aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/staging/r8188eu/hal/rtl8188e_hal_init.c
blob: e17375a74f1797ccce24e2c3a2817f6f7df00908 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
// SPDX-License-Identifier: GPL-2.0
/* Copyright(c) 2007 - 2011 Realtek Corporation. */

#define _HAL_INIT_C_

#include "../include/drv_types.h"
#include "../include/rtw_efuse.h"
#include "../include/rtl8188e_hal.h"
#include "../include/rtw_iol.h"
#include "../include/usb_ops.h"
#include "../include/rtw_fw.h"

static void iol_mode_enable(struct adapter *padapter, u8 enable)
{
	u8 reg_0xf0 = 0;

	if (enable) {
		/* Enable initial offload */
		reg_0xf0 = rtw_read8(padapter, REG_SYS_CFG);
		rtw_write8(padapter, REG_SYS_CFG, reg_0xf0 | SW_OFFLOAD_EN);

		if (!padapter->bFWReady)
			rtw_reset_8051(padapter);

	} else {
		/* disable initial offload */
		reg_0xf0 = rtw_read8(padapter, REG_SYS_CFG);
		rtw_write8(padapter, REG_SYS_CFG, reg_0xf0 & ~SW_OFFLOAD_EN);
	}
}

static s32 iol_execute(struct adapter *padapter, u8 control)
{
	s32 status = _FAIL;
	u8 reg_0x88 = 0;
	unsigned long timeout;

	control = control & 0x0f;
	reg_0x88 = rtw_read8(padapter, REG_HMEBOX_E0);
	rtw_write8(padapter, REG_HMEBOX_E0,  reg_0x88 | control);

	timeout = jiffies + msecs_to_jiffies(1000);
	while ((reg_0x88 = rtw_read8(padapter, REG_HMEBOX_E0)) & control &&
		time_before(jiffies, timeout))
		;

	reg_0x88 = rtw_read8(padapter, REG_HMEBOX_E0);
	status = (reg_0x88 & control) ? _FAIL : _SUCCESS;
	if (reg_0x88 & control << 4)
		status = _FAIL;
	return status;
}

static s32 iol_InitLLTTable(struct adapter *padapter, u8 txpktbuf_bndy)
{
	s32 rst = _SUCCESS;
	iol_mode_enable(padapter, 1);
	rtw_write8(padapter, REG_TDECTRL + 1, txpktbuf_bndy);
	rst = iol_execute(padapter, CMD_INIT_LLT);
	iol_mode_enable(padapter, 0);
	return rst;
}

static void
efuse_phymap_to_logical(u8 *phymap, u16 _offset, u16 _size_byte, u8  *pbuf)
{
	u8 *efuseTbl = NULL;
	u8 rtemp8;
	u16	eFuse_Addr = 0;
	u8 offset, wren;
	u16	i, j;
	u16	**eFuseWord = NULL;
	u16	efuse_utilized = 0;
	u8 u1temp = 0;

	efuseTbl = kzalloc(EFUSE_MAP_LEN_88E, GFP_KERNEL);
	if (!efuseTbl)
		goto exit;

	eFuseWord = rtw_malloc2d(EFUSE_MAX_SECTION_88E, EFUSE_MAX_WORD_UNIT, sizeof(u16));
	if (!eFuseWord)
		goto exit;

	/*  0. Refresh efuse init map as all oxFF. */
	for (i = 0; i < EFUSE_MAX_SECTION_88E; i++)
		for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++)
			eFuseWord[i][j] = 0xFFFF;

	/*  */
	/*  1. Read the first byte to check if efuse is empty!!! */
	/*  */
	/*  */
	rtemp8 = *(phymap + eFuse_Addr);
	if (rtemp8 != 0xFF) {
		efuse_utilized++;
		eFuse_Addr++;
	} else {
		goto exit;
	}

	/*  */
	/*  2. Read real efuse content. Filter PG header and every section data. */
	/*  */
	while ((rtemp8 != 0xFF) && (eFuse_Addr < EFUSE_REAL_CONTENT_LEN_88E)) {
		/*  Check PG header for section num. */
		if ((rtemp8 & 0x1F) == 0x0F) {		/* extended header */
			u1temp = ((rtemp8 & 0xE0) >> 5);
			rtemp8 = *(phymap + eFuse_Addr);
			if ((rtemp8 & 0x0F) == 0x0F) {
				eFuse_Addr++;
				rtemp8 = *(phymap + eFuse_Addr);

				if (rtemp8 != 0xFF && (eFuse_Addr < EFUSE_REAL_CONTENT_LEN_88E))
					eFuse_Addr++;
				continue;
			} else {
				offset = ((rtemp8 & 0xF0) >> 1) | u1temp;
				wren = (rtemp8 & 0x0F);
				eFuse_Addr++;
			}
		} else {
			offset = ((rtemp8 >> 4) & 0x0f);
			wren = (rtemp8 & 0x0f);
		}

