aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/net/ethernet/netronome/nfp/nfpcore/nfp_target.c
blob: 79470f198a62a67344837212ee4d101b0aaedc2d (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
// SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
/* Copyright (C) 2015-2018 Netronome Systems, Inc. */

/*
 * nfp_target.c
 * CPP Access Width Decoder
 * Authors: Jakub Kicinski <jakub.kicinski@netronome.com>
 *          Jason McMullan <jason.mcmullan@netronome.com>
 *          Francois H. Theron <francois.theron@netronome.com>
 */

#define pr_fmt(fmt)       "NFP target: " fmt

#include <linux/bitops.h>
#include <linux/kernel.h>
#include <linux/printk.h>

#include "nfp_cpp.h"

#include "nfp6000/nfp6000.h"

#define P32 1
#define P64 2

/* This structure ONLY includes items that can be done with a read or write of
 * 32-bit or 64-bit words. All others are not listed.
 */

#define AT(_action, _token, _pull, _push)				\
	case NFP_CPP_ID(0, (_action), (_token)):			\
		return PUSHPULL((_pull), (_push))

static int target_rw(u32 cpp_id, int pp, int start, int len)
{
	switch (cpp_id & NFP_CPP_ID(0, ~0, ~0)) {
	AT(0, 0,  0, pp);
	AT(1, 0, pp,  0);
	AT(NFP_CPP_ACTION_RW, 0, pp, pp);
	default:
		return -EINVAL;
	}
}

static int nfp6000_nbi_dma(u32 cpp_id)
{
	switch (cpp_id & NFP_CPP_ID(0, ~0, ~0)) {
	AT(0, 0,   0, P64);	/* ReadNbiDma */
	AT(1, 0,   P64, 0);	/* WriteNbiDma */
	AT(NFP_CPP_ACTION_RW, 0, P64, P64);
	default:
		return -EINVAL;
	}
}

static int nfp6000_nbi_stats(u32 cpp_id)
{
	switch (cpp_id & NFP_CPP_ID(0, ~0, ~0)) {
	AT(0, 0,   0, P32);	/* ReadNbiStats */
	AT(1, 0,   P32, 0);	/* WriteNbiStats */
	AT(NFP_CPP_ACTION_RW, 0, P32, P32);
	default:
		return -EINVAL;
	}
}

static int nfp6000_nbi_tm(u32 cpp_id)
{
	switch (cpp_id & NFP_CPP_ID(0, ~0, ~0)) {
	AT(0, 0,   0, P64);	/* ReadNbiTM */
	AT(1, 0,   P64, 0);	/* WriteNbiTM */
	AT(NFP_CPP_ACTION_RW, 0, P64, P64);
	default:
		return -EINVAL;
	}
}

static int nfp6000_nbi_ppc(u32 cpp_id)
{
	switch (cpp_id & NFP_CPP_ID(0, ~0, ~0)) {
	AT(0, 0,   0, P64);	/* ReadNbiPreclassifier */
	AT(1, 0,   P64, 0);	/* WriteNbiPreclassifier */
	AT(NFP_CPP_ACTION_RW, 0, P64, P64);
	default:
		return -EINVAL;
	}
}

static int nfp6000_nbi(u32 cpp_id, u64 address)
{
	u64 rel_addr = address & 0x3fFFFF;

	if (rel_addr < (1 << 20))
		return nfp6000_nbi_dma(cpp_id);
	if (rel_addr < (2 << 20))
		return nfp6000_nbi_stats(cpp_id);
	if (rel_addr < (3 << 20))
		return nfp6000_nbi_tm(cpp_id);
	return nfp6000_nbi_ppc(cpp_id);
}

