from_dram, bw_from_dram1, bw_from_dram2;

	bw_from_dram1 = uclk_mts * dcn3_21_soc.num_chans *
		dcn3_21_soc.dram_channel_width_bytes * (dcn3_21_soc.max_avg_dram_bw_use_normal_percent / 100);
	bw_from_dram2 = uclk_mts * dcn3_21_soc.num_chans *
		dcn3_21_soc.dram_channel_width_bytes * (dcn3_21_soc.max_avg_sdp_bw_use_normal_percent / 100);

	bw_from_dram = (bw_from_dram1 < bw_from_dram2) ? bw_from_dram1 : bw_from_dram2;

	if (optimal_fclk)
		*optimal_fclk = bw_from_dram /
		(dcn3_21_soc.fabric_datapath_to_dcn_data_return_bytes * (dcn3_21_soc.max_avg_sdp_bw_use_normal_percent / 100));

	if (optimal_dcfclk)
		*optimal_dcfclk =  bw_from_dram /
		(dcn3_21_soc.return_bus_width_bytes * (dcn3_21_soc.max_avg_sdp_bw_use_normal_percent / 100));
}

/** dcn321_update_bw_bounding_box
 * This would override some dcn3_2 ip_or_soc initial parameters hardcoded from spreadsheet
 * with actual values as per dGPU SKU:
 * -with passed few options from dc->config
 * -with dentist_vco_frequency from Clk Mgr (currently hardcoded, but might need to get it from PM FW)
 * -with passed latency values (passed in ns units) in dc-> bb override for debugging purposes
 * -with passed latencies from VBIOS (in 100_ns units) if available for certain dGPU SKU
 * -with number of DRAM channels from VBIOS (which differ for certain dGPU SKU of the same ASIC)
 * -clocks levels with passed clk_table entries from Clk Mgr as reported by PM FW for different
 *  clocks (which might differ for certain dGPU SKU of the same ASIC)
 */
void dcn321_update_bw_bounding_box_fpu(struct dc *dc, struct clk_bw_params *bw_params)
{
	dc_assert_fp_enabled();
	if (!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment)) {
		/* Overrides from dc->config options */
		dcn3_21_ip.clamp_min_dcfclk = dc->config.clamp_min_dcfclk;

		/* Override from passed dc->bb_overrides if available*/
		if ((int)(dcn3_21_soc.sr_exit_time_us * 1000) != dc->bb_overrides.sr_exit_time_ns
				&& dc->bb_overrides.sr_exit_time_ns) {
			dcn3_21_soc.sr_exit_time_us = dc->bb_overrides.sr_exit_time_ns / 1000.0;
		}

		if ((int)(dcn3_21_soc.sr_enter_plus_exit_time_us * 1000)
				!= dc->bb_overrides.sr_enter_plus_exit_time_ns
				&& dc->bb_overrides.sr_enter_plus_exit_time_ns) {
			dcn3_21_soc.sr_enter_plus_exit_time_us =
				dc->bb_overrides.sr_enter_plus_exit_time_ns / 1000.0;
		}

		if ((int)(dcn3_21_soc.urgent_latency_us * 1000) != dc->bb_overrides.urgent_latency_ns
			&& dc->bb_overrides.urgent_latency_ns) {
			dcn3_21_soc.urgent_latency_us = dc->bb_overrides.urgent_latency_ns / 1000.0;
			dcn3_21_soc.urgent_latency_pixel_data_only_us = dc->bb_overrides.urgent_latency_ns / 1000.0;
		}

		if ((int)(dcn3_21_soc.dram_clock_change_latency_us * 1000)
				!= dc->bb_overrides.dram_clock_change_latency_ns
				&& dc->bb_overrides.dram_clock_change_latency_ns) {
			dcn3_21_soc.dram_clock_change_latency_us =
				dc->bb_overrides.dram_clock_change_latency_ns / 1000.0;
		}

		if ((int)(dcn3_21_soc.fclk_change_latency_us * 1000)
				!= dc->bb_overrides.fclk_clock_change_latency_ns
				&& dc->bb_overrides.fclk_clock_change_latency_ns) {
			dcn3_21_soc.fclk_change_latency_us =
				dc->bb_overrides.fclk_clock_change_latency_ns / 1000;
		}

		if ((int)(dcn3_21_soc.dummy_pstate_latency_us * 1000)
				!= dc->bb_overrides.dummy_clock_change_latency_ns
				&& dc->bb_overrides.dummy_clock_change_latency_ns) {
			dcn3_21_soc.dummy_pstate_latency_us =
				dc->bb_overrides.dummy_clock_change_latency_ns / 1000.0;
		}