		if (offset < EFUSE_MAX_SECTION_88E) {
			/*  Get word enable value from PG header */
			for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
				/*  Check word enable condition in the section */
				if (!(wren & 0x01)) {
					rtemp8 = *(phymap + eFuse_Addr);
					eFuse_Addr++;
					efuse_utilized++;
					eFuseWord[offset][i] = (rtemp8 & 0xff);
					if (eFuse_Addr >= EFUSE_REAL_CONTENT_LEN_88E)
						break;
					rtemp8 = *(phymap + eFuse_Addr);
					eFuse_Addr++;
					efuse_utilized++;
					eFuseWord[offset][i] |= (((u16)rtemp8 << 8) & 0xff00);

					if (eFuse_Addr >= EFUSE_REAL_CONTENT_LEN_88E)
						break;
				}
				wren >>= 1;
			}
		}
		/*  Read next PG header */
		rtemp8 = *(phymap + eFuse_Addr);

		if (rtemp8 != 0xFF && (eFuse_Addr < EFUSE_REAL_CONTENT_LEN_88E)) {
			efuse_utilized++;
			eFuse_Addr++;
		}
	}

	/*  */
	/*  3. Collect 16 sections and 4 word unit into Efuse map. */
	/*  */
	for (i = 0; i < EFUSE_MAX_SECTION_88E; i++) {
		for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++) {
			efuseTbl[(i * 8) + (j * 2)] = (eFuseWord[i][j] & 0xff);
			efuseTbl[(i * 8) + ((j * 2) + 1)] = ((eFuseWord[i][j] >> 8) & 0xff);
		}
	}

	/*  */
	/*  4. Copy from Efuse map to output pointer memory!!! */
	/*  */
	for (i = 0; i < _size_byte; i++)
		pbuf[i] = efuseTbl[_offset + i];

	/*  */
	/*  5. Calculate Efuse utilization. */
	/*  */

exit:
	kfree(efuseTbl);
	kfree(eFuseWord);
}

static void efuse_read_phymap_from_txpktbuf(
	struct adapter  *adapter,
	int bcnhead,	/* beacon head, where FW store len(2-byte) and efuse physical map. */
	u8 *content,	/* buffer to store efuse physical map */
	u16 *size	/* for efuse content: the max byte to read. will update to byte read */
	)
{
	unsigned long timeout;
	u16 dbg_addr = 0;
	__le32 lo32 = 0, hi32 = 0;
	u16 len = 0, count = 0;
	int i = 0;
	u16 limit = *size;

	u8 *pos = content;

	if (bcnhead < 0) /* if not valid */
		bcnhead = rtw_read8(adapter, REG_TDECTRL + 1);

	rtw_write8(adapter, REG_PKT_BUFF_ACCESS_CTRL, TXPKT_BUF_SELECT);

	dbg_addr = bcnhead * 128 / 8; /* 8-bytes addressing */

	while (1) {
		rtw_write16(adapter, REG_PKTBUF_DBG_ADDR, dbg_addr + i);

		rtw_write8(adapter, REG_TXPKTBUF_DBG, 0);
		timeout = jiffies + msecs_to_jiffies(1000);
		while (!rtw_read8(adapter, REG_TXPKTBUF_DBG) && time_before(jiffies, timeout))
			rtw_usleep_os(100);

		/* data from EEPROM needs to be in LE */
		lo32 = cpu_to_le32(rtw_read32(adapter, REG_PKTBUF_DBG_DATA_L));
		hi32 = cpu_to_le32(rtw_read32(adapter, REG_PKTBUF_DBG_DATA_H));

		if (i == 0) {
			/* Although lenc is only used in a debug statement,
			 * do not remove it as the rtw_read16() call consumes
			 * 2 bytes from the EEPROM source.
			 */
			rtw_read16(adapter, REG_PKTBUF_DBG_DATA_L);

			len = le32_to_cpu(lo32) & 0x0000ffff;

			limit = (len - 2 < limit) ? len - 2 : limit;

			memcpy(pos, ((u8 *)&lo32) + 2, (limit >= count + 2) ? 2 : limit - count);
			count += (limit >= count + 2) ? 2 : limit - count;
			pos = content + count;
		} else {
			memcpy(pos, ((u8 *)&lo32), (limit >= count + 4) ? 4 : limit - count);
			count += (limit >= count + 4) ? 4 : limit - count;
			pos = content + count;
		}

