aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/staging/rtl8187se/r8185b_init.c
blob: 50309f2da9c1b5c644217b38106266034df75cc3 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
/*++
Copyright (c) Realtek Semiconductor Corp. All rights reserved.

Module Name:
 	r8185b_init.c

Abstract:
 	Hardware Initialization and Hardware IO for RTL8185B

Major Change History:
	When        Who      What
	----------    ---------------   -------------------------------
	2006-11-15    Xiong		Created

Notes:
	This file is ported from RTL8185B Windows driver.


--*/

/*--------------------------Include File------------------------------------*/
#include <linux/spinlock.h>
#include "r8180_hw.h"
#include "r8180.h"
#include "r8180_rtl8225.h" /* RTL8225 Radio frontend */
#include "r8180_93cx6.h"   /* Card EEPROM */
#include "r8180_wx.h"

#include "ieee80211/dot11d.h"


//#define CONFIG_RTL8180_IO_MAP

#define TC_3W_POLL_MAX_TRY_CNT 5
static u8 MAC_REG_TABLE[][2]={
                        //PAGA 0:
                        // 0x34(BRSR), 0xBE(RATE_FALLBACK_CTL), 0x1E0(ARFR) would set in HwConfigureRTL8185()
                        // 0x272(RFSW_CTRL), 0x1CE(AESMSK_QC) set in InitializeAdapter8185().
                        // 0x1F0~0x1F8  set in MacConfig_85BASIC()
                        {0x08, 0xae}, {0x0a, 0x72}, {0x5b, 0x42},
                        {0x84, 0x88}, {0x85, 0x24}, {0x88, 0x54}, {0x8b, 0xb8}, {0x8c, 0x03},
                        {0x8d, 0x40}, {0x8e, 0x00}, {0x8f, 0x00}, {0x5b, 0x18}, {0x91, 0x03},
                        {0x94, 0x0F}, {0x95, 0x32},
                        {0x96, 0x00}, {0x97, 0x07}, {0xb4, 0x22}, {0xdb, 0x00},
                        {0xf0, 0x32}, {0xf1, 0x32}, {0xf2, 0x00}, {0xf3, 0x00}, {0xf4, 0x32},
                        {0xf5, 0x43}, {0xf6, 0x00}, {0xf7, 0x00}, {0xf8, 0x46}, {0xf9, 0xa4},
                        {0xfa, 0x00}, {0xfb, 0x00}, {0xfc, 0x96}, {0xfd, 0xa4}, {0xfe, 0x00},
                        {0xff, 0x00},

                        //PAGE 1:
                        // For Flextronics system Logo PCIHCT failure:
			// 0x1C4~0x1CD set no-zero value to avoid PCI configuration space 0x45[7]=1
                        {0x5e, 0x01},
                        {0x58, 0x00}, {0x59, 0x00}, {0x5a, 0x04}, {0x5b, 0x00}, {0x60, 0x24},
                        {0x61, 0x97}, {0x62, 0xF0}, {0x63, 0x09}, {0x80, 0x0F}, {0x81, 0xFF},
                        {0x82, 0xFF}, {0x83, 0x03},
                        {0xC4, 0x22}, {0xC5, 0x22}, {0xC6, 0x22}, {0xC7, 0x22}, {0xC8, 0x22}, //lzm add 080826
			{0xC9, 0x22}, {0xCA, 0x22}, {0xCB, 0x22}, {0xCC, 0x22}, {0xCD, 0x22},//lzm add 080826
                        {0xe2, 0x00},


                        //PAGE 2:
                        {0x5e, 0x02},
                        {0x0c, 0x04}, {0x4c, 0x30}, {0x4d, 0x08}, {0x50, 0x05}, {0x51, 0xf5},
                        {0x52, 0x04}, {0x53, 0xa0}, {0x54, 0xff}, {0x55, 0xff}, {0x56, 0xff},
                        {0x57, 0xff}, {0x58, 0x08}, {0x59, 0x08}, {0x5a, 0x08}, {0x5b, 0x08},
                        {0x60, 0x08}, {0x61, 0x08}, {0x62, 0x08}, {0x63, 0x08}, {0x64, 0x2f},
                        {0x8c, 0x3f}, {0x8d, 0x3f}, {0x8e, 0x3f},
                        {0x8f, 0x3f}, {0xc4, 0xff}, {0xc5, 0xff}, {0xc6, 0xff}, {0xc7, 0xff},
                        {0xc8, 0x00}, {0xc9, 0x00}, {0xca, 0x80}, {0xcb, 0x00},

