aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/net/can/spi/mcp251xfd/mcp251xfd-ring.c
blob: 848b8b2ecb5f1e1bb6e195907cfceb703e89e8c2 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
// SPDX-License-Identifier: GPL-2.0
//
// mcp251xfd - Microchip MCP251xFD Family CAN controller driver
//
// Copyright (c) 2019, 2020, 2021 Pengutronix,
//               Marc Kleine-Budde <kernel@pengutronix.de>
//
// Based on:
//
// CAN bus driver for Microchip 25XXFD CAN Controller with SPI Interface
//
// Copyright (c) 2019 Martin Sperl <kernel@martin.sperl.org>
//

#include <asm/unaligned.h>

#include "mcp251xfd.h"

static inline u8
mcp251xfd_cmd_prepare_write_reg(const struct mcp251xfd_priv *priv,
				union mcp251xfd_write_reg_buf *write_reg_buf,
				const u16 reg, const u32 mask, const u32 val)
{
	u8 first_byte, last_byte, len;
	u8 *data;
	__le32 val_le32;

	first_byte = mcp251xfd_first_byte_set(mask);
	last_byte = mcp251xfd_last_byte_set(mask);
	len = last_byte - first_byte + 1;

	data = mcp251xfd_spi_cmd_write(priv, write_reg_buf, reg + first_byte);
	val_le32 = cpu_to_le32(val >> BITS_PER_BYTE * first_byte);
	memcpy(data, &val_le32, len);

	if (priv->devtype_data.quirks & MCP251XFD_QUIRK_CRC_REG) {
		u16 crc;

		mcp251xfd_spi_cmd_crc_set_len_in_reg(&write_reg_buf->crc.cmd,
						     len);
		/* CRC */
		len += sizeof(write_reg_buf->crc.cmd);
		crc = mcp251xfd_crc16_compute(&write_reg_buf->crc, len);
		put_unaligned_be16(crc, (void *)write_reg_buf + len);

		/* Total length */
		len += sizeof(write_reg_buf->crc.crc);
	} else {
		len += sizeof(write_reg_buf->nocrc.cmd);
	}

	return len;
}

static void
mcp251xfd_ring_init_tef(struct mcp251xfd_priv *priv, u16 *base)
{
	struct mcp251xfd_tef_ring *tef_ring;
	struct spi_transfer *xfer;
	u32 val;
	u16 addr;
	u8 len;
	int i;

	/* TEF */
	tef_ring = priv->tef;
	tef_ring->head = 0;
	tef_ring->tail = 0;

	/* TEF- and TX-FIFO have same number of objects */
	*base = mcp251xfd_get_tef_obj_addr(priv->tx->obj_num);

	/* FIFO increment TEF tail pointer */
	addr = MCP251XFD_REG_TEFCON;
	val = MCP251XFD_REG_TEFCON_UINC;
	len = mcp251xfd_cmd_prepare_write_reg(priv, &tef_ring->uinc_buf,
					      addr, val, val);

	for (i = 0; i < ARRAY_SIZE(tef_ring->uinc_xfer); i++) {
		xfer = &tef_ring->uinc_xfer[i];
		xfer->tx_buf = &tef_ring->uinc_buf;
		xfer->len = len;
		xfer->cs_change = 1;
		xfer->cs_change_delay.value = 0;
		xfer->cs_change_delay.unit = SPI_DELAY_UNIT_NSECS;
	}

	/* "cs_change == 1" on the last transfer results in an active
	 * chip select after the complete SPI message. This causes the
	 * controller to interpret the next register access as
	 * data. Set "cs_change" of the last transfer to "0" to
	 * properly deactivate the chip select at the end of the
	 * message.
	 */
	xfer->cs_change = 0;
}

static void
mcp251xfd_tx_ring_init_tx_obj(const struct mcp251xfd_priv *priv,
			      const struct mcp251xfd_tx_ring *ring,
			      struct mcp251xfd_tx_obj *tx_obj,
			      const u8 rts_buf_len,
			      const u8 n)
{
	struct spi_transfer *xfer;
	u16 addr;

	/* FIFO load */
	addr = mcp251xfd_get_tx_obj_addr(ring, n);
	if (priv->devtype_data.quirks & MCP251XFD_QUIRK_CRC_TX)
		mcp251xfd_spi_cmd_write_crc_set_addr(&tx_obj->buf.crc.cmd,
						     addr);
	else
		mcp251xfd_spi_cmd_write_nocrc(&tx_obj->buf.nocrc.cmd,
					      addr);

	xfer = &tx_obj->xfer[0];
	xfer->tx_buf = &tx_obj->buf;
	xfer->len = 0;	/* actual len is assigned on the fly */
	xfer->cs_change = 1;
	xfer->cs_change_delay.value = 0;
	xfer->cs_change_delay.unit = SPI_DELAY_UNIT_NSECS;