		if (limit > count && len - 2 > count) {
			memcpy(pos, (u8 *)&hi32, (limit >= count + 4) ? 4 : limit - count);
			count += (limit >= count + 4) ? 4 : limit - count;
			pos = content + count;
		}

		if (limit <= count || len - 2 <= count)
			break;
		i++;
	}
	rtw_write8(adapter, REG_PKT_BUFF_ACCESS_CTRL, DISABLE_TRXPKT_BUF_ACCESS);
	*size = count;
}

static s32 iol_read_efuse(struct adapter *padapter, u8 txpktbuf_bndy, u16 offset, u16 size_byte, u8 *logical_map)
{
	s32 status = _FAIL;
	u8 physical_map[512];
	u16 size = 512;

	rtw_write8(padapter, REG_TDECTRL + 1, txpktbuf_bndy);
	memset(physical_map, 0xFF, 512);
	rtw_write8(padapter, REG_PKT_BUFF_ACCESS_CTRL, TXPKT_BUF_SELECT);
	status = iol_execute(padapter, CMD_READ_EFUSE_MAP);
	if (status == _SUCCESS)
		efuse_read_phymap_from_txpktbuf(padapter, txpktbuf_bndy, physical_map, &size);
	efuse_phymap_to_logical(physical_map, offset, size_byte, logical_map);
	return status;
}

s32 rtl8188e_iol_efuse_patch(struct adapter *padapter)
{
	s32	result = _SUCCESS;

	if (rtw_IOL_applied(padapter)) {
		iol_mode_enable(padapter, 1);
		result = iol_execute(padapter, CMD_READ_EFUSE_MAP);
		if (result == _SUCCESS)
			result = iol_execute(padapter, CMD_EFUSE_PATCH);

		iol_mode_enable(padapter, 0);
	}
	return result;
}

static s32 iol_ioconfig(struct adapter *padapter, u8 iocfg_bndy)
{
	s32 rst = _SUCCESS;

	rtw_write8(padapter, REG_TDECTRL + 1, iocfg_bndy);
	rst = iol_execute(padapter, CMD_IOCONFIG);
	return rst;
}

int rtl8188e_IOL_exec_cmds_sync(struct adapter *adapter, struct xmit_frame *xmit_frame, u32 max_wating_ms, u32 bndy_cnt)
{
	struct pkt_attrib *pattrib = &xmit_frame->attrib;
	u8 i;
	int ret = _FAIL;

	if (rtw_IOL_append_END_cmd(xmit_frame) != _SUCCESS)
		goto exit;
	if (rtw_usb_bulk_size_boundary(adapter, TXDESC_SIZE + pattrib->last_txcmdsz)) {
		if (rtw_IOL_append_END_cmd(xmit_frame) != _SUCCESS)
			goto exit;
	}

	dump_mgntframe_and_wait(adapter, xmit_frame, max_wating_ms);

	iol_mode_enable(adapter, 1);
	for (i = 0; i < bndy_cnt; i++) {
		u8 page_no = 0;
		page_no = i * 2;
		ret = iol_ioconfig(adapter, page_no);
		if (ret != _SUCCESS)
			break;
	}
	iol_mode_enable(adapter, 0);
exit:
	/* restore BCN_HEAD */
	rtw_write8(adapter, REG_TDECTRL + 1, 0);
	return ret;
}

void rtl8188e_EfusePowerSwitch(struct adapter *pAdapter, u8 PwrState)
{
	u16	tmpV16;

	if (PwrState) {
		rtw_write8(pAdapter, REG_EFUSE_ACCESS, EFUSE_ACCESS_ON);

		/*  1.2V Power: From VDDON with Power Cut(0x0000h[15]), defualt valid */
		tmpV16 = rtw_read16(pAdapter, REG_SYS_ISO_CTRL);
		if (!(tmpV16 & PWC_EV12V)) {
			tmpV16 |= PWC_EV12V;
			rtw_write16(pAdapter, REG_SYS_ISO_CTRL, tmpV16);
		}
		/*  Reset: 0x0000h[28], default valid */
		tmpV16 =  rtw_read16(pAdapter, REG_SYS_FUNC_EN);
		if (!(tmpV16 & FEN_ELDR)) {
			tmpV16 |= FEN_ELDR;
			rtw_write16(pAdapter, REG_SYS_FUNC_EN, tmpV16);
		}