                        //PAGA 0:
                        {0x5e, 0x00},{0x9f, 0x03}
                };


static u8  ZEBRA_AGC[]={
			0,
			0x7E,0x7E,0x7E,0x7E,0x7D,0x7C,0x7B,0x7A,0x79,0x78,0x77,0x76,0x75,0x74,0x73,0x72,
			0x71,0x70,0x6F,0x6E,0x6D,0x6C,0x6B,0x6A,0x69,0x68,0x67,0x66,0x65,0x64,0x63,0x62,
			0x48,0x47,0x46,0x45,0x44,0x29,0x28,0x27,0x26,0x25,0x24,0x23,0x22,0x21,0x08,0x07,
			0x06,0x05,0x04,0x03,0x02,0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
			0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x10,0x11,0x12,0x13,0x15,0x16,
			0x17,0x17,0x18,0x18,0x19,0x1a,0x1a,0x1b,0x1b,0x1c,0x1c,0x1d,0x1d,0x1d,0x1e,0x1e,
			0x1f,0x1f,0x1f,0x20,0x20,0x20,0x20,0x21,0x21,0x21,0x22,0x22,0x22,0x23,0x23,0x24,
			0x24,0x25,0x25,0x25,0x26,0x26,0x27,0x27,0x2F,0x2F,0x2F,0x2F,0x2F,0x2F,0x2F,0x2F
			};

static u32 ZEBRA_RF_RX_GAIN_TABLE[]={
			0x0096,0x0076,0x0056,0x0036,0x0016,0x01f6,0x01d6,0x01b6,
			0x0196,0x0176,0x00F7,0x00D7,0x00B7,0x0097,0x0077,0x0057,
			0x0037,0x00FB,0x00DB,0x00BB,0x00FF,0x00E3,0x00C3,0x00A3,
			0x0083,0x0063,0x0043,0x0023,0x0003,0x01E3,0x01C3,0x01A3,
			0x0183,0x0163,0x0143,0x0123,0x0103
	};

static u8 OFDM_CONFIG[]={
			// OFDM reg0x06[7:0]=0xFF: Enable power saving mode in RX
			// OFDM reg0x3C[4]=1'b1: Enable RX power saving mode
			// ofdm 0x3a = 0x7b ,(original : 0xfb) For ECS shielding room TP test

			// 0x00
			0x10, 0x0F, 0x0A, 0x0C, 0x14, 0xFA, 0xFF, 0x50,
			0x00, 0x50, 0x00, 0x00, 0x00, 0x5C, 0x00, 0x00,
			// 0x10
			0x40, 0x00, 0x40, 0x00, 0x00, 0x00, 0xA8, 0x26,
			0x32, 0x33, 0x06, 0xA5, 0x6F, 0x55, 0xC8, 0xBB,
			// 0x20
			0x0A, 0xE1, 0x2C, 0x4A, 0x86, 0x83, 0x34, 0x00,
			0x4F, 0x24, 0x6F, 0xC2, 0x03, 0x40, 0x80, 0x00,
			// 0x30
			0xC0, 0xC1, 0x58, 0xF1, 0x00, 0xC4, 0x90, 0x3e,
			0xD8, 0x3C, 0x7B, 0x10, 0x10
		};

/*---------------------------------------------------------------
  * Hardware IO
  * the code is ported from Windows source code
  ----------------------------------------------------------------*/

void
PlatformIOWrite1Byte(
	struct net_device *dev,
	u32		offset,
	u8		data
	)
{
	write_nic_byte(dev, offset, data);
	read_nic_byte(dev, offset); // To make sure write operation is completed, 2005.11.09, by rcnjko.