		/* Override from VBIOS if VBIOS bb_info available */
		if (dc->ctx->dc_bios->funcs->get_soc_bb_info) {
			struct bp_soc_bb_info bb_info = {0};

			if (dc->ctx->dc_bios->funcs->get_soc_bb_info(dc->ctx->dc_bios, &bb_info) == BP_RESULT_OK) {
				if (bb_info.dram_clock_change_latency_100ns > 0)
					dcn3_21_soc.dram_clock_change_latency_us =
						bb_info.dram_clock_change_latency_100ns * 10;

				if (bb_info.dram_sr_enter_exit_latency_100ns > 0)
					dcn3_21_soc.sr_enter_plus_exit_time_us =
						bb_info.dram_sr_enter_exit_latency_100ns * 10;

				if (bb_info.dram_sr_exit_latency_100ns > 0)
					dcn3_21_soc.sr_exit_time_us =
						bb_info.dram_sr_exit_latency_100ns * 10;
			}
		}

		/* Override from VBIOS for num_chan */
		if (dc->ctx->dc_bios->vram_info.num_chans)
			dcn3_21_soc.num_chans = dc->ctx->dc_bios->vram_info.num_chans;

		if (dc->ctx->dc_bios->vram_info.dram_channel_width_bytes)
			dcn3_21_soc.dram_channel_width_bytes = dc->ctx->dc_bios->vram_info.dram_channel_width_bytes;
	}

	/* DML DSC delay factor workaround */
	dcn3_21_ip.dsc_delay_factor_wa = dc->debug.dsc_delay_factor_wa_x1000 / 1000.0;

	dcn3_21_ip.min_prefetch_in_strobe_us = dc->debug.min_prefetch_in_strobe_ns / 1000.0;

	/* Override dispclk_dppclk_vco_speed_mhz from Clk Mgr */
	dcn3_21_soc.dispclk_dppclk_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0;
	dc->dml.soc.dispclk_dppclk_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0;

	/* Overrides Clock levelsfrom CLK Mgr table entries as reported by PM FW */
	if ((!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment)) && (bw_params->clk_table.entries[0].memclk_mhz)) {
		if (dc->debug.use_legacy_soc_bb_mechanism) {
			unsigned int i = 0, j = 0, num_states = 0;

			unsigned int dcfclk_mhz[DC__VOLTAGE_STATES] = {0};
			unsigned int dram_speed_mts[DC__VOLTAGE_STATES] = {0};
			unsigned int optimal_uclk_for_dcfclk_sta_targets[DC__VOLTAGE_STATES] = {0};
			unsigned int optimal_dcfclk_for_uclk[DC__VOLTAGE_STATES] = {0};

			unsigned int dcfclk_sta_targets[DC__VOLTAGE_STATES] = {615, 906, 1324, 1564};
			unsigned int num_dcfclk_sta_targets = 4, num_uclk_states = 0;
			unsigned int max_dcfclk_mhz = 0, max_dispclk_mhz = 0, max_dppclk_mhz = 0, max_phyclk_mhz = 0;

			for (i = 0; i < MAX_NUM_DPM_LVL; i++) {
				if (bw_params->clk_table.entries[i].dcfclk_mhz > max_dcfclk_mhz)
					max_dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz;
				if (bw_params->clk_table.entries[i].dispclk_mhz > max_dispclk_mhz)
					max_dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz;
				if (bw_params->clk_table.entries[i].dppclk_mhz > max_dppclk_mhz)
					max_dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz;
				if (bw_params->clk_table.entries[i].phyclk_mhz > max_phyclk_mhz)
					max_phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz;
			}
			if (!max_dcfclk_mhz)
				max_dcfclk_mhz = dcn3_21_soc.clock_limits[0].dcfclk_mhz;
			if (!max_dispclk_mhz)
				max_dispclk_mhz = dcn3_21_soc.clock_limits[0].dispclk_mhz;
			if (!max_dppclk_mhz)
				max_dppclk_mhz = dcn3_21_soc.clock_limits[0].dppclk_mhz;
			if (!max_phyclk_mhz)
				max_phyclk_mhz = dcn3_21_soc.clock_limits[0].phyclk_mhz;

			if (max_dcfclk_mhz > dcfclk_sta_targets[num_dcfclk_sta_targets-1]) {
				// If max DCFCLK is greater than the max DCFCLK STA target, insert into the DCFCLK STA target array
				dcfclk_sta_targets[num_dcfclk_sta_targets] = max_dcfclk_mhz;
				num_dcfclk_sta_targets++;
			} else if (max_dcfclk_mhz < dcfclk_sta_targets[num_dcfclk_sta_targets-1]) {
				// If max DCFCLK is less than the max DCFCLK STA target, cap values and remove duplicates
				for (i = 0; i < num_dcfclk_sta_targets; i++) {
					if (dcfclk_sta_targets[i] > max_dcfclk_mhz) {
						dcfclk_sta_targets[i] = max_dcfclk_mhz;
						break;
					}
				}
				// Update size of array since we "removed" duplicates
				num_dcfclk_sta_targets = i + 1;
			}

			num_uclk_states = bw_params->clk_table.num_entries;