		/*  Clock: Gated(0x0008h[5]) 8M(0x0008h[1]) clock from ANA, default valid */
		tmpV16 = rtw_read16(pAdapter, REG_SYS_CLKR);
		if ((!(tmpV16 & LOADER_CLK_EN))  || (!(tmpV16 & ANA8M))) {
			tmpV16 |= (LOADER_CLK_EN | ANA8M);
			rtw_write16(pAdapter, REG_SYS_CLKR, tmpV16);
		}
	} else {
		rtw_write8(pAdapter, REG_EFUSE_ACCESS, EFUSE_ACCESS_OFF);
	}
}

static void Hal_EfuseReadEFuse88E(struct adapter *Adapter,
	u16			_offset,
	u16			_size_byte,
	u8 *pbuf)
{
	u8 *efuseTbl = NULL;
	u8 rtemp8[1];
	u16	eFuse_Addr = 0;
	u8 offset, wren;
	u16	i, j;
	u16	**eFuseWord = NULL;
	u16	efuse_utilized = 0;
	u8 u1temp = 0;

	/*  */
	/*  Do NOT excess total size of EFuse table. Added by Roger, 2008.11.10. */
	/*  */
	if ((_offset + _size_byte) > EFUSE_MAP_LEN_88E) /*  total E-Fuse table is 512bytes */
		goto exit;

	efuseTbl = kzalloc(EFUSE_MAP_LEN_88E, GFP_KERNEL);
	if (!efuseTbl)
		goto exit;

	eFuseWord = rtw_malloc2d(EFUSE_MAX_SECTION_88E, EFUSE_MAX_WORD_UNIT, sizeof(u16));
	if (!eFuseWord)
		goto exit;

	/*  0. Refresh efuse init map as all oxFF. */
	for (i = 0; i < EFUSE_MAX_SECTION_88E; i++)
		for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++)
			eFuseWord[i][j] = 0xFFFF;

	/*  */
	/*  1. Read the first byte to check if efuse is empty!!! */
	/*  */
	/*  */
	ReadEFuseByte(Adapter, eFuse_Addr, rtemp8);
	if (*rtemp8 != 0xFF) {
		efuse_utilized++;
		eFuse_Addr++;
	} else {
		goto exit;
	}

	/*  */
	/*  2. Read real efuse content. Filter PG header and every section data. */
	/*  */
	while ((*rtemp8 != 0xFF) && (eFuse_Addr < EFUSE_REAL_CONTENT_LEN_88E)) {
		/*  Check PG header for section num. */
		if ((*rtemp8 & 0x1F) == 0x0F) {		/* extended header */
			u1temp = ((*rtemp8 & 0xE0) >> 5);

			ReadEFuseByte(Adapter, eFuse_Addr, rtemp8);

			if ((*rtemp8 & 0x0F) == 0x0F) {
				eFuse_Addr++;
				ReadEFuseByte(Adapter, eFuse_Addr, rtemp8);

				if (*rtemp8 != 0xFF && (eFuse_Addr < EFUSE_REAL_CONTENT_LEN_88E))
					eFuse_Addr++;
				continue;
			} else {
				offset = ((*rtemp8 & 0xF0) >> 1) | u1temp;
				wren = (*rtemp8 & 0x0F);
				eFuse_Addr++;
			}
		} else {
			offset = ((*rtemp8 >> 4) & 0x0f);
			wren = (*rtemp8 & 0x0f);
		}

		if (offset < EFUSE_MAX_SECTION_88E) {
			/*  Get word enable value from PG header */

			for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
				/*  Check word enable condition in the section */
				if (!(wren & 0x01)) {
					ReadEFuseByte(Adapter, eFuse_Addr, rtemp8);
					eFuse_Addr++;
					efuse_utilized++;
					eFuseWord[offset][i] = (*rtemp8 & 0xff);
					if (eFuse_Addr >= EFUSE_REAL_CONTENT_LEN_88E)
						break;
					ReadEFuseByte(Adapter, eFuse_Addr, rtemp8);
					eFuse_Addr++;
					efuse_utilized++;
					eFuseWord[offset][i] |= (((u16)*rtemp8 << 8) & 0xff00);
					if (eFuse_Addr >= EFUSE_REAL_CONTENT_LEN_88E)
						break;
				}
				wren >>= 1;
			}
		}

		/*  Read next PG header */
		ReadEFuseByte(Adapter, eFuse_Addr, rtemp8);

		if (*rtemp8 != 0xFF && (eFuse_Addr < EFUSE_REAL_CONTENT_LEN_88E)) {
			efuse_utilized++;
			eFuse_Addr++;
		}
	}

	/*  3. Collect 16 sections and 4 word unit into Efuse map. */
	for (i = 0; i < EFUSE_MAX_SECTION_88E; i++) {
		for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++) {
			efuseTbl[(i * 8) + (j * 2)] = (eFuseWord[i][j] & 0xff);
			efuseTbl[(i * 8) + ((j * 2) + 1)] = ((eFuseWord[i][j] >> 8) & 0xff);
		}
	}