}

void
PlatformIOWrite2Byte(
	struct net_device *dev,
	u32		offset,
	u16		data
	)
{
	write_nic_word(dev, offset, data);
	read_nic_word(dev, offset); // To make sure write operation is completed, 2005.11.09, by rcnjko.


}
u8 PlatformIORead1Byte(struct net_device *dev, u32 offset);

void
PlatformIOWrite4Byte(
	struct net_device *dev,
	u32		offset,
	u32		data
	)
{
//{by amy 080312
if (offset == PhyAddr)
	{//For Base Band configuration.
		unsigned char	cmdByte;
		unsigned long	dataBytes;
		unsigned char	idx;
		u8	u1bTmp;

		cmdByte = (u8)(data & 0x000000ff);
		dataBytes = data>>8;

		//
		// 071010, rcnjko:
		// The critical section is only BB read/write race condition.
		// Assumption:
		// 1. We assume NO one will access BB at DIRQL, otherwise, system will crash for
		// acquiring the spinlock in such context.
		// 2. PlatformIOWrite4Byte() MUST NOT be recursive.
		//
//		NdisAcquireSpinLock( &(pDevice->IoSpinLock) );

		for(idx = 0; idx < 30; idx++)
		{ // Make sure command bit is clear before access it.
			u1bTmp = PlatformIORead1Byte(dev, PhyAddr);
			if((u1bTmp & BIT7) == 0)
				break;
			else
				mdelay(10);
		}

		for(idx=0; idx < 3; idx++)
		{
			PlatformIOWrite1Byte(dev,offset+1+idx,((u8*)&dataBytes)[idx] );
		}
		write_nic_byte(dev, offset, cmdByte);

//		NdisReleaseSpinLock( &(pDevice->IoSpinLock) );
	}
//by amy 080312}
	else{
		write_nic_dword(dev, offset, data);
		read_nic_dword(dev, offset); // To make sure write operation is completed, 2005.11.09, by rcnjko.
	}
}

u8
PlatformIORead1Byte(
	struct net_device *dev,
	u32		offset
	)
{
	u8	data = 0;

	data = read_nic_byte(dev, offset);


	return data;
}

u16
PlatformIORead2Byte(
	struct net_device *dev,
	u32		offset
	)
{
	u16	data = 0;

	data = read_nic_word(dev, offset);


	return data;
}

u32
PlatformIORead4Byte(
	struct net_device *dev,
	u32		offset
	)
{
	u32	data = 0;

	data = read_nic_dword(dev, offset);


	return data;
}

void
SetOutputEnableOfRfPins(
	struct net_device *dev
	)
{
	struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);

	switch(priv->rf_chip)
	{
	case RFCHIPID_RTL8225:
	case RF_ZEBRA2:
	case RF_ZEBRA4:
		write_nic_word(dev, RFPinsEnable, 0x1bff);
		//write_nic_word(dev, RFPinsEnable, 0x1fff);
		break;
	}
}

void
ZEBRA_RFSerialWrite(
	struct net_device *dev,
	u32			data2Write,
	u8			totalLength,
	u8			low2high
	)
{
	ThreeWireReg		twreg;
	int 				i;
	u16				oval,oval2,oval3;
	u32				mask;
	u16				UshortBuffer;

	u8			u1bTmp;
	// RTL8187S HSSI Read/Write Function
	u1bTmp = read_nic_byte(dev, RF_SW_CONFIG);
	u1bTmp |=   RF_SW_CFG_SI;   //reg08[1]=1 Serial Interface(SI)
	write_nic_byte(dev, RF_SW_CONFIG, u1bTmp);
	UshortBuffer = read_nic_word(dev, RFPinsOutput);
	oval = UshortBuffer & 0xfff8; // We shall clear bit0, 1, 2 first, 2005.10.28, by rcnjko.

	oval2 = read_nic_word(dev, RFPinsEnable);
	oval3 = read_nic_word(dev, RFPinsSelect);