/* This structure ONLY includes items that can be done with a read or write of
 * 32-bit or 64-bit words. All others are not listed.
 */
static int nfp6000_mu_common(u32 cpp_id)
{
	switch (cpp_id & NFP_CPP_ID(0, ~0, ~0)) {
	AT(NFP_CPP_ACTION_RW, 0, P64, P64);	/* read_be/write_be */
	AT(NFP_CPP_ACTION_RW, 1, P64, P64);	/* read_le/write_le */
	AT(NFP_CPP_ACTION_RW, 2, P64, P64);	/* read_swap_be/write_swap_be */
	AT(NFP_CPP_ACTION_RW, 3, P64, P64);	/* read_swap_le/write_swap_le */
	AT(0, 0,   0, P64);	/* read_be */
	AT(0, 1,   0, P64);	/* read_le */
	AT(0, 2,   0, P64);	/* read_swap_be */
	AT(0, 3,   0, P64);	/* read_swap_le */
	AT(1, 0, P64,   0);	/* write_be */
	AT(1, 1, P64,   0);	/* write_le */
	AT(1, 2, P64,   0);	/* write_swap_be */
	AT(1, 3, P64,   0);	/* write_swap_le */
	AT(3, 0,   0, P32);	/* atomic_read */
	AT(3, 2, P32,   0);	/* mask_compare_write */
	AT(4, 0, P32,   0);	/* atomic_write */
	AT(4, 2,   0,   0);	/* atomic_write_imm */
	AT(4, 3,   0, P32);	/* swap_imm */
	AT(5, 0, P32,   0);	/* set */
	AT(5, 3,   0, P32);	/* test_set_imm */
	AT(6, 0, P32,   0);	/* clr */
	AT(6, 3,   0, P32);	/* test_clr_imm */
	AT(7, 0, P32,   0);	/* add */
	AT(7, 3,   0, P32);	/* test_add_imm */
	AT(8, 0, P32,   0);	/* addsat */
	AT(8, 3,   0, P32);	/* test_subsat_imm */
	AT(9, 0, P32,   0);	/* sub */
	AT(9, 3,   0, P32);	/* test_sub_imm */
	AT(10, 0, P32,   0);	/* subsat */
	AT(10, 3,   0, P32);	/* test_subsat_imm */
	AT(13, 0,   0, P32);	/* microq128_get */
	AT(13, 1,   0, P32);	/* microq128_pop */
	AT(13, 2, P32,   0);	/* microq128_put */
	AT(15, 0, P32,   0);	/* xor */
	AT(15, 3,   0, P32);	/* test_xor_imm */
	AT(28, 0,   0, P32);	/* read32_be */
	AT(28, 1,   0, P32);	/* read32_le */
	AT(28, 2,   0, P32);	/* read32_swap_be */
	AT(28, 3,   0, P32);	/* read32_swap_le */
	AT(31, 0, P32,   0);	/* write32_be */
	AT(31, 1, P32,   0);	/* write32_le */
	AT(31, 2, P32,   0);	/* write32_swap_be */
	AT(31, 3, P32,   0);	/* write32_swap_le */
	default:
		return -EINVAL;
	}
}

static int nfp6000_mu_ctm(u32 cpp_id)
{
	switch (cpp_id & NFP_CPP_ID(0, ~0, ~0)) {
	AT(16, 1,   0, P32);	/* packet_read_packet_status */
	AT(17, 1,   0, P32);	/* packet_credit_get */
	AT(17, 3,   0, P64);	/* packet_add_thread */
	AT(18, 2,   0, P64);	/* packet_free_and_return_pointer */
	AT(18, 3,   0, P64);	/* packet_return_pointer */
	AT(21, 0,   0, P64);	/* pe_dma_to_memory_indirect */
	AT(21, 1,   0, P64);	/* pe_dma_to_memory_indirect_swap */
	AT(21, 2,   0, P64);	/* pe_dma_to_memory_indirect_free */
	AT(21, 3,   0, P64);	/* pe_dma_to_memory_indirect_free_swap */
	default:
		return nfp6000_mu_common(cpp_id);
	}
}

static int nfp6000_mu_emu(u32 cpp_id)
{
	switch (cpp_id & NFP_CPP_ID(0, ~0, ~0)) {
	AT(18, 0,   0, P32);	/* read_queue */
	AT(18, 1,   0, P32);	/* read_queue_ring */
	AT(18, 2, P32,   0);	/* write_queue */
	AT(18, 3, P32,   0);	/* write_queue_ring */
	AT(20, 2, P32,   0);	/* journal */
	AT(21, 0,   0, P32);	/* get */
	AT(21, 1,   0, P32);	/* get_eop */
	AT(21, 2,   0, P32);	/* get_freely */
	AT(22, 0,   0, P32);	/* pop */
	AT(22, 1,   0, P32);	/* pop_eop */
	AT(22, 2,   0, P32);	/* pop_freely */
	default:
		return nfp6000_mu_common(cpp_id);
	}
}