	/*  4. Copy from Efuse map to output pointer memory!!! */
	for (i = 0; i < _size_byte; i++)
		pbuf[i] = efuseTbl[_offset + i];

exit:
	kfree(efuseTbl);
	kfree(eFuseWord);
}

static void ReadEFuseByIC(struct adapter *Adapter, u16 _offset, u16 _size_byte, u8 *pbuf)
{
	int ret = _FAIL;
	if (rtw_IOL_applied(Adapter)) {
		rtl8188eu_InitPowerOn(Adapter);

		iol_mode_enable(Adapter, 1);
		ret = iol_read_efuse(Adapter, 0, _offset, _size_byte, pbuf);
		iol_mode_enable(Adapter, 0);

		if (_SUCCESS == ret)
			return;
	}

	Hal_EfuseReadEFuse88E(Adapter, _offset, _size_byte, pbuf);
}

void rtl8188e_ReadEFuse(struct adapter *Adapter, u16 _offset, u16 _size_byte, u8 *pbuf)
{
	ReadEFuseByIC(Adapter, _offset, _size_byte, pbuf);
}

void rtl8188e_read_chip_version(struct adapter *padapter)
{
	u32				value32;
	struct HAL_VERSION		ChipVersion;
	struct hal_data_8188e *pHalData = &padapter->haldata;

	value32 = rtw_read32(padapter, REG_SYS_CFG);
	ChipVersion.ChipType = ((value32 & RTL_ID) ? TEST_CHIP : NORMAL_CHIP);

	ChipVersion.VendorType = ((value32 & VENDOR_ID) ? CHIP_VENDOR_UMC : CHIP_VENDOR_TSMC);
	ChipVersion.CUTVersion = (value32 & CHIP_VER_RTL_MASK) >> CHIP_VER_RTL_SHIFT; /*  IC version (CUT) */

	dump_chip_info(ChipVersion);

	pHalData->VersionID = ChipVersion;
}

void rtl8188e_SetHalODMVar(struct adapter *Adapter, void *pValue1, bool bSet)
{
	struct hal_data_8188e *pHalData = &Adapter->haldata;
	struct odm_dm_struct *podmpriv = &pHalData->odmpriv;
	struct sta_info *psta = (struct sta_info *)pValue1;

	if (bSet) {
		podmpriv->pODM_StaInfo[psta->mac_id] = psta;
		ODM_RAInfo_Init(podmpriv, psta->mac_id);
	} else {
		podmpriv->pODM_StaInfo[psta->mac_id] = NULL;
	}
}

void hal_notch_filter_8188e(struct adapter *adapter, bool enable)
{
	if (enable)
		rtw_write8(adapter, rOFDM0_RxDSP + 1, rtw_read8(adapter, rOFDM0_RxDSP + 1) | BIT(1));
	else
		rtw_write8(adapter, rOFDM0_RxDSP + 1, rtw_read8(adapter, rOFDM0_RxDSP + 1) & ~BIT(1));
}

/*  */
/*  */
/*  LLT R/W/Init function */
/*  */
/*  */
static s32 _LLTWrite(struct adapter *padapter, u32 address, u32 data)
{
	s32	status = _SUCCESS;
	s32	count = 0;
	u32	value = _LLT_INIT_ADDR(address) | _LLT_INIT_DATA(data) | _LLT_OP(_LLT_WRITE_ACCESS);
	u16	LLTReg = REG_LLT_INIT;

	rtw_write32(padapter, LLTReg, value);

	/* polling */
	do {
		value = rtw_read32(padapter, LLTReg);
		if (_LLT_NO_ACTIVE == _LLT_OP_VALUE(value))
			break;

		if (count > POLLING_LLT_THRESHOLD) {
			status = _FAIL;
			break;
		}
	} while (count++);

	return status;
}

s32 InitLLTTable(struct adapter *padapter, u8 txpktbuf_bndy)
{
	s32	status = _FAIL;
	u32	i;
	u32	Last_Entry_Of_TxPktBuf = LAST_ENTRY_OF_TX_PKT_BUFFER;/*  176, 22k */

	if (rtw_IOL_applied(padapter)) {
		status = iol_InitLLTTable(padapter, txpktbuf_bndy);
	} else {
		for (i = 0; i < (txpktbuf_bndy - 1); i++) {
			status = _LLTWrite(padapter, i, i + 1);
			if (_SUCCESS != status)
				return status;
		}

		/*  end of list */
		status = _LLTWrite(padapter, (txpktbuf_bndy - 1), 0xFF);
		if (_SUCCESS != status)
			return status;

		/*  Make the other pages as ring buffer */
		/*  This ring buffer is used as beacon buffer if we config this MAC as two MAC transfer. */
		/*  Otherwise used as local loopback buffer. */
		for (i = txpktbuf_bndy; i < Last_Entry_Of_TxPktBuf; i++) {
			status = _LLTWrite(padapter, i, (i + 1));
			if (_SUCCESS != status)
				return status;
		}