	// <RJ_NOTE> 3-wire should be controled by HW when we finish SW 3-wire programming. 2005.08.10, by rcnjko.
	oval3 &= 0xfff8;

	write_nic_word(dev, RFPinsEnable, (oval2|0x0007)); // Set To Output Enable
	write_nic_word(dev, RFPinsSelect, (oval3|0x0007)); // Set To SW Switch
	udelay(10);

	// Add this to avoid hardware and software 3-wire conflict.
	// 2005.03.01, by rcnjko.
	twreg.longData = 0;
	twreg.struc.enableB = 1;
	write_nic_word(dev, RFPinsOutput, (twreg.longData|oval)); // Set SI_EN (RFLE)
	udelay(2);
	twreg.struc.enableB = 0;
	write_nic_word(dev, RFPinsOutput, (twreg.longData|oval)); // Clear SI_EN (RFLE)
	udelay(10);

	mask = (low2high)?0x01:((u32)0x01<<(totalLength-1));

	for(i=0; i<totalLength/2; i++)
	{
		twreg.struc.data = ((data2Write&mask)!=0) ? 1 : 0;
		write_nic_word(dev, RFPinsOutput, (twreg.longData|oval));
		twreg.struc.clk = 1;
		write_nic_word(dev, RFPinsOutput, (twreg.longData|oval));
		write_nic_word(dev, RFPinsOutput, (twreg.longData|oval));

		mask = (low2high)?(mask<<1):(mask>>1);
		twreg.struc.data = ((data2Write&mask)!=0) ? 1 : 0;
		write_nic_word(dev, RFPinsOutput, (twreg.longData|oval));
		write_nic_word(dev, RFPinsOutput, (twreg.longData|oval));
		twreg.struc.clk = 0;
		write_nic_word(dev, RFPinsOutput, (twreg.longData|oval));
		mask = (low2high)?(mask<<1):(mask>>1);
	}

	twreg.struc.enableB = 1;
	twreg.struc.clk = 0;
	twreg.struc.data = 0;
	write_nic_word(dev, RFPinsOutput, twreg.longData|oval);
	udelay(10);

	write_nic_word(dev, RFPinsOutput, oval|0x0004);
	write_nic_word(dev, RFPinsSelect, oval3|0x0000);

	SetOutputEnableOfRfPins(dev);
}
//by amy


int
HwHSSIThreeWire(
	struct net_device *dev,
	u8			*pDataBuf,
	u8			nDataBufBitCnt,
	int			bSI,
	int			bWrite
	)
{
	int	bResult = 1;
	u8	TryCnt;
	u8	u1bTmp;

	do
	{
		// Check if WE and RE are cleared.
		for(TryCnt = 0; TryCnt < TC_3W_POLL_MAX_TRY_CNT; TryCnt++)
		{
			u1bTmp = read_nic_byte(dev, SW_3W_CMD1);
			if( (u1bTmp & (SW_3W_CMD1_RE|SW_3W_CMD1_WE)) == 0 )
			{
				break;
			}
			udelay(10);
		}
		if (TryCnt == TC_3W_POLL_MAX_TRY_CNT)
			panic("HwThreeWire(): CmdReg: %#X RE|WE bits are not clear!!\n", u1bTmp);

		// RTL8187S HSSI Read/Write Function
		u1bTmp = read_nic_byte(dev, RF_SW_CONFIG);

		if(bSI)
		{
			u1bTmp |=   RF_SW_CFG_SI;   //reg08[1]=1 Serial Interface(SI)
		}else
		{
			u1bTmp &= ~RF_SW_CFG_SI;  //reg08[1]=0 Parallel Interface(PI)
		}

		write_nic_byte(dev, RF_SW_CONFIG, u1bTmp);

		if(bSI)
		{
			// jong: HW SI read must set reg84[3]=0.
			u1bTmp = read_nic_byte(dev, RFPinsSelect);
			u1bTmp &= ~BIT3;
			write_nic_byte(dev, RFPinsSelect, u1bTmp );
		}
	 	// Fill up data buffer for write operation.