	/* FIFO request to send */
	xfer = &tx_obj->xfer[1];
	xfer->tx_buf = &ring->rts_buf;
	xfer->len = rts_buf_len;

	/* SPI message */
	spi_message_init_with_transfers(&tx_obj->msg, tx_obj->xfer,
					ARRAY_SIZE(tx_obj->xfer));
}

static void
mcp251xfd_ring_init_tx(struct mcp251xfd_priv *priv, u16 *base, u8 *fifo_nr)
{
	struct mcp251xfd_tx_ring *tx_ring;
	struct mcp251xfd_tx_obj *tx_obj;
	u32 val;
	u16 addr;
	u8 len;
	int i;

	tx_ring = priv->tx;
	tx_ring->head = 0;
	tx_ring->tail = 0;
	tx_ring->base = *base;
	tx_ring->nr = 0;
	tx_ring->fifo_nr = *fifo_nr;

	*base = mcp251xfd_get_tx_obj_addr(tx_ring, tx_ring->obj_num);
	*fifo_nr += 1;

	/* FIFO request to send */
	addr = MCP251XFD_REG_FIFOCON(tx_ring->fifo_nr);
	val = MCP251XFD_REG_FIFOCON_TXREQ | MCP251XFD_REG_FIFOCON_UINC;
	len = mcp251xfd_cmd_prepare_write_reg(priv, &tx_ring->rts_buf,
					      addr, val, val);

	mcp251xfd_for_each_tx_obj(tx_ring, tx_obj, i)
		mcp251xfd_tx_ring_init_tx_obj(priv, tx_ring, tx_obj, len, i);
}

static void
mcp251xfd_ring_init_rx(struct mcp251xfd_priv *priv, u16 *base, u8 *fifo_nr)
{
	struct mcp251xfd_rx_ring *rx_ring;
	struct spi_transfer *xfer;
	u32 val;
	u16 addr;
	u8 len;
	int i, j;

	mcp251xfd_for_each_rx_ring(priv, rx_ring, i) {
		rx_ring->head = 0;
		rx_ring->tail = 0;
		rx_ring->base = *base;
		rx_ring->nr = i;
		rx_ring->fifo_nr = *fifo_nr;

		*base = mcp251xfd_get_rx_obj_addr(rx_ring, rx_ring->obj_num);
		*fifo_nr += 1;

		/* FIFO increment RX tail pointer */
		addr = MCP251XFD_REG_FIFOCON(rx_ring->fifo_nr);
		val = MCP251XFD_REG_FIFOCON_UINC;
		len = mcp251xfd_cmd_prepare_write_reg(priv, &rx_ring->uinc_buf,
						      addr, val, val);

		for (j = 0; j < ARRAY_SIZE(rx_ring->uinc_xfer); j++) {
			xfer = &rx_ring->uinc_xfer[j];
			xfer->tx_buf = &rx_ring->uinc_buf;
			xfer->len = len;
			xfer->cs_change = 1;
			xfer->cs_change_delay.value = 0;
			xfer->cs_change_delay.unit = SPI_DELAY_UNIT_NSECS;
		}

		/* "cs_change == 1" on the last transfer results in an
		 * active chip select after the complete SPI
		 * message. This causes the controller to interpret
		 * the next register access as data. Set "cs_change"
		 * of the last transfer to "0" to properly deactivate
		 * the chip select at the end of the message.
		 */
		xfer->cs_change = 0;
	}
}

int mcp251xfd_ring_init(struct mcp251xfd_priv *priv)
{
	const struct mcp251xfd_rx_ring *rx_ring;
	u16 base = 0, ram_used;
	u8 fifo_nr = 1;
	int i;

	netdev_reset_queue(priv->ndev);

	mcp251xfd_ring_init_tef(priv, &base);
	mcp251xfd_ring_init_rx(priv, &base, &fifo_nr);
	mcp251xfd_ring_init_tx(priv, &base, &fifo_nr);