		/*  Let last entry point to the start entry of ring buffer */
		status = _LLTWrite(padapter, Last_Entry_Of_TxPktBuf, txpktbuf_bndy);
		if (_SUCCESS != status) {
			return status;
		}
	}

	return status;
}

void
Hal_EfuseParseIDCode88E(
		struct adapter *padapter,
		u8 *hwinfo
	)
{
	struct eeprom_priv *pEEPROM = &padapter->eeprompriv;
	u16			EEPROMId;

	/*  Check 0x8129 again for making sure autoload status!! */
	EEPROMId = le16_to_cpu(*((__le16 *)hwinfo));
	if (EEPROMId != RTL_EEPROM_ID) {
		pr_err("EEPROM ID(%#x) is invalid!!\n", EEPROMId);
		pEEPROM->bautoload_fail_flag = true;
	} else {
		pEEPROM->bautoload_fail_flag = false;
	}

	pr_info("EEPROM ID = 0x%04x\n", EEPROMId);
}

static void Hal_ReadPowerValueFromPROM_8188E(struct txpowerinfo24g *pwrInfo24G, u8 *PROMContent, bool AutoLoadFail)
{
	u32 rfPath, eeAddr = EEPROM_TX_PWR_INX_88E, group, TxCount = 0;

	memset(pwrInfo24G, 0, sizeof(struct txpowerinfo24g));

	if (AutoLoadFail) {
		for (rfPath = 0; rfPath < RF_PATH_MAX; rfPath++) {
			/* 2.4G default value */
			for (group = 0; group < MAX_CHNL_GROUP_24G; group++) {
				pwrInfo24G->IndexCCK_Base[rfPath][group] =	EEPROM_DEFAULT_24G_INDEX;
				pwrInfo24G->IndexBW40_Base[rfPath][group] =	EEPROM_DEFAULT_24G_INDEX;
			}
			for (TxCount = 0; TxCount < MAX_TX_COUNT; TxCount++) {
				if (TxCount == 0) {
					pwrInfo24G->BW20_Diff[rfPath][0] = EEPROM_DEFAULT_24G_HT20_DIFF;
					pwrInfo24G->OFDM_Diff[rfPath][0] = EEPROM_DEFAULT_24G_OFDM_DIFF;
				} else {
					pwrInfo24G->BW20_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
					pwrInfo24G->BW40_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
					pwrInfo24G->CCK_Diff[rfPath][TxCount] =	EEPROM_DEFAULT_DIFF;
					pwrInfo24G->OFDM_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
				}
			}
		}
		return;
	}

	for (rfPath = 0; rfPath < RF_PATH_MAX; rfPath++) {
		/* 2.4G default value */
		for (group = 0; group < MAX_CHNL_GROUP_24G; group++) {
			pwrInfo24G->IndexCCK_Base[rfPath][group] =	PROMContent[eeAddr++];
			if (pwrInfo24G->IndexCCK_Base[rfPath][group] == 0xFF)
				pwrInfo24G->IndexCCK_Base[rfPath][group] = EEPROM_DEFAULT_24G_INDEX;
		}
		for (group = 0; group < MAX_CHNL_GROUP_24G - 1; group++) {
			pwrInfo24G->IndexBW40_Base[rfPath][group] =	PROMContent[eeAddr++];
			if (pwrInfo24G->IndexBW40_Base[rfPath][group] == 0xFF)
				pwrInfo24G->IndexBW40_Base[rfPath][group] =	EEPROM_DEFAULT_24G_INDEX;
		}
		for (TxCount = 0; TxCount < MAX_TX_COUNT; TxCount++) {
			if (TxCount == 0) {
				pwrInfo24G->BW40_Diff[rfPath][TxCount] = 0;
				if (PROMContent[eeAddr] == 0xFF) {
					pwrInfo24G->BW20_Diff[rfPath][TxCount] = EEPROM_DEFAULT_24G_HT20_DIFF;
				} else {
					pwrInfo24G->BW20_Diff[rfPath][TxCount] = (PROMContent[eeAddr] & 0xf0) >> 4;
					if (pwrInfo24G->BW20_Diff[rfPath][TxCount] & BIT(3))		/* 4bit sign number to 8 bit sign number */
						pwrInfo24G->BW20_Diff[rfPath][TxCount] |= 0xF0;
				}

