aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/mtd/parsers/afs.c
blob: f24d768eee3085980c30ab57f7457ee8775419a4 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
// SPDX-License-Identifier: GPL-2.0-or-later
/*======================================================================

    drivers/mtd/afs.c: ARM Flash Layout/Partitioning

    Copyright © 2000 ARM Limited
    Copyright (C) 2019 Linus Walleij


   This is access code for flashes using ARM's flash partitioning
   standards.

======================================================================*/

#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/init.h>

#include <linux/mtd/mtd.h>
#include <linux/mtd/map.h>
#include <linux/mtd/partitions.h>

#define AFSV1_FOOTER_MAGIC 0xA0FFFF9F
#define AFSV2_FOOTER_MAGIC1 0x464C5348 /* "FLSH" */
#define AFSV2_FOOTER_MAGIC2 0x464F4F54 /* "FOOT" */

struct footer_v1 {
	u32 image_info_base;	/* Address of first word of ImageFooter  */
	u32 image_start;	/* Start of area reserved by this footer */
	u32 signature;		/* 'Magic' number proves it's a footer   */
	u32 type;		/* Area type: ARM Image, SIB, customer   */
	u32 checksum;		/* Just this structure                   */
};

struct image_info_v1 {
	u32 bootFlags;		/* Boot flags, compression etc.          */
	u32 imageNumber;	/* Unique number, selects for boot etc.  */
	u32 loadAddress;	/* Address program should be loaded to   */
	u32 length;		/* Actual size of image                  */
	u32 address;		/* Image is executed from here           */
	char name[16];		/* Null terminated                       */
	u32 headerBase;		/* Flash Address of any stripped header  */
	u32 header_length;	/* Length of header in memory            */
	u32 headerType;		/* AIF, RLF, s-record etc.               */
	u32 checksum;		/* Image checksum (inc. this struct)     */
};

static u32 word_sum(void *words, int num)
{
	u32 *p = words;
	u32 sum = 0;

	while (num--)
		sum += *p++;

	return sum;
}

static u32 word_sum_v2(u32 *p, u32 num)
{
	u32 sum = 0;
	int i;

	for (i = 0; i < num; i++) {
		u32 val;

		val = p[i];
		if (val > ~sum)
			sum++;
		sum += val;
	}
	return ~sum;
}

static bool afs_is_v1(struct mtd_info *mtd, u_int off)
{
	/* The magic is 12 bytes from the end of the erase block */
	u_int ptr = off + mtd->erasesize - 12;
	u32 magic;
	size_t sz;
	int ret;

	ret = mtd_read(mtd, ptr, 4, &sz, (u_char *)&magic);
	if (ret < 0) {
		printk(KERN_ERR "AFS: mtd read failed at 0x%x: %d\n",
		       ptr, ret);
		return false;
	}
	if (ret >= 0 && sz != 4)
		return false;

	return (magic == AFSV1_FOOTER_MAGIC);
}

static bool afs_is_v2(struct mtd_info *mtd, u_int off)
{
	/* The magic is the 8 last bytes of the erase block */
	u_int ptr = off + mtd->erasesize - 8;
	u32 foot[2];
	size_t sz;
	int ret;

	ret = mtd_read(mtd, ptr, 8, &sz, (u_char *)foot);
	if (ret < 0) {
		printk(KERN_ERR "AFS: mtd read failed at 0x%x: %d\n",
		       ptr, ret);
		return false;
	}
	if (ret >= 0 && sz != 8)
		return false;

	return (foot[0] == AFSV2_FOOTER_MAGIC1 &&
		foot[1] == AFSV2_FOOTER_MAGIC2);
}

static int afs_parse_v1_partition(struct mtd_info *mtd,
				  u_int off, struct mtd_partition *part)
{
	struct footer_v1 fs;
	struct image_info_v1 iis;
	u_int mask;
	/*
	 * Static checks cannot see that we bail out if we have an error
	 * reading the footer.
	 */
	u_int uninitialized_var(iis_ptr);
	u_int uninitialized_var(img_ptr);
	u_int ptr;
	size_t sz;
	int ret;
	int i;

