aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/i3c/master/mipi-i3c-hci/cmd_v2.c
blob: 4493b2b067cbce7ffd78d187f78bf14d3132893b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
// SPDX-License-Identifier: BSD-3-Clause
/*
 * Copyright (c) 2020, MIPI Alliance, Inc.
 *
 * Author: Nicolas Pitre <npitre@baylibre.com>
 *
 * I3C HCI v2.0 Command Descriptor Handling
 *
 * Note: The I3C HCI v2.0 spec is still in flux. The code here will change.
 */

#include <linux/bitfield.h>
#include <linux/i3c/master.h>

#include "hci.h"
#include "cmd.h"
#include "xfer_mode_rate.h"


/*
 * Unified Data Transfer Command
 */

#define CMD_0_ATTR_U			FIELD_PREP(CMD_0_ATTR, 0x4)

#define CMD_U3_HDR_TSP_ML_CTRL(v)	FIELD_PREP(W3_MASK(107, 104), v)
#define CMD_U3_IDB4(v)			FIELD_PREP(W3_MASK(103,  96), v)
#define CMD_U3_HDR_CMD(v)		FIELD_PREP(W3_MASK(103,  96), v)
#define CMD_U2_IDB3(v)			FIELD_PREP(W2_MASK( 95,  88), v)
#define CMD_U2_HDR_BT(v)		FIELD_PREP(W2_MASK( 95,  88), v)
#define CMD_U2_IDB2(v)			FIELD_PREP(W2_MASK( 87,  80), v)
#define CMD_U2_BT_CMD2(v)		FIELD_PREP(W2_MASK( 87,  80), v)
#define CMD_U2_IDB1(v)			FIELD_PREP(W2_MASK( 79,  72), v)
#define CMD_U2_BT_CMD1(v)		FIELD_PREP(W2_MASK( 79,  72), v)
#define CMD_U2_IDB0(v)			FIELD_PREP(W2_MASK( 71,  64), v)
#define CMD_U2_BT_CMD0(v)		FIELD_PREP(W2_MASK( 71,  64), v)
#define CMD_U1_ERR_HANDLING(v)		FIELD_PREP(W1_MASK( 63,  62), v)
#define CMD_U1_ADD_FUNC(v)		FIELD_PREP(W1_MASK( 61,  56), v)
#define CMD_U1_COMBO_XFER			   W1_BIT_( 55)
#define CMD_U1_DATA_LENGTH(v)		FIELD_PREP(W1_MASK( 53,  32), v)
#define CMD_U0_TOC				   W0_BIT_( 31)
#define CMD_U0_ROC				   W0_BIT_( 30)
#define CMD_U0_MAY_YIELD			   W0_BIT_( 29)
#define CMD_U0_NACK_RCNT(v)		FIELD_PREP(W0_MASK( 28,  27), v)
#define CMD_U0_IDB_COUNT(v)		FIELD_PREP(W0_MASK( 26,  24), v)
#define CMD_U0_MODE_INDEX(v)		FIELD_PREP(W0_MASK( 22,  18), v)
#define CMD_U0_XFER_RATE(v)		FIELD_PREP(W0_MASK( 17,  15), v)
#define CMD_U0_DEV_ADDRESS(v)		FIELD_PREP(W0_MASK( 14,   8), v)
#define CMD_U0_RnW				   W0_BIT_(  7)
#define CMD_U0_TID(v)			FIELD_PREP(W0_MASK(  6,   3), v)

/*
 * Address Assignment Command
 */

#define CMD_0_ATTR_A			FIELD_PREP(CMD_0_ATTR, 0x2)

#define CMD_A1_DATA_LENGTH(v)		FIELD_PREP(W1_MASK( 53,  32), v)
#define CMD_A0_TOC				   W0_BIT_( 31)
#define CMD_A0_ROC				   W0_BIT_( 30)
#define CMD_A0_XFER_RATE(v)		FIELD_PREP(W0_MASK( 17,  15), v)
#define CMD_A0_ASSIGN_ADDRESS(v)	FIELD_PREP(W0_MASK( 14,   8), v)
#define CMD_A0_TID(v)			FIELD_PREP(W0_MASK(  6,   3), v)


static unsigned int get_i3c_rate_idx(struct i3c_hci *hci)
{
	struct i3c_bus *bus = i3c_master_get_bus(&hci->master);

	if (bus->scl_rate.i3c >= 12000000)
		return XFERRATE_I3C_SDR0;
	if (bus->scl_rate.i3c > 8000000)
		return XFERRATE_I3C_SDR1;
	if (bus->scl_rate.i3c > 6000000)
		return XFERRATE_I3C_SDR2;
	if (bus->scl_rate.i3c > 4000000)
		return XFERRATE_I3C_SDR3;
	if (bus->scl_rate.i3c > 2000000)
		return XFERRATE_I3C_SDR4;
	return XFERRATE_I3C_SDR_FM_FMP;
}