				if (PROMContent[eeAddr] == 0xFF) {
					pwrInfo24G->OFDM_Diff[rfPath][TxCount] =	EEPROM_DEFAULT_24G_OFDM_DIFF;
				} else {
					pwrInfo24G->OFDM_Diff[rfPath][TxCount] =	(PROMContent[eeAddr] & 0x0f);
					if (pwrInfo24G->OFDM_Diff[rfPath][TxCount] & BIT(3))		/* 4bit sign number to 8 bit sign number */
						pwrInfo24G->OFDM_Diff[rfPath][TxCount] |= 0xF0;
				}
				pwrInfo24G->CCK_Diff[rfPath][TxCount] = 0;
				eeAddr++;
			} else {
				if (PROMContent[eeAddr] == 0xFF) {
					pwrInfo24G->BW40_Diff[rfPath][TxCount] =	EEPROM_DEFAULT_DIFF;
				} else {
					pwrInfo24G->BW40_Diff[rfPath][TxCount] =	(PROMContent[eeAddr] & 0xf0) >> 4;
					if (pwrInfo24G->BW40_Diff[rfPath][TxCount] & BIT(3))		/* 4bit sign number to 8 bit sign number */
						pwrInfo24G->BW40_Diff[rfPath][TxCount] |= 0xF0;
				}

				if (PROMContent[eeAddr] == 0xFF) {
					pwrInfo24G->BW20_Diff[rfPath][TxCount] =	EEPROM_DEFAULT_DIFF;
				} else {
					pwrInfo24G->BW20_Diff[rfPath][TxCount] =	(PROMContent[eeAddr] & 0x0f);
					if (pwrInfo24G->BW20_Diff[rfPath][TxCount] & BIT(3))		/* 4bit sign number to 8 bit sign number */
						pwrInfo24G->BW20_Diff[rfPath][TxCount] |= 0xF0;
				}
				eeAddr++;

				if (PROMContent[eeAddr] == 0xFF) {
					pwrInfo24G->OFDM_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
				} else {
					pwrInfo24G->OFDM_Diff[rfPath][TxCount] =	(PROMContent[eeAddr] & 0xf0) >> 4;
					if (pwrInfo24G->OFDM_Diff[rfPath][TxCount] & BIT(3))		/* 4bit sign number to 8 bit sign number */
						pwrInfo24G->OFDM_Diff[rfPath][TxCount] |= 0xF0;
				}

				if (PROMContent[eeAddr] == 0xFF) {
					pwrInfo24G->CCK_Diff[rfPath][TxCount] =	EEPROM_DEFAULT_DIFF;
				} else {
					pwrInfo24G->CCK_Diff[rfPath][TxCount] =	(PROMContent[eeAddr] & 0x0f);
					if (pwrInfo24G->CCK_Diff[rfPath][TxCount] & BIT(3))		/* 4bit sign number to 8 bit sign number */
						pwrInfo24G->CCK_Diff[rfPath][TxCount] |= 0xF0;
				}
				eeAddr++;
			}
		}
	}
}

static void hal_get_chnl_group_88e(u8 chnl, u8 *group)
{
	if (chnl < 3)			/*  Channel 1-2 */
		*group = 0;
	else if (chnl < 6)		/*  Channel 3-5 */
		*group = 1;
	else if (chnl < 9)		/*  Channel 6-8 */
		*group = 2;
	else if (chnl < 12)		/*  Channel 9-11 */
		*group = 3;
	else if (chnl < 14)		/*  Channel 12-13 */
		*group = 4;
	else if (chnl == 14)		/*  Channel 14 */
		*group = 5;
}

void Hal_ReadPowerSavingMode88E(struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail)
{
	if (AutoLoadFail)
		padapter->pwrctrlpriv.bSupportRemoteWakeup = false;
	else
		/* hw power down mode selection , 0:rf-off / 1:power down */

		/*  decide hw if support remote wakeup function */
		/*  if hw supported, 8051 (SIE) will generate WeakUP signal(D+/D- toggle) when autoresume */
		padapter->pwrctrlpriv.bSupportRemoteWakeup = (hwinfo[EEPROM_USB_OPTIONAL_FUNCTION0] & BIT(1)) ? true : false;
}

void Hal_ReadTxPowerInfo88E(struct adapter *padapter, u8 *PROMContent, bool AutoLoadFail)
{
	struct hal_data_8188e *pHalData = &padapter->haldata;
	struct txpowerinfo24g pwrInfo24G;
	u8 ch, group;
	u8 TxCount;