	/* mcp251xfd_handle_rxif() will iterate over all RX rings.
	 * Rings with their corresponding bit set in
	 * priv->regs_status.rxif are read out.
	 *
	 * If the chip is configured for only 1 RX-FIFO, and if there
	 * is an RX interrupt pending (RXIF in INT register is set),
	 * it must be the 1st RX-FIFO.
	 *
	 * We mark the RXIF of the 1st FIFO as pending here, so that
	 * we can skip the read of the RXIF register in
	 * mcp251xfd_read_regs_status() for the 1 RX-FIFO only case.
	 *
	 * If we use more than 1 RX-FIFO, this value gets overwritten
	 * in mcp251xfd_read_regs_status(), so set it unconditionally
	 * here.
	 */
	priv->regs_status.rxif = BIT(priv->rx[0]->fifo_nr);

	netdev_dbg(priv->ndev,
		   "FIFO setup: TEF:         0x%03x: %2d*%zu bytes = %4zu bytes\n",
		   mcp251xfd_get_tef_obj_addr(0),
		   priv->tx->obj_num, sizeof(struct mcp251xfd_hw_tef_obj),
		   priv->tx->obj_num * sizeof(struct mcp251xfd_hw_tef_obj));

	mcp251xfd_for_each_rx_ring(priv, rx_ring, i) {
		netdev_dbg(priv->ndev,
			   "FIFO setup: RX-%u: FIFO %u/0x%03x: %2u*%u bytes = %4u bytes\n",
			   rx_ring->nr, rx_ring->fifo_nr,
			   mcp251xfd_get_rx_obj_addr(rx_ring, 0),
			   rx_ring->obj_num, rx_ring->obj_size,
			   rx_ring->obj_num * rx_ring->obj_size);
	}

	netdev_dbg(priv->ndev,
		   "FIFO setup: TX:   FIFO %u/0x%03x: %2u*%u bytes = %4u bytes\n",
		   priv->tx->fifo_nr,
		   mcp251xfd_get_tx_obj_addr(priv->tx, 0),
		   priv->tx->obj_num, priv->tx->obj_size,
		   priv->tx->obj_num * priv->tx->obj_size);

	netdev_dbg(priv->ndev,
		   "FIFO setup: free:                             %4u bytes\n",
		   MCP251XFD_RAM_SIZE - (base - MCP251XFD_RAM_START));

	ram_used = base - MCP251XFD_RAM_START;
	if (ram_used > MCP251XFD_RAM_SIZE) {
		netdev_err(priv->ndev,
			   "Error during ring configuration, using more RAM (%u bytes) than available (%u bytes).\n",
			   ram_used, MCP251XFD_RAM_SIZE);
		return -ENOMEM;
	}

	return 0;
}

void mcp251xfd_ring_free(struct mcp251xfd_priv *priv)
{
	int i;

	for (i = ARRAY_SIZE(priv->rx) - 1; i >= 0; i--) {
		kfree(priv->rx[i]);
		priv->rx[i] = NULL;
	}
}

int mcp251xfd_ring_alloc(struct mcp251xfd_priv *priv)
{
	struct mcp251xfd_tx_ring *tx_ring;
	struct mcp251xfd_rx_ring *rx_ring;
	int tef_obj_size, tx_obj_size, rx_obj_size;
	int tx_obj_num;
	int ram_free, i;

	tef_obj_size = sizeof(struct mcp251xfd_hw_tef_obj);
	if (mcp251xfd_is_fd_mode(priv)) {
		tx_obj_num = MCP251XFD_TX_OBJ_NUM_CANFD;
		tx_obj_size = sizeof(struct mcp251xfd_hw_tx_obj_canfd);
		rx_obj_size = sizeof(struct mcp251xfd_hw_rx_obj_canfd);
	} else {
		tx_obj_num = MCP251XFD_TX_OBJ_NUM_CAN;
		tx_obj_size = sizeof(struct mcp251xfd_hw_tx_obj_can);
		rx_obj_size = sizeof(struct mcp251xfd_hw_rx_obj_can);
	}

	tx_ring = priv->tx;
	tx_ring->obj_num = tx_obj_num;
	tx_ring->obj_size = tx_obj_size;

	ram_free = MCP251XFD_RAM_SIZE - tx_obj_num *
		(tef_obj_size + tx_obj_size);

	for (i = 0;
	     i < ARRAY_SIZE(priv->rx) && ram_free >= rx_obj_size;
	     i++) {
		int rx_obj_num;

		rx_obj_num = ram_free / rx_obj_size;
		rx_obj_num = min(1 << (fls(rx_obj_num) - 1),
				 MCP251XFD_RX_OBJ_NUM_MAX);

		rx_ring = kzalloc(sizeof(*rx_ring) + rx_obj_size * rx_obj_num,
				  GFP_KERNEL);
		if (!rx_ring) {
			mcp251xfd_ring_free(priv);
			return -ENOMEM;
		}
		rx_ring->obj_num = rx_obj_num;
		rx_ring->obj_size = rx_obj_size;
		priv->rx[i] = rx_ring;

		ram_free -= rx_ring->obj_num * rx_ring->obj_size;
	}
	priv->rx_ring_num = i;

	return 0;
}