aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/net/can/dev/bittiming.c
blob: 0509625c30827d5ac8b2829ee3a92e8eb042628f (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
// SPDX-License-Identifier: GPL-2.0-only
/* Copyright (C) 2005 Marc Kleine-Budde, Pengutronix
 * Copyright (C) 2006 Andrey Volkov, Varma Electronics
 * Copyright (C) 2008-2009 Wolfgang Grandegger <wg@grandegger.com>
 */

#include <linux/can/dev.h>

#ifdef CONFIG_CAN_CALC_BITTIMING
#define CAN_CALC_MAX_ERROR 50 /* in one-tenth of a percent */

/* Bit-timing calculation derived from:
 *
 * Code based on LinCAN sources and H8S2638 project
 * Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz
 * Copyright 2005      Stanislav Marek
 * email: pisa@cmp.felk.cvut.cz
 *
 * Calculates proper bit-timing parameters for a specified bit-rate
 * and sample-point, which can then be used to set the bit-timing
 * registers of the CAN controller. You can find more information
 * in the header file linux/can/netlink.h.
 */
static int
can_update_sample_point(const struct can_bittiming_const *btc,
			unsigned int sample_point_nominal, unsigned int tseg,
			unsigned int *tseg1_ptr, unsigned int *tseg2_ptr,
			unsigned int *sample_point_error_ptr)
{
	unsigned int sample_point_error, best_sample_point_error = UINT_MAX;
	unsigned int sample_point, best_sample_point = 0;
	unsigned int tseg1, tseg2;
	int i;

	for (i = 0; i <= 1; i++) {
		tseg2 = tseg + CAN_SYNC_SEG -
			(sample_point_nominal * (tseg + CAN_SYNC_SEG)) /
			1000 - i;
		tseg2 = clamp(tseg2, btc->tseg2_min, btc->tseg2_max);
		tseg1 = tseg - tseg2;
		if (tseg1 > btc->tseg1_max) {
			tseg1 = btc->tseg1_max;
			tseg2 = tseg - tseg1;
		}

		sample_point = 1000 * (tseg + CAN_SYNC_SEG - tseg2) /
			(tseg + CAN_SYNC_SEG);
		sample_point_error = abs(sample_point_nominal - sample_point);

		if (sample_point <= sample_point_nominal &&
		    sample_point_error < best_sample_point_error) {
			best_sample_point = sample_point;
			best_sample_point_error = sample_point_error;
			*tseg1_ptr = tseg1;
			*tseg2_ptr = tseg2;
		}
	}

	if (sample_point_error_ptr)
		*sample_point_error_ptr = best_sample_point_error;

	return best_sample_point;
}

int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
		       const struct can_bittiming_const *btc)
{
	struct can_priv *priv = netdev_priv(dev);
	unsigned int bitrate;			/* current bitrate */
	unsigned int bitrate_error;		/* difference between current and nominal value */
	unsigned int best_bitrate_error = UINT_MAX;
	unsigned int sample_point_error;	/* difference between current and nominal value */
	unsigned int best_sample_point_error = UINT_MAX;
	unsigned int sample_point_nominal;	/* nominal sample point */
	unsigned int best_tseg = 0;		/* current best value for tseg */
	unsigned int best_brp = 0;		/* current best value for brp */
	unsigned int brp, tsegall, tseg, tseg1 = 0, tseg2 = 0;
	u64 v64;

	/* Use CiA recommended sample points */
	if (bt->sample_point) {
		sample_point_nominal = bt->sample_point;
	} else {
		if (bt->bitrate > 800 * CAN_KBPS)
			sample_point_nominal = 750;
		else if (bt->bitrate > 500 * CAN_KBPS)
			sample_point_nominal = 800;
		else
			sample_point_nominal = 875;
	}

	/* tseg even = round down, odd = round up */
	for (tseg = (btc->tseg1_max + btc->tseg2_max) * 2 + 1;
	     tseg >= (btc->tseg1_min + btc->tseg2_min) * 2; tseg--) {
		tsegall = CAN_SYNC_SEG + tseg / 2;

		/* Compute all possible tseg choices (tseg=tseg1+tseg2) */
		brp = priv->clock.freq / (tsegall * bt->bitrate) + tseg % 2;

		/* choose brp step which is possible in system */
		brp = (brp / btc->brp_inc) * btc->brp_inc;
		if (brp < btc->brp_min || brp > btc->brp_max)
			continue;

		bitrate = priv->clock.freq / (brp * tsegall);
		bitrate_error = abs(bt->bitrate - bitrate);

		/* tseg brp biterror */
		if (bitrate_error > best_bitrate_error)
			continue;

		/* reset sample point error if we have a better bitrate */
		if (bitrate_error < best_bitrate_error)
			best_sample_point_error = UINT_MAX;

		can_update_sample_point(btc, sample_point_nominal, tseg / 2,
					&tseg1, &tseg2, &sample_point_error);
		if (sample_point_error > best_sample_point_error)
			continue;

		best_sample_point_error = sample_point_error;
		best_bitrate_error = bitrate_error;
		best_tseg = tseg / 2;
		best_brp = brp;

		if (bitrate_error == 0 && sample_point_error == 0)
			break;
	}

	if (best_bitrate_error) {
		/* Error in one-tenth of a percent */
		v64 = (u64)best_bitrate_error * 1000;
		do_div(v64, bt->bitrate);
		bitrate_error = (u32)v64;
		if (bitrate_error > CAN_CALC_MAX_ERROR) {
			netdev_err(dev,
				   "bitrate error %d.%d%% too high\n",
				   bitrate_error / 10, bitrate_error % 10);
			return -EDOM;
		}
		netdev_warn(dev, "bitrate error %d.%d%%\n",
			    bitrate_error / 10, bitrate_error % 10);
	}

