aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/net/ethernet/mellanox/mlxsw/spectrum_ptp.c
blob: bb6c0cb257711bd39ee5170313e7dc69b444be99 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
// SPDX-License-Identifier: BSD-3-Clause OR GPL-2.0
/* Copyright (c) 2019 Mellanox Technologies. All rights reserved */

#include <linux/ptp_clock_kernel.h>
#include <linux/clocksource.h>
#include <linux/timecounter.h>
#include <linux/spinlock.h>
#include <linux/device.h>

#include "spectrum_ptp.h"
#include "core.h"

#define MLXSW_SP1_PTP_CLOCK_CYCLES_SHIFT	29
#define MLXSW_SP1_PTP_CLOCK_FREQ_KHZ		156257 /* 6.4nSec */
#define MLXSW_SP1_PTP_CLOCK_MASK		64

struct mlxsw_sp_ptp_clock {
	struct mlxsw_core *core;
	spinlock_t lock; /* protect this structure */
	struct cyclecounter cycles;
	struct timecounter tc;
	u32 nominal_c_mult;
	struct ptp_clock *ptp;
	struct ptp_clock_info ptp_info;
	unsigned long overflow_period;
	struct delayed_work overflow_work;
};

static u64 __mlxsw_sp1_ptp_read_frc(struct mlxsw_sp_ptp_clock *clock,
				    struct ptp_system_timestamp *sts)
{
	struct mlxsw_core *mlxsw_core = clock->core;
	u32 frc_h1, frc_h2, frc_l;

	frc_h1 = mlxsw_core_read_frc_h(mlxsw_core);
	ptp_read_system_prets(sts);
	frc_l = mlxsw_core_read_frc_l(mlxsw_core);
	ptp_read_system_postts(sts);
	frc_h2 = mlxsw_core_read_frc_h(mlxsw_core);

	if (frc_h1 != frc_h2) {
		/* wrap around */
		ptp_read_system_prets(sts);
		frc_l = mlxsw_core_read_frc_l(mlxsw_core);
		ptp_read_system_postts(sts);
	}

	return (u64) frc_l | (u64) frc_h2 << 32;
}

static u64 mlxsw_sp1_ptp_read_frc(const struct cyclecounter *cc)
{
	struct mlxsw_sp_ptp_clock *clock =
		container_of(cc, struct mlxsw_sp_ptp_clock, cycles);

	return __mlxsw_sp1_ptp_read_frc(clock, NULL) & cc->mask;
}

static int
mlxsw_sp1_ptp_phc_adjfreq(struct mlxsw_sp_ptp_clock *clock, int freq_adj)
{
	struct mlxsw_core *mlxsw_core = clock->core;
	char mtutc_pl[MLXSW_REG_MTUTC_LEN];

	mlxsw_reg_mtutc_pack(mtutc_pl, MLXSW_REG_MTUTC_OPERATION_ADJUST_FREQ,
			     freq_adj, 0);
	return mlxsw_reg_write(mlxsw_core, MLXSW_REG(mtutc), mtutc_pl);
}

static u64 mlxsw_sp1_ptp_ns2cycles(const struct timecounter *tc, u64 nsec)
{
	u64 cycles = (u64) nsec;

	cycles <<= tc->cc->shift;
	cycles = div_u64(cycles, tc->cc->mult);

	return cycles;
}

static int
mlxsw_sp1_ptp_phc_settime(struct mlxsw_sp_ptp_clock *clock, u64 nsec)
{
	struct mlxsw_core *mlxsw_core = clock->core;
	u64 next_sec, next_sec_in_nsec, cycles;
	char mtutc_pl[MLXSW_REG_MTUTC_LEN];
	char mtpps_pl[MLXSW_REG_MTPPS_LEN];
	int err;

	next_sec = div_u64(nsec, NSEC_PER_SEC) + 1;
	next_sec_in_nsec = next_sec * NSEC_PER_SEC;

	spin_lock(&clock->lock);
	cycles = mlxsw_sp1_ptp_ns2cycles(&clock->tc, next_sec_in_nsec);
	spin_unlock(&clock->lock);

	mlxsw_reg_mtpps_vpin_pack(mtpps_pl, cycles);
	err = mlxsw_reg_write(mlxsw_core, MLXSW_REG(mtpps), mtpps_pl);
	if (err)
		return err;

	mlxsw_reg_mtutc_pack(mtutc_pl,
			     MLXSW_REG_MTUTC_OPERATION_SET_TIME_AT_NEXT_SEC,
			     0, next_sec);
	return mlxsw_reg_write(mlxsw_core, MLXSW_REG(mtutc), mtutc_pl);
}

static int mlxsw_sp1_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm)
{
	struct mlxsw_sp_ptp_clock *clock =
		container_of(ptp, struct mlxsw_sp_ptp_clock, ptp_info);
	int neg_adj = 0;
	u32 diff;
	u64 adj;
	s32 ppb;

	ppb = scaled_ppm_to_ppb(scaled_ppm);

	if (ppb < 0) {
		neg_adj = 1;
		ppb = -ppb;
	}

	adj = clock->nominal_c_mult;
	adj *= ppb;
	diff = div_u64(adj, NSEC_PER_SEC);

	spin_lock(&clock->lock);
	timecounter_read(&clock->tc);
	clock->cycles.mult = neg_adj ? clock->nominal_c_mult - diff :
				       clock->nominal_c_mult + diff;
	spin_unlock(&clock->lock);