static int nfp6000_mu_imu(u32 cpp_id)
{
	return nfp6000_mu_common(cpp_id);
}

static int nfp6000_mu(u32 cpp_id, u64 address)
{
	int pp;

	if (address < 0x2000000000ULL)
		pp = nfp6000_mu_ctm(cpp_id);
	else if (address < 0x8000000000ULL)
		pp = nfp6000_mu_emu(cpp_id);
	else if (address < 0x9800000000ULL)
		pp = nfp6000_mu_ctm(cpp_id);
	else if (address < 0x9C00000000ULL)
		pp = nfp6000_mu_emu(cpp_id);
	else if (address < 0xA000000000ULL)
		pp = nfp6000_mu_imu(cpp_id);
	else
		pp = nfp6000_mu_ctm(cpp_id);

	return pp;
}

static int nfp6000_ila(u32 cpp_id)
{
	switch (cpp_id & NFP_CPP_ID(0, ~0, ~0)) {
	AT(0, 1,   0, P32);	/* read_check_error */
	AT(2, 0,   0, P32);	/* read_int */
	AT(3, 0, P32,   0);	/* write_int */
	default:
		return target_rw(cpp_id, P32, 48, 4);
	}
}

static int nfp6000_pci(u32 cpp_id)
{
	switch (cpp_id & NFP_CPP_ID(0, ~0, ~0)) {
	AT(2, 0,   0, P32);
	AT(3, 0, P32,   0);
	default:
		return target_rw(cpp_id, P32, 4, 4);
	}
}

static int nfp6000_crypto(u32 cpp_id)
{
	switch (cpp_id & NFP_CPP_ID(0, ~0, ~0)) {
	AT(2, 0, P64,   0);
	default:
		return target_rw(cpp_id, P64, 12, 4);
	}
}

static int nfp6000_cap_xpb(u32 cpp_id)
{
	switch (cpp_id & NFP_CPP_ID(0, ~0, ~0)) {
	AT(0, 1,   0, P32); /* RingGet */
	AT(0, 2, P32,   0); /* Interthread Signal */
	AT(1, 1, P32,   0); /* RingPut */
	AT(1, 2, P32,   0); /* CTNNWr */
	AT(2, 0,   0, P32); /* ReflectRd, signal none */
	AT(2, 1,   0, P32); /* ReflectRd, signal self */
	AT(2, 2,   0, P32); /* ReflectRd, signal remote */
	AT(2, 3,   0, P32); /* ReflectRd, signal both */
	AT(3, 0, P32,   0); /* ReflectWr, signal none */
	AT(3, 1, P32,   0); /* ReflectWr, signal self */
	AT(3, 2, P32,   0); /* ReflectWr, signal remote */
	AT(3, 3, P32,   0); /* ReflectWr, signal both */
	AT(NFP_CPP_ACTION_RW, 1, P32, P32);
	default:
		return target_rw(cpp_id, P32, 1, 63);
	}
}