	/*
	 * This is the address mask; we use this to mask off out of
	 * range address bits.
	 */
	mask = mtd->size - 1;

	ptr = off + mtd->erasesize - sizeof(fs);
	ret = mtd_read(mtd, ptr, sizeof(fs), &sz, (u_char *)&fs);
	if (ret >= 0 && sz != sizeof(fs))
		ret = -EINVAL;
	if (ret < 0) {
		printk(KERN_ERR "AFS: mtd read failed at 0x%x: %d\n",
		       ptr, ret);
		return ret;
	}
	/*
	 * Check the checksum.
	 */
	if (word_sum(&fs, sizeof(fs) / sizeof(u32)) != 0xffffffff)
		return -EINVAL;

	/*
	 * Hide the SIB (System Information Block)
	 */
	if (fs.type == 2)
		return 0;

	iis_ptr = fs.image_info_base & mask;
	img_ptr = fs.image_start & mask;

	/*
	 * Check the image info base.  This can not
	 * be located after the footer structure.
	 */
	if (iis_ptr >= ptr)
		return 0;

	/*
	 * Check the start of this image.  The image
	 * data can not be located after this block.
	 */
	if (img_ptr > off)
		return 0;

	/* Read the image info block */
	memset(&iis, 0, sizeof(iis));
	ret = mtd_read(mtd, iis_ptr, sizeof(iis), &sz, (u_char *)&iis);
	if (ret < 0) {
		printk(KERN_ERR "AFS: mtd read failed at 0x%x: %d\n",
		       iis_ptr, ret);
		return -EINVAL;
	}

	if (sz != sizeof(iis))
		return -EINVAL;

	/*
	 * Validate the name - it must be NUL terminated.
	 */
	for (i = 0; i < sizeof(iis.name); i++)
		if (iis.name[i] == '\0')
			break;
	if (i > sizeof(iis.name))
		return -EINVAL;

	part->name = kstrdup(iis.name, GFP_KERNEL);
	if (!part->name)
		return -ENOMEM;

	part->size = (iis.length + mtd->erasesize - 1) & ~(mtd->erasesize - 1);
	part->offset = img_ptr;
	part->mask_flags = 0;

	printk("  mtd: at 0x%08x, %5lluKiB, %8u, %s\n",
	       img_ptr, part->size / 1024,
	       iis.imageNumber, part->name);

	return 0;
}

static int afs_parse_v2_partition(struct mtd_info *mtd,
				  u_int off, struct mtd_partition *part)
{
	u_int ptr;
	u32 footer[12];
	u32 imginfo[36];
	char *name;
	u32 version;
	u32 entrypoint;
	u32 attributes;
	u32 region_count;
	u32 block_start;
	u32 block_end;
	u32 crc;
	size_t sz;
	int ret;
	int i;
	int pad = 0;

	pr_debug("Parsing v2 partition @%08x-%08x\n",
		 off, off + mtd->erasesize);

	/* First read the footer */
	ptr = off + mtd->erasesize - sizeof(footer);
	ret = mtd_read(mtd, ptr, sizeof(footer), &sz, (u_char *)footer);
	if ((ret < 0) || (ret >= 0 && sz != sizeof(footer))) {
		pr_err("AFS: mtd read failed at 0x%x: %d\n",
		       ptr, ret);
		return -EIO;
	}
	name = (char *) &footer[0];
	version = footer[9];
	ptr = off + mtd->erasesize - sizeof(footer) - footer[8];

	pr_debug("found image \"%s\", version %08x, info @%08x\n",
		 name, version, ptr);

	/* Then read the image information */
	ret = mtd_read(mtd, ptr, sizeof(imginfo), &sz, (u_char *)imginfo);
	if ((ret < 0) || (ret >= 0 && sz != sizeof(imginfo))) {
		pr_err("AFS: mtd read failed at 0x%x: %d\n",
		       ptr, ret);
		return -EIO;
	}