static unsigned int get_i2c_rate_idx(struct i3c_hci *hci)
{
	struct i3c_bus *bus = i3c_master_get_bus(&hci->master);

	if (bus->scl_rate.i2c >= 1000000)
		return XFERRATE_I2C_FMP;
	return XFERRATE_I2C_FM;
}

static void hci_cmd_v2_prep_private_xfer(struct i3c_hci *hci,
					 struct hci_xfer *xfer,
					 u8 addr, unsigned int mode,
					 unsigned int rate)
{
	u8 *data = xfer->data;
	unsigned int data_len = xfer->data_len;
	bool rnw = xfer->rnw;

	xfer->cmd_tid = hci_get_tid();

	if (!rnw && data_len <= 5) {
		xfer->cmd_desc[0] =
			CMD_0_ATTR_U |
			CMD_U0_TID(xfer->cmd_tid) |
			CMD_U0_DEV_ADDRESS(addr) |
			CMD_U0_XFER_RATE(rate) |
			CMD_U0_MODE_INDEX(mode) |
			CMD_U0_IDB_COUNT(data_len);
		xfer->cmd_desc[1] =
			CMD_U1_DATA_LENGTH(0);
		xfer->cmd_desc[2] = 0;
		xfer->cmd_desc[3] = 0;
		switch (data_len) {
		case 5:
			xfer->cmd_desc[3] |= CMD_U3_IDB4(data[4]);
			fallthrough;
		case 4:
			xfer->cmd_desc[2] |= CMD_U2_IDB3(data[3]);
			fallthrough;
		case 3:
			xfer->cmd_desc[2] |= CMD_U2_IDB2(data[2]);
			fallthrough;
		case 2:
			xfer->cmd_desc[2] |= CMD_U2_IDB1(data[1]);
			fallthrough;
		case 1:
			xfer->cmd_desc[2] |= CMD_U2_IDB0(data[0]);
			fallthrough;
		case 0:
			break;
		}
		/* we consumed all the data with the cmd descriptor */
		xfer->data = NULL;
	} else {
		xfer->cmd_desc[0] =
			CMD_0_ATTR_U |
			CMD_U0_TID(xfer->cmd_tid) |
			(rnw ? CMD_U0_RnW : 0) |
			CMD_U0_DEV_ADDRESS(addr) |
			CMD_U0_XFER_RATE(rate) |
			CMD_U0_MODE_INDEX(mode);
		xfer->cmd_desc[1] =
			CMD_U1_DATA_LENGTH(data_len);
		xfer->cmd_desc[2] = 0;
		xfer->cmd_desc[3] = 0;
	}
}

static int hci_cmd_v2_prep_ccc(struct i3c_hci *hci, struct hci_xfer *xfer,
			       u8 ccc_addr, u8 ccc_cmd, bool raw)
{
	unsigned int mode = XFERMODE_IDX_I3C_SDR;
	unsigned int rate = get_i3c_rate_idx(hci);
	u8 *data = xfer->data;
	unsigned int data_len = xfer->data_len;
	bool rnw = xfer->rnw;

	if (raw && ccc_addr != I3C_BROADCAST_ADDR) {
		hci_cmd_v2_prep_private_xfer(hci, xfer, ccc_addr, mode, rate);
		return 0;
	}

	xfer->cmd_tid = hci_get_tid();

	if (!rnw && data_len <= 4) {
		xfer->cmd_desc[0] =
			CMD_0_ATTR_U |
			CMD_U0_TID(xfer->cmd_tid) |
			CMD_U0_DEV_ADDRESS(ccc_addr) |
			CMD_U0_XFER_RATE(rate) |
			CMD_U0_MODE_INDEX(mode) |
			CMD_U0_IDB_COUNT(data_len + (!raw ? 0 : 1));
		xfer->cmd_desc[1] =
			CMD_U1_DATA_LENGTH(0);
		xfer->cmd_desc[2] =
			CMD_U2_IDB0(ccc_cmd);
		xfer->cmd_desc[3] = 0;
		switch (data_len) {
		case 4:
			xfer->cmd_desc[3] |= CMD_U3_IDB4(data[3]);
			fallthrough;
		case 3:
			xfer->cmd_desc[2] |= CMD_U2_IDB3(data[2]);
			fallthrough;
		case 2:
			xfer->cmd_desc[2] |= CMD_U2_IDB2(data[1]);
			fallthrough;
		case 1:
			xfer->cmd_desc[2] |= CMD_U2_IDB1(data[0]);
			fallthrough;
		case 0:
			break;
		}
		/* we consumed all the data with the cmd descriptor */
		xfer->data = NULL;
	} else {
		xfer->cmd_desc[0] =
			CMD_0_ATTR_U |
			CMD_U0_TID(xfer->cmd_tid) |
			(rnw ? CMD_U0_RnW : 0) |
			CMD_U0_DEV_ADDRESS(ccc_addr) |
			CMD_U0_XFER_RATE(rate) |
			CMD_U0_MODE_INDEX(mode) |
			CMD_U0_IDB_COUNT(!raw ? 0 : 1);
		xfer->cmd_desc[1] =
			CMD_U1_DATA_LENGTH(data_len);
		xfer->cmd_desc[2] =
			CMD_U2_IDB0(ccc_cmd);
		xfer->cmd_desc[3] = 0;
	}