	/* real sample point */
	bt->sample_point = can_update_sample_point(btc, sample_point_nominal,
						   best_tseg, &tseg1, &tseg2,
						   NULL);

	v64 = (u64)best_brp * 1000 * 1000 * 1000;
	do_div(v64, priv->clock.freq);
	bt->tq = (u32)v64;
	bt->prop_seg = tseg1 / 2;
	bt->phase_seg1 = tseg1 - bt->prop_seg;
	bt->phase_seg2 = tseg2;

	/* check for sjw user settings */
	if (!bt->sjw || !btc->sjw_max) {
		bt->sjw = 1;
	} else {
		/* bt->sjw is at least 1 -> sanitize upper bound to sjw_max */
		if (bt->sjw > btc->sjw_max)
			bt->sjw = btc->sjw_max;
		/* bt->sjw must not be higher than tseg2 */
		if (tseg2 < bt->sjw)
			bt->sjw = tseg2;
	}

	bt->brp = best_brp;

	/* real bitrate */
	bt->bitrate = priv->clock.freq /
		(bt->brp * (CAN_SYNC_SEG + tseg1 + tseg2));

	return 0;
}

void can_calc_tdco(struct can_tdc *tdc, const struct can_tdc_const *tdc_const,
		   const struct can_bittiming *dbt,
		   u32 *ctrlmode, u32 ctrlmode_supported)

{
	if (!tdc_const || !(ctrlmode_supported & CAN_CTRLMODE_TDC_AUTO))
		return;

	*ctrlmode &= ~CAN_CTRLMODE_TDC_MASK;

	/* As specified in ISO 11898-1 section 11.3.3 "Transmitter
	 * delay compensation" (TDC) is only applicable if data BRP is
	 * one or two.
	 */
	if (dbt->brp == 1 || dbt->brp == 2) {
		/* Sample point in clock periods */
		u32 sample_point_in_tc = (CAN_SYNC_SEG + dbt->prop_seg +
					  dbt->phase_seg1) * dbt->brp;

		if (sample_point_in_tc < tdc_const->tdco_min)
			return;
		tdc->tdco = min(sample_point_in_tc, tdc_const->tdco_max);
		*ctrlmode |= CAN_CTRLMODE_TDC_AUTO;
	}
}
#endif /* CONFIG_CAN_CALC_BITTIMING */

/* Checks the validity of the specified bit-timing parameters prop_seg,
 * phase_seg1, phase_seg2 and sjw and tries to determine the bitrate
 * prescaler value brp. You can find more information in the header
 * file linux/can/netlink.h.
 */
static int can_fixup_bittiming(struct net_device *dev, struct can_bittiming *bt,
			       const struct can_bittiming_const *btc)
{
	struct can_priv *priv = netdev_priv(dev);
	unsigned int tseg1, alltseg;
	u64 brp64;

	tseg1 = bt->prop_seg + bt->phase_seg1;
	if (!bt->sjw)
		bt->sjw = 1;
	if (bt->sjw > btc->sjw_max ||
	    tseg1 < btc->tseg1_min || tseg1 > btc->tseg1_max ||
	    bt->phase_seg2 < btc->tseg2_min || bt->phase_seg2 > btc->tseg2_max)
		return -ERANGE;

	brp64 = (u64)priv->clock.freq * (u64)bt->tq;
	if (btc->brp_inc > 1)
		do_div(brp64, btc->brp_inc);
	brp64 += 500000000UL - 1;
	do_div(brp64, 1000000000UL); /* the practicable BRP */
	if (btc->brp_inc > 1)
		brp64 *= btc->brp_inc;
	bt->brp = (u32)brp64;

	if (bt->brp < btc->brp_min || bt->brp > btc->brp_max)
		return -EINVAL;

	alltseg = bt->prop_seg + bt->phase_seg1 + bt->phase_seg2 + 1;
	bt->bitrate = priv->clock.freq / (bt->brp * alltseg);
	bt->sample_point = ((tseg1 + 1) * 1000) / alltseg;

	return 0;
}

/* Checks the validity of predefined bitrate settings */
static int
can_validate_bitrate(struct net_device *dev, struct can_bittiming *bt,
		     const u32 *bitrate_const,
		     const unsigned int bitrate_const_cnt)
{
	struct can_priv *priv = netdev_priv(dev);
	unsigned int i;

	for (i = 0; i < bitrate_const_cnt; i++) {
		if (bt->bitrate == bitrate_const[i])
			break;
	}

	if (i >= priv->bitrate_const_cnt)
		return -EINVAL;

	return 0;
}

int can_get_bittiming(struct net_device *dev, struct can_bittiming *bt,
		      const struct can_bittiming_const *btc,
		      const u32 *bitrate_const,
		      const unsigned int bitrate_const_cnt)
{
	int err;

	/* Depending on the given can_bittiming parameter structure the CAN
	 * timing parameters are calculated based on the provided bitrate OR
	 * alternatively the CAN timing parameters (tq, prop_seg, etc.) are
	 * provided directly which are then checked and fixed up.
	 */
	if (!bt->tq && bt->bitrate && btc)
		err = can_calc_bittiming(dev, bt, btc);
	else if (bt->tq && !bt->bitrate && btc)
		err = can_fixup_bittiming(dev, bt, btc);
	else if (!bt->tq && bt->bitrate && bitrate_const)
		err = can_validate_bitrate(dev, bt, bitrate_const,
					   bitrate_const_cnt);
	else
		err = -EINVAL;

	return err;
}