static int nfp6000_cls(u32 cpp_id)
{
	switch (cpp_id & NFP_CPP_ID(0, ~0, ~0)) {
	AT(0, 3, P32,  0); /* xor */
	AT(2, 0, P32,  0); /* set */
	AT(2, 1, P32,  0); /* clr */
	AT(4, 0, P32,  0); /* add */
	AT(4, 1, P32,  0); /* add64 */
	AT(6, 0, P32,  0); /* sub */
	AT(6, 1, P32,  0); /* sub64 */
	AT(6, 2, P32,  0); /* subsat */
	AT(8, 2, P32,  0); /* hash_mask */
	AT(8, 3, P32,  0); /* hash_clear */
	AT(9, 0,  0, P32); /* ring_get */
	AT(9, 1,  0, P32); /* ring_pop */
	AT(9, 2,  0, P32); /* ring_get_freely */
	AT(9, 3,  0, P32); /* ring_pop_freely */
	AT(10, 0, P32,  0); /* ring_put */
	AT(10, 2, P32,  0); /* ring_journal */
	AT(14, 0,  P32, 0); /* reflect_write_sig_local */
	AT(15, 1,  0, P32); /* reflect_read_sig_local */
	AT(17, 2, P32,  0); /* statisic */
	AT(24, 0,  0, P32); /* ring_read */
	AT(24, 1, P32,  0); /* ring_write */
	AT(25, 0,  0, P32); /* ring_workq_add_thread */
	AT(25, 1, P32,  0); /* ring_workq_add_work */
	default:
		return target_rw(cpp_id, P32, 0, 64);
	}
}

int nfp_target_pushpull(u32 cpp_id, u64 address)
{
	switch (NFP_CPP_ID_TARGET_of(cpp_id)) {
	case NFP_CPP_TARGET_NBI:
		return nfp6000_nbi(cpp_id, address);
	case NFP_CPP_TARGET_QDR:
		return target_rw(cpp_id, P32, 24, 4);
	case NFP_CPP_TARGET_ILA:
		return nfp6000_ila(cpp_id);
	case NFP_CPP_TARGET_MU:
		return nfp6000_mu(cpp_id, address);
	case NFP_CPP_TARGET_PCIE:
		return nfp6000_pci(cpp_id);
	case NFP_CPP_TARGET_ARM:
		if (address < 0x10000)
			return target_rw(cpp_id, P64, 1, 1);
		else
			return target_rw(cpp_id, P32, 1, 1);
	case NFP_CPP_TARGET_CRYPTO:
		return nfp6000_crypto(cpp_id);
	case NFP_CPP_TARGET_CT_XPB:
		return nfp6000_cap_xpb(cpp_id);
	case NFP_CPP_TARGET_CLS:
		return nfp6000_cls(cpp_id);
	case 0:
		return target_rw(cpp_id, P32, 4, 4);
	default:
		return -EINVAL;
	}
}

#undef AT
#undef P32
#undef P64

/* All magic NFP-6xxx IMB 'mode' numbers here are from:
 * Databook (1 August 2013)
 * - System Overview and Connectivity
 * -- Internal Connectivity
 * --- Distributed Switch Fabric - Command Push/Pull (DSF-CPP) Bus
 * ---- CPP addressing
 * ----- Table 3.6. CPP Address Translation Mode Commands
 */

#define _NIC_NFP6000_MU_LOCALITY_DIRECT     2

static int nfp_decode_basic(u64 addr, int *dest_island, int cpp_tgt,
			    int mode, bool addr40, int isld1, int isld0)
{
	int iid_lsb, idx_lsb;

	/* This function doesn't handle MU or CTXBP */
	if (cpp_tgt == NFP_CPP_TARGET_MU || cpp_tgt == NFP_CPP_TARGET_CT_XPB)
		return -EINVAL;

	switch (mode) {
	case 0:
		/* For VQDR, in this mode for 32-bit addressing
		 * it would be islands 0, 16, 32 and 48 depending on channel
		 * and upper address bits.
		 * Since those are not all valid islands, most decode
		 * cases would result in bad island IDs, but we do them
		 * anyway since this is decoding an address that is already
		 * assumed to be used as-is to get to sram.
		 */
		iid_lsb = addr40 ? 34 : 26;
		*dest_island = (addr >> iid_lsb) & 0x3F;
		return 0;
	case 1:
		/* For VQDR 32-bit, this would decode as:
		 * Channel 0: island#0
		 * Channel 1: island#0
		 * Channel 2: island#1
		 * Channel 3: island#1
		 * That would be valid as long as both islands
		 * have VQDR. Let's allow this.
		 */
		idx_lsb = addr40 ? 39 : 31;
		if (addr & BIT_ULL(idx_lsb))
			*dest_island = isld1;
		else
			*dest_island = isld0;