	return 0;
}

static void hci_cmd_v2_prep_i3c_xfer(struct i3c_hci *hci,
				     struct i3c_dev_desc *dev,
				     struct hci_xfer *xfer)
{
	unsigned int mode = XFERMODE_IDX_I3C_SDR;
	unsigned int rate = get_i3c_rate_idx(hci);
	u8 addr = dev->info.dyn_addr;

	hci_cmd_v2_prep_private_xfer(hci, xfer, addr, mode, rate);
}

static void hci_cmd_v2_prep_i2c_xfer(struct i3c_hci *hci,
				     struct i2c_dev_desc *dev,
				     struct hci_xfer *xfer)
{
	unsigned int mode = XFERMODE_IDX_I2C;
	unsigned int rate = get_i2c_rate_idx(hci);
	u8 addr = dev->addr;

	hci_cmd_v2_prep_private_xfer(hci, xfer, addr, mode, rate);
}

static int hci_cmd_v2_daa(struct i3c_hci *hci)
{
	struct hci_xfer *xfer;
	int ret;
	u8 next_addr = 0;
	u32 device_id[2];
	u64 pid;
	unsigned int dcr, bcr;
	DECLARE_COMPLETION_ONSTACK(done);

	xfer = hci_alloc_xfer(2);
	if (!xfer)
		return -ENOMEM;

	xfer[0].data = &device_id;
	xfer[0].data_len = 8;
	xfer[0].rnw = true;
	xfer[0].cmd_desc[1] = CMD_A1_DATA_LENGTH(8);
	xfer[1].completion = &done;

	for (;;) {
		ret = i3c_master_get_free_addr(&hci->master, next_addr);
		if (ret < 0)
			break;
		next_addr = ret;
		DBG("next_addr = 0x%02x", next_addr);
		xfer[0].cmd_tid = hci_get_tid();
		xfer[0].cmd_desc[0] =
			CMD_0_ATTR_A |
			CMD_A0_TID(xfer[0].cmd_tid) |
			CMD_A0_ROC;
		xfer[1].cmd_tid = hci_get_tid();
		xfer[1].cmd_desc[0] =
			CMD_0_ATTR_A |
			CMD_A0_TID(xfer[1].cmd_tid) |
			CMD_A0_ASSIGN_ADDRESS(next_addr) |
			CMD_A0_ROC |
			CMD_A0_TOC;
		hci->io->queue_xfer(hci, xfer, 2);
		if (!wait_for_completion_timeout(&done, HZ) &&
		    hci->io->dequeue_xfer(hci, xfer, 2)) {
			ret = -ETIME;
			break;
		}
		if (RESP_STATUS(xfer[0].response) != RESP_SUCCESS) {
			ret = 0;  /* no more devices to be assigned */
			break;
		}
		if (RESP_STATUS(xfer[1].response) != RESP_SUCCESS) {
			ret = -EIO;
			break;
		}

		pid = FIELD_GET(W1_MASK(47, 32), device_id[1]);
		pid = (pid << 32) | device_id[0];
		bcr = FIELD_GET(W1_MASK(55, 48), device_id[1]);
		dcr = FIELD_GET(W1_MASK(63, 56), device_id[1]);
		DBG("assigned address %#x to device PID=0x%llx DCR=%#x BCR=%#x",
		    next_addr, pid, dcr, bcr);
		/*
		 * TODO: Extend the subsystem layer to allow for registering
		 * new device and provide BCR/DCR/PID at the same time.
		 */
		ret = i3c_master_add_i3c_dev_locked(&hci->master, next_addr);
		if (ret)
			break;
	}

	hci_free_xfer(xfer, 2);
	return ret;
}

const struct hci_cmd_ops mipi_i3c_hci_cmd_v2 = {
	.prep_ccc		= hci_cmd_v2_prep_ccc,
	.prep_i3c_xfer		= hci_cmd_v2_prep_i3c_xfer,
	.prep_i2c_xfer		= hci_cmd_v2_prep_i2c_xfer,
	.perform_daa		= hci_cmd_v2_daa,
};