			// Calculate optimal dcfclk for each uclk
			for (i = 0; i < num_uclk_states; i++) {
				dcn321_get_optimal_dcfclk_fclk_for_uclk(bw_params->clk_table.entries[i].memclk_mhz * 16,
						&optimal_dcfclk_for_uclk[i], NULL);
				if (optimal_dcfclk_for_uclk[i] < bw_params->clk_table.entries[0].dcfclk_mhz) {
					optimal_dcfclk_for_uclk[i] = bw_params->clk_table.entries[0].dcfclk_mhz;
				}
			}

			// Calculate optimal uclk for each dcfclk sta target
			for (i = 0; i < num_dcfclk_sta_targets; i++) {
				for (j = 0; j < num_uclk_states; j++) {
					if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j]) {
						optimal_uclk_for_dcfclk_sta_targets[i] =
								bw_params->clk_table.entries[j].memclk_mhz * 16;
						break;
					}
				}
			}

			i = 0;
			j = 0;
			// create the final dcfclk and uclk table
			while (i < num_dcfclk_sta_targets && j < num_uclk_states && num_states < DC__VOLTAGE_STATES) {
				if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j] && i < num_dcfclk_sta_targets) {
					dcfclk_mhz[num_states] = dcfclk_sta_targets[i];
					dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++];
				} else {
					if (j < num_uclk_states && optimal_dcfclk_for_uclk[j] <= max_dcfclk_mhz) {
						dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j];
						dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16;
					} else {
						j = num_uclk_states;
					}
				}
			}

			while (i < num_dcfclk_sta_targets && num_states < DC__VOLTAGE_STATES) {
				dcfclk_mhz[num_states] = dcfclk_sta_targets[i];
				dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++];
			}

			while (j < num_uclk_states && num_states < DC__VOLTAGE_STATES &&
					optimal_dcfclk_for_uclk[j] <= max_dcfclk_mhz) {
				dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j];
				dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16;
			}

			dcn3_21_soc.num_states = num_states;
			for (i = 0; i < dcn3_21_soc.num_states; i++) {
				dcn3_21_soc.clock_limits[i].state = i;
				dcn3_21_soc.clock_limits[i].dcfclk_mhz = dcfclk_mhz[i];
				dcn3_21_soc.clock_limits[i].fabricclk_mhz = dcfclk_mhz[i];

				/* Fill all states with max values of all these clocks */
				dcn3_21_soc.clock_limits[i].dispclk_mhz = max_dispclk_mhz;
				dcn3_21_soc.clock_limits[i].dppclk_mhz  = max_dppclk_mhz;
				dcn3_21_soc.clock_limits[i].phyclk_mhz  = max_phyclk_mhz;
				dcn3_21_soc.clock_limits[i].dscclk_mhz  = max_dispclk_mhz / 3;

				/* Populate from bw_params for DTBCLK, SOCCLK */
				if (i > 0) {
					if (!bw_params->clk_table.entries[i].dtbclk_mhz) {
						dcn3_21_soc.clock_limits[i].dtbclk_mhz  = dcn3_21_soc.clock_limits[i-1].dtbclk_mhz;
					} else {
						dcn3_21_soc.clock_limits[i].dtbclk_mhz  = bw_params->clk_table.entries[i].dtbclk_mhz;
					}
				} else if (bw_params->clk_table.entries[i].dtbclk_mhz) {
					dcn3_21_soc.clock_limits[i].dtbclk_mhz  = bw_params->clk_table.entries[i].dtbclk_mhz;
				}

				if (!bw_params->clk_table.entries[i].socclk_mhz && i > 0)
					dcn3_21_soc.clock_limits[i].socclk_mhz = dcn3_21_soc.clock_limits[i-1].socclk_mhz;
				else
					dcn3_21_soc.clock_limits[i].socclk_mhz = bw_params->clk_table.entries[i].socclk_mhz;

				if (!dram_speed_mts[i] && i > 0)
					dcn3_21_soc.clock_limits[i].dram_speed_mts = dcn3_21_soc.clock_limits[i-1].dram_speed_mts;
				else
					dcn3_21_soc.clock_limits[i].dram_speed_mts = dram_speed_mts[i];

				/* These clocks cannot come from bw_params, always fill from dcn3_21_soc[0] */
				/* PHYCLK_D18, PHYCLK_D32 */
				dcn3_21_soc.clock_limits[i].phyclk_d18_mhz = dcn3_21_soc.clock_limits[0].phyclk_d18_mhz;
				dcn3_21_soc.clock_limits[i].phyclk_d32_mhz = dcn3_21_soc.clock_limits[0].phyclk_d32_mhz;
			}
		} else {
			build_synthetic_soc_states(bw_params, dcn3_21_soc.clock_limits, &dcn3_21_soc.num_states);
		}

		/* Re-init DML with updated bb */
		dml_init_instance(&dc->dml, &dcn3_21_soc, &dcn3_21_ip, DML_PROJECT_DCN32);
		if (dc->current_state)
			dml_init_instance(&dc->current_state->bw_ctx.dml, &dcn3_21_soc, &dcn3_21_ip, DML_PROJECT_DCN32);
	}
}