		return 0;
	case 2:
		/* For VQDR 32-bit:
		 * Channel 0: (island#0 | 0)
		 * Channel 1: (island#0 | 1)
		 * Channel 2: (island#1 | 0)
		 * Channel 3: (island#1 | 1)
		 *
		 * Make sure we compare against isldN values
		 * by clearing the LSB.
		 * This is what the silicon does.
		 */
		isld0 &= ~1;
		isld1 &= ~1;

		idx_lsb = addr40 ? 39 : 31;
		iid_lsb = idx_lsb - 1;

		if (addr & BIT_ULL(idx_lsb))
			*dest_island = isld1 | (int)((addr >> iid_lsb) & 1);
		else
			*dest_island = isld0 | (int)((addr >> iid_lsb) & 1);

		return 0;
	case 3:
		/* In this mode the data address starts to affect the island ID
		 * so rather not allow it. In some really specific case
		 * one could use this to send the upper half of the
		 * VQDR channel to another MU, but this is getting very
		 * specific.
		 * However, as above for mode 0, this is the decoder
		 * and the caller should validate the resulting IID.
		 * This blindly does what the silicon would do.
		 */
		isld0 &= ~3;
		isld1 &= ~3;

		idx_lsb = addr40 ? 39 : 31;
		iid_lsb = idx_lsb - 2;

		if (addr & BIT_ULL(idx_lsb))
			*dest_island = isld1 | (int)((addr >> iid_lsb) & 3);
		else
			*dest_island = isld0 | (int)((addr >> iid_lsb) & 3);

		return 0;
	default:
		return -EINVAL;
	}
}

static int nfp_encode_basic_qdr(u64 addr, int dest_island, int cpp_tgt,
				int mode, bool addr40, int isld1, int isld0)
{
	int v, ret;

	/* Full Island ID and channel bits overlap? */
	ret = nfp_decode_basic(addr, &v, cpp_tgt, mode, addr40, isld1, isld0);
	if (ret)
		return ret;

	/* The current address won't go where expected? */
	if (dest_island != -1 && dest_island != v)
		return -EINVAL;

	/* If dest_island was -1, we don't care where it goes. */
	return 0;
}

/* Try each option, take first one that fits.
 * Not sure if we would want to do some smarter
 * searching and prefer 0 or non-0 island IDs.
 */
static int nfp_encode_basic_search(u64 *addr, int dest_island, int *isld,
				   int iid_lsb, int idx_lsb, int v_max)
{
	int i, v;

	for (i = 0; i < 2; i++)
		for (v = 0; v < v_max; v++) {
			if (dest_island != (isld[i] | v))
				continue;

			*addr &= ~GENMASK_ULL(idx_lsb, iid_lsb);
			*addr |= ((u64)i << idx_lsb);
			*addr |= ((u64)v << iid_lsb);
			return 0;
		}

	return -ENODEV;
}

/* For VQDR, we may not modify the Channel bits, which might overlap
 *  with the Index bit. When it does, we need to ensure that isld0 == isld1.
 */
static int nfp_encode_basic(u64 *addr, int dest_island, int cpp_tgt,
			    int mode, bool addr40, int isld1, int isld0)
{
	int iid_lsb, idx_lsb;
	int isld[2];
	u64 v64;

	isld[0] = isld0;
	isld[1] = isld1;

	/* This function doesn't handle MU or CTXBP */
	if (cpp_tgt == NFP_CPP_TARGET_MU || cpp_tgt == NFP_CPP_TARGET_CT_XPB)
		return -EINVAL;

	switch (mode) {
	case 0:
		if (cpp_tgt == NFP_CPP_TARGET_QDR && !addr40)
			/* In this specific mode we'd rather not modify
			 * the address but we can verify if the existing
			 * contents will point to a valid island.
			 */
			return nfp_encode_basic_qdr(*addr, cpp_tgt, dest_island,
						    mode, addr40, isld1, isld0);