	Hal_ReadPowerValueFromPROM_8188E(&pwrInfo24G, PROMContent, AutoLoadFail);

	for (ch = 0; ch < CHANNEL_MAX_NUMBER; ch++) {
		hal_get_chnl_group_88e(ch, &group);

		pHalData->Index24G_CCK_Base[ch] = pwrInfo24G.IndexCCK_Base[0][group];
		if (ch == 14)
			pHalData->Index24G_BW40_Base[ch] = pwrInfo24G.IndexBW40_Base[0][4];
		else
			pHalData->Index24G_BW40_Base[ch] = pwrInfo24G.IndexBW40_Base[0][group];
	}
	for (TxCount = 0; TxCount < MAX_TX_COUNT; TxCount++) {
		pHalData->OFDM_24G_Diff[TxCount] = pwrInfo24G.OFDM_Diff[0][TxCount];
		pHalData->BW20_24G_Diff[TxCount] = pwrInfo24G.BW20_Diff[0][TxCount];
	}

	/*  2010/10/19 MH Add Regulator recognize for CU. */
	if (!AutoLoadFail) {
		pHalData->EEPROMRegulatory = (PROMContent[EEPROM_RF_BOARD_OPTION_88E] & 0x7);	/* bit0~2 */
		if (PROMContent[EEPROM_RF_BOARD_OPTION_88E] == 0xFF)
			pHalData->EEPROMRegulatory = (EEPROM_DEFAULT_BOARD_OPTION & 0x7);	/* bit0~2 */
	} else {
		pHalData->EEPROMRegulatory = 0;
	}
}

void Hal_EfuseParseXtal_8188E(struct adapter *pAdapter, u8 *hwinfo, bool AutoLoadFail)
{
	struct hal_data_8188e *pHalData = &pAdapter->haldata;

	if (!AutoLoadFail) {
		pHalData->CrystalCap = hwinfo[EEPROM_XTAL_88E];
		if (pHalData->CrystalCap == 0xFF)
			pHalData->CrystalCap = EEPROM_Default_CrystalCap_88E;
	} else {
		pHalData->CrystalCap = EEPROM_Default_CrystalCap_88E;
	}
}

void rtl8188e_EfuseParseChnlPlan(struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail)
{
	padapter->mlmepriv.ChannelPlan =
		 hal_com_get_channel_plan(padapter,
					  hwinfo ? hwinfo[EEPROM_ChannelPlan_88E] : 0xFF,
					  padapter->registrypriv.channel_plan,
					  RT_CHANNEL_DOMAIN_WORLD_WIDE_13, AutoLoadFail);
}

void Hal_ReadAntennaDiversity88E(struct adapter *pAdapter, u8 *PROMContent, bool AutoLoadFail)
{
	struct hal_data_8188e *pHalData = &pAdapter->haldata;
	struct registry_priv	*registry_par = &pAdapter->registrypriv;

	if (!AutoLoadFail) {
		/*  Antenna Diversity setting. */
		if (registry_par->antdiv_cfg == 2) { /*  2:By EFUSE */
			pHalData->AntDivCfg = (PROMContent[EEPROM_RF_BOARD_OPTION_88E] & 0x18) >> 3;
			if (PROMContent[EEPROM_RF_BOARD_OPTION_88E] == 0xFF)
				pHalData->AntDivCfg = (EEPROM_DEFAULT_BOARD_OPTION & 0x18) >> 3;
		} else {
			pHalData->AntDivCfg = registry_par->antdiv_cfg;  /*  0:OFF , 1:ON, 2:By EFUSE */
		}

		if (registry_par->antdiv_type == 0) {
			/* If TRxAntDivType is AUTO in advanced setting, use EFUSE value instead. */
			pHalData->TRxAntDivType = PROMContent[EEPROM_RF_ANTENNA_OPT_88E];
			if (pHalData->TRxAntDivType == 0xFF)
				pHalData->TRxAntDivType = CG_TRX_HW_ANTDIV; /*  For 88EE, 1Tx and 1RxCG are fixed.(1Ant, Tx and RxCG are both on aux port) */
		} else {
			pHalData->TRxAntDivType = registry_par->antdiv_type;
		}

		if (pHalData->TRxAntDivType == CG_TRX_HW_ANTDIV || pHalData->TRxAntDivType == CGCS_RX_HW_ANTDIV)
			pHalData->AntDivCfg = 1; /*  0xC1[3] is ignored. */
	} else {
		pHalData->AntDivCfg = 0;
	}
}

void Hal_ReadThermalMeter_88E(struct adapter *Adapter, u8 *PROMContent, bool AutoloadFail)
{
	struct hal_data_8188e *pHalData = &Adapter->haldata;

	/*  ThermalMeter from EEPROM */
	if (!AutoloadFail)
		pHalData->EEPROMThermalMeter = PROMContent[EEPROM_THERMAL_METER_88E];
	else
		pHalData->EEPROMThermalMeter = EEPROM_Default_ThermalMeter_88E;

	if (pHalData->EEPROMThermalMeter == 0xff || AutoloadFail)
		pHalData->EEPROMThermalMeter = EEPROM_Default_ThermalMeter_88E;
}