	/* 32bit platforms have 4 bytes padding */
	crc = word_sum_v2(&imginfo[1], 34);
	if (!crc) {
		pr_debug("Padding 1 word (4 bytes)\n");
		pad = 1;
	} else {
		/* 64bit platforms have 8 bytes padding */
		crc = word_sum_v2(&imginfo[2], 34);
		if (!crc) {
			pr_debug("Padding 2 words (8 bytes)\n");
			pad = 2;
		}
	}
	if (crc) {
		pr_err("AFS: bad checksum on v2 image info: %08x\n", crc);
		return -EINVAL;
	}
	entrypoint = imginfo[pad];
	attributes = imginfo[pad+1];
	region_count = imginfo[pad+2];
	block_start = imginfo[20];
	block_end = imginfo[21];

	pr_debug("image entry=%08x, attr=%08x, regions=%08x, "
		 "bs=%08x, be=%08x\n",
		 entrypoint, attributes, region_count,
		 block_start, block_end);

	for (i = 0; i < region_count; i++) {
		u32 region_load_addr = imginfo[pad + 3 + i*4];
		u32 region_size = imginfo[pad + 4 + i*4];
		u32 region_offset = imginfo[pad + 5 + i*4];
		u32 region_start;
		u32 region_end;

		pr_debug("  region %d: address: %08x, size: %08x, "
			 "offset: %08x\n",
			 i,
			 region_load_addr,
			 region_size,
			 region_offset);

		region_start = off + region_offset;
		region_end = region_start + region_size;
		/* Align partition to end of erase block */
		region_end += (mtd->erasesize - 1);
		region_end &= ~(mtd->erasesize -1);
		pr_debug("   partition start = %08x, partition end = %08x\n",
			 region_start, region_end);

		/* Create one partition per region */
		part->name = kstrdup(name, GFP_KERNEL);
		if (!part->name)
			return -ENOMEM;
		part->offset = region_start;
		part->size = region_end - region_start;
		part->mask_flags = 0;
	}

	return 0;
}

static int parse_afs_partitions(struct mtd_info *mtd,
				const struct mtd_partition **pparts,
				struct mtd_part_parser_data *data)
{
	struct mtd_partition *parts;
	u_int off, sz;
	int ret = 0;
	int i;

	/* Count the partitions by looping over all erase blocks */
	for (i = off = sz = 0; off < mtd->size; off += mtd->erasesize) {
		if (afs_is_v1(mtd, off)) {
			sz += sizeof(struct mtd_partition);
			i += 1;
		}
		if (afs_is_v2(mtd, off)) {
			sz += sizeof(struct mtd_partition);
			i += 1;
		}
	}

	if (!i)
		return 0;

	parts = kzalloc(sz, GFP_KERNEL);
	if (!parts)
		return -ENOMEM;

	/*
	 * Identify the partitions
	 */
	for (i = off = 0; off < mtd->size; off += mtd->erasesize) {
		if (afs_is_v1(mtd, off)) {
			ret = afs_parse_v1_partition(mtd, off, &parts[i]);
			if (ret)
				goto out_free_parts;
			i++;
		}
		if (afs_is_v2(mtd, off)) {
			ret = afs_parse_v2_partition(mtd, off, &parts[i]);
			if (ret)
				goto out_free_parts;
			i++;
		}
	}

	*pparts = parts;
	return i;

out_free_parts:
	while (i >= 0) {
		if (parts[i].name)
			kfree(parts[i].name);
		i--;
	}
	kfree(parts);
	*pparts = NULL;
	return ret;
}

static const struct of_device_id mtd_parser_afs_of_match_table[] = {
	{ .compatible = "arm,arm-firmware-suite" },
	{},
};
MODULE_DEVICE_TABLE(of, mtd_parser_afs_of_match_table);

static struct mtd_part_parser afs_parser = {
	.parse_fn = parse_afs_partitions,
	.name = "afs",
	.of_match_table = mtd_parser_afs_of_match_table,
};
module_mtd_part_parser(afs_parser);

MODULE_AUTHOR("ARM Ltd");
MODULE_DESCRIPTION("ARM Firmware Suite partition parser");
MODULE_LICENSE("GPL");