		iid_lsb = addr40 ? 34 : 26;
		/* <39:34> or <31:26> */
		v64 = GENMASK_ULL(iid_lsb + 5, iid_lsb);
		*addr &= ~v64;
		*addr |= ((u64)dest_island << iid_lsb) & v64;
		return 0;
	case 1:
		if (cpp_tgt == NFP_CPP_TARGET_QDR && !addr40)
			return nfp_encode_basic_qdr(*addr, cpp_tgt, dest_island,
						    mode, addr40, isld1, isld0);

		idx_lsb = addr40 ? 39 : 31;
		if (dest_island == isld0) {
			/* Only need to clear the Index bit */
			*addr &= ~BIT_ULL(idx_lsb);
			return 0;
		}

		if (dest_island == isld1) {
			/* Only need to set the Index bit */
			*addr |= BIT_ULL(idx_lsb);
			return 0;
		}

		return -ENODEV;
	case 2:
		/* iid<0> = addr<30> = channel<0>
		 * channel<1> = addr<31> = Index
		 */
		if (cpp_tgt == NFP_CPP_TARGET_QDR && !addr40)
			/* Special case where we allow channel bits to
			 * be set before hand and with them select an island.
			 * So we need to confirm that it's at least plausible.
			 */
			return nfp_encode_basic_qdr(*addr, cpp_tgt, dest_island,
						    mode, addr40, isld1, isld0);

		/* Make sure we compare against isldN values
		 * by clearing the LSB.
		 * This is what the silicon does.
		 */
		isld[0] &= ~1;
		isld[1] &= ~1;

		idx_lsb = addr40 ? 39 : 31;
		iid_lsb = idx_lsb - 1;

		return nfp_encode_basic_search(addr, dest_island, isld,
					       iid_lsb, idx_lsb, 2);
	case 3:
		if (cpp_tgt == NFP_CPP_TARGET_QDR && !addr40)
			/* iid<0> = addr<29> = data
			 * iid<1> = addr<30> = channel<0>
			 * channel<1> = addr<31> = Index
			 */
			return nfp_encode_basic_qdr(*addr, cpp_tgt, dest_island,
						    mode, addr40, isld1, isld0);

		isld[0] &= ~3;
		isld[1] &= ~3;

		idx_lsb = addr40 ? 39 : 31;
		iid_lsb = idx_lsb - 2;

		return nfp_encode_basic_search(addr, dest_island, isld,
					       iid_lsb, idx_lsb, 4);
	default:
		return -EINVAL;
	}
}

static int nfp_encode_mu(u64 *addr, int dest_island, int mode,
			 bool addr40, int isld1, int isld0)
{
	int iid_lsb, idx_lsb, locality_lsb;
	int isld[2];
	u64 v64;
	int da;

	isld[0] = isld0;
	isld[1] = isld1;
	locality_lsb = nfp_cppat_mu_locality_lsb(mode, addr40);

	if (((*addr >> locality_lsb) & 3) == _NIC_NFP6000_MU_LOCALITY_DIRECT)
		da = 1;
	else
		da = 0;

	switch (mode) {
	case 0:
		iid_lsb = addr40 ? 32 : 24;
		v64 = GENMASK_ULL(iid_lsb + 5, iid_lsb);
		*addr &= ~v64;
		*addr |= (((u64)dest_island) << iid_lsb) & v64;
		return 0;
	case 1:
		if (da) {
			iid_lsb = addr40 ? 32 : 24;
			v64 = GENMASK_ULL(iid_lsb + 5, iid_lsb);
			*addr &= ~v64;
			*addr |= (((u64)dest_island) << iid_lsb) & v64;
			return 0;
		}

		idx_lsb = addr40 ? 37 : 29;
		if (dest_island == isld0) {
			*addr &= ~BIT_ULL(idx_lsb);
			return 0;
		}

		if (dest_island == isld1) {
			*addr |= BIT_ULL(idx_lsb);
			return 0;
		}

		return -ENODEV;
	case 2:
		if (da) {
			iid_lsb = addr40 ? 32 : 24;
			v64 = GENMASK_ULL(iid_lsb + 5, iid_lsb);
			*addr &= ~v64;
			*addr |= (((u64)dest_island) << iid_lsb) & v64;
			return 0;
		}