	return mlxsw_sp1_ptp_phc_adjfreq(clock, neg_adj ? -ppb : ppb);
}

static int mlxsw_sp1_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
{
	struct mlxsw_sp_ptp_clock *clock =
		container_of(ptp, struct mlxsw_sp_ptp_clock, ptp_info);
	u64 nsec;

	spin_lock(&clock->lock);
	timecounter_adjtime(&clock->tc, delta);
	nsec = timecounter_read(&clock->tc);
	spin_unlock(&clock->lock);

	return mlxsw_sp1_ptp_phc_settime(clock, nsec);
}

static int mlxsw_sp1_ptp_gettimex(struct ptp_clock_info *ptp,
				  struct timespec64 *ts,
				  struct ptp_system_timestamp *sts)
{
	struct mlxsw_sp_ptp_clock *clock =
		container_of(ptp, struct mlxsw_sp_ptp_clock, ptp_info);
	u64 cycles, nsec;

	spin_lock(&clock->lock);
	cycles = __mlxsw_sp1_ptp_read_frc(clock, sts);
	nsec = timecounter_cyc2time(&clock->tc, cycles);
	spin_unlock(&clock->lock);

	*ts = ns_to_timespec64(nsec);

	return 0;
}

static int mlxsw_sp1_ptp_settime(struct ptp_clock_info *ptp,
				 const struct timespec64 *ts)
{
	struct mlxsw_sp_ptp_clock *clock =
		container_of(ptp, struct mlxsw_sp_ptp_clock, ptp_info);
	u64 nsec = timespec64_to_ns(ts);

	spin_lock(&clock->lock);
	timecounter_init(&clock->tc, &clock->cycles, nsec);
	nsec = timecounter_read(&clock->tc);
	spin_unlock(&clock->lock);

	return mlxsw_sp1_ptp_phc_settime(clock, nsec);
}

static const struct ptp_clock_info mlxsw_sp1_ptp_clock_info = {
	.owner		= THIS_MODULE,
	.name		= "mlxsw_sp_clock",
	.max_adj	= 100000000,
	.adjfine	= mlxsw_sp1_ptp_adjfine,
	.adjtime	= mlxsw_sp1_ptp_adjtime,
	.gettimex64	= mlxsw_sp1_ptp_gettimex,
	.settime64	= mlxsw_sp1_ptp_settime,
};

static void mlxsw_sp1_ptp_clock_overflow(struct work_struct *work)
{
	struct delayed_work *dwork = to_delayed_work(work);
	struct mlxsw_sp_ptp_clock *clock;

	clock = container_of(dwork, struct mlxsw_sp_ptp_clock, overflow_work);

	spin_lock(&clock->lock);
	timecounter_read(&clock->tc);
	spin_unlock(&clock->lock);
	mlxsw_core_schedule_dw(&clock->overflow_work, clock->overflow_period);
}

struct mlxsw_sp_ptp_clock *
mlxsw_sp1_ptp_clock_init(struct mlxsw_sp *mlxsw_sp, struct device *dev)
{
	u64 overflow_cycles, nsec, frac = 0;
	struct mlxsw_sp_ptp_clock *clock;
	int err;

	clock = kzalloc(sizeof(*clock), GFP_KERNEL);
	if (!clock)
		return ERR_PTR(-ENOMEM);

	spin_lock_init(&clock->lock);
	clock->cycles.read = mlxsw_sp1_ptp_read_frc;
	clock->cycles.shift = MLXSW_SP1_PTP_CLOCK_CYCLES_SHIFT;
	clock->cycles.mult = clocksource_khz2mult(MLXSW_SP1_PTP_CLOCK_FREQ_KHZ,
						  clock->cycles.shift);
	clock->nominal_c_mult = clock->cycles.mult;
	clock->cycles.mask = CLOCKSOURCE_MASK(MLXSW_SP1_PTP_CLOCK_MASK);
	clock->core = mlxsw_sp->core;

	timecounter_init(&clock->tc, &clock->cycles,
			 ktime_to_ns(ktime_get_real()));

	/* Calculate period in seconds to call the overflow watchdog - to make
	 * sure counter is checked at least twice every wrap around.
	 * The period is calculated as the minimum between max HW cycles count
	 * (The clock source mask) and max amount of cycles that can be
	 * multiplied by clock multiplier where the result doesn't exceed
	 * 64bits.
	 */
	overflow_cycles = div64_u64(~0ULL >> 1, clock->cycles.mult);
	overflow_cycles = min(overflow_cycles, div_u64(clock->cycles.mask, 3));

	nsec = cyclecounter_cyc2ns(&clock->cycles, overflow_cycles, 0, &frac);
	clock->overflow_period = nsecs_to_jiffies(nsec);

	INIT_DELAYED_WORK(&clock->overflow_work, mlxsw_sp1_ptp_clock_overflow);
	mlxsw_core_schedule_dw(&clock->overflow_work, 0);

	clock->ptp_info = mlxsw_sp1_ptp_clock_info;
	clock->ptp = ptp_clock_register(&clock->ptp_info, dev);
	if (IS_ERR(clock->ptp)) {
		err = PTR_ERR(clock->ptp);
		dev_err(dev, "ptp_clock_register failed %d\n", err);
		goto err_ptp_clock_register;
	}

	return clock;

err_ptp_clock_register:
	cancel_delayed_work_sync(&clock->overflow_work);
	kfree(clock);
	return ERR_PTR(err);
}

void mlxsw_sp1_ptp_clock_fini(struct mlxsw_sp_ptp_clock *clock)
{
	ptp_clock_unregister(clock->ptp);
	cancel_delayed_work_sync(&clock->overflow_work);
	kfree(clock);
}