		/* Make sure we compare against isldN values
		 * by clearing the LSB.
		 * This is what the silicon does.
		 */
		isld[0] &= ~1;
		isld[1] &= ~1;

		idx_lsb = addr40 ? 37 : 29;
		iid_lsb = idx_lsb - 1;

		return nfp_encode_basic_search(addr, dest_island, isld,
					       iid_lsb, idx_lsb, 2);
	case 3:
		/* Only the EMU will use 40 bit addressing. Silently
		 * set the direct locality bit for everyone else.
		 * The SDK toolchain uses dest_island <= 0 to test
		 * for atypical address encodings to support access
		 * to local-island CTM with a 32-but address (high-locality
		 * is effewctively ignored and just used for
		 * routing to island #0).
		 */
		if (dest_island > 0 && (dest_island < 24 || dest_island > 26)) {
			*addr |= ((u64)_NIC_NFP6000_MU_LOCALITY_DIRECT)
							<< locality_lsb;
			da = 1;
		}

		if (da) {
			iid_lsb = addr40 ? 32 : 24;
			v64 = GENMASK_ULL(iid_lsb + 5, iid_lsb);
			*addr &= ~v64;
			*addr |= (((u64)dest_island) << iid_lsb) & v64;
			return 0;
		}

		isld[0] &= ~3;
		isld[1] &= ~3;

		idx_lsb = addr40 ? 37 : 29;
		iid_lsb = idx_lsb - 2;

		return nfp_encode_basic_search(addr, dest_island, isld,
					       iid_lsb, idx_lsb, 4);
	default:
		return -EINVAL;
	}
}

static int nfp_cppat_addr_encode(u64 *addr, int dest_island, int cpp_tgt,
				 int mode, bool addr40, int isld1, int isld0)
{
	switch (cpp_tgt) {
	case NFP_CPP_TARGET_NBI:
	case NFP_CPP_TARGET_QDR:
	case NFP_CPP_TARGET_ILA:
	case NFP_CPP_TARGET_PCIE:
	case NFP_CPP_TARGET_ARM:
	case NFP_CPP_TARGET_CRYPTO:
	case NFP_CPP_TARGET_CLS:
		return nfp_encode_basic(addr, dest_island, cpp_tgt, mode,
					addr40, isld1, isld0);

	case NFP_CPP_TARGET_MU:
		return nfp_encode_mu(addr, dest_island, mode,
				     addr40, isld1, isld0);

	case NFP_CPP_TARGET_CT_XPB:
		if (mode != 1 || addr40)
			return -EINVAL;
		*addr &= ~GENMASK_ULL(29, 24);
		*addr |= ((u64)dest_island << 24) & GENMASK_ULL(29, 24);
		return 0;
	default:
		return -EINVAL;
	}
}

int nfp_target_cpp(u32 cpp_island_id, u64 cpp_island_address,
		   u32 *cpp_target_id, u64 *cpp_target_address,
		   const u32 *imb_table)
{
	const int island = NFP_CPP_ID_ISLAND_of(cpp_island_id);
	const int target = NFP_CPP_ID_TARGET_of(cpp_island_id);
	u32 imb;
	int err;

	if (target < 0 || target >= 16) {
		pr_err("Invalid CPP target: %d\n", target);
		return -EINVAL;
	}

	if (island == 0) {
		/* Already translated */
		*cpp_target_id = cpp_island_id;
		*cpp_target_address = cpp_island_address;
		return 0;
	}

	/* CPP + Island only allowed on systems with IMB tables */
	if (!imb_table)
		return -EINVAL;

	imb = imb_table[target];

	*cpp_target_address = cpp_island_address;
	err = nfp_cppat_addr_encode(cpp_target_address, island, target,
				    ((imb >> 13) & 7), ((imb >> 12) & 1),
				    ((imb >> 6)  & 0x3f), ((imb >> 0)  & 0x3f));
	if (err) {
		pr_err("Can't encode CPP address: %d\n", err);
		return err;
	}

	*cpp_target_id = NFP_CPP_ID(target,
				    NFP_CPP_ID_ACTION_of(cpp_island_id),
				    NFP_CPP_ID_TOKEN_of(cpp_island_id));

	return 0;
}