		if(bWrite)
		{
			if(nDataBufBitCnt == 16)
			{
				write_nic_word(dev, SW_3W_DB0, *((u16*)pDataBuf));
			}
			else if(nDataBufBitCnt == 64)  // RTL8187S shouldn't enter this case
			{
				write_nic_dword(dev, SW_3W_DB0, *((u32*)pDataBuf));
				write_nic_dword(dev, SW_3W_DB1, *((u32*)(pDataBuf + 4)));
			}
			else
			{
				int idx;
				int ByteCnt = nDataBufBitCnt / 8;
                                //printk("%d\n",nDataBufBitCnt);
				if ((nDataBufBitCnt % 8) != 0)
				panic("HwThreeWire(): nDataBufBitCnt(%d) should be multiple of 8!!!\n",
				nDataBufBitCnt);

			       if (nDataBufBitCnt > 64)
				panic("HwThreeWire(): nDataBufBitCnt(%d) should <= 64!!!\n",
				nDataBufBitCnt);

				for(idx = 0; idx < ByteCnt; idx++)
				{
					write_nic_byte(dev, (SW_3W_DB0+idx), *(pDataBuf+idx));
				}
			}
		}
		else		//read
		{
			if(bSI)
			{
				// SI - reg274[3:0] : RF register's Address
				write_nic_word(dev, SW_3W_DB0, *((u16*)pDataBuf) );
			}
			else
			{
				// PI - reg274[15:12] : RF register's Address
				write_nic_word(dev, SW_3W_DB0, (*((u16*)pDataBuf)) << 12);
			}
		}

		// Set up command: WE or RE.
		if(bWrite)
		{
			write_nic_byte(dev, SW_3W_CMD1, SW_3W_CMD1_WE);
		}
		else
		{
			write_nic_byte(dev, SW_3W_CMD1, SW_3W_CMD1_RE);
		}

		// Check if DONE is set.
		for(TryCnt = 0; TryCnt < TC_3W_POLL_MAX_TRY_CNT; TryCnt++)
		{
			u1bTmp = read_nic_byte(dev, SW_3W_CMD1);
			if(  (u1bTmp & SW_3W_CMD1_DONE) != 0 )
			{
				break;
			}
			udelay(10);
		}

		write_nic_byte(dev, SW_3W_CMD1, 0);

		// Read back data for read operation.
		if(bWrite == 0)
		{
			if(bSI)
			{
				//Serial Interface : reg363_362[11:0]
				*((u16*)pDataBuf) = read_nic_word(dev, SI_DATA_READ) ;
			}
			else
			{
				//Parallel Interface : reg361_360[11:0]
				*((u16*)pDataBuf) = read_nic_word(dev, PI_DATA_READ);
			}

			*((u16*)pDataBuf) &= 0x0FFF;
		}

	}while(0);

	return bResult;
}
//by amy

int
HwThreeWire(
	struct net_device *dev,
	u8			*pDataBuf,
	u8			nDataBufBitCnt,
	int			bHold,
	int			bWrite
	)
{
	int	bResult = 1;
	u8	TryCnt;
	u8	u1bTmp;

	do
	{
		// Check if WE and RE are cleared.
		for(TryCnt = 0; TryCnt < TC_3W_POLL_MAX_TRY_CNT; TryCnt++)
		{
			u1bTmp = read_nic_byte(dev, SW_3W_CMD1);
			if( (u1bTmp & (SW_3W_CMD1_RE|SW_3W_CMD1_WE)) == 0 )
			{
				break;
			}
			udelay(10);
		}
		if (TryCnt == TC_3W_POLL_MAX_TRY_CNT)
			panic("HwThreeWire(): CmdReg: %#X RE|WE bits are not clear!!\n", u1bTmp);

		// Fill up data buffer for write operation.
		if(nDataBufBitCnt == 16)
		{
			write_nic_word(dev, SW_3W_DB0, *((u16 *)pDataBuf));
		}
		else if(nDataBufBitCnt == 64)
		{
			write_nic_dword(dev, SW_3W_DB0, *((u32 *)pDataBuf));
			write_nic_dword(dev, SW_3W_DB1, *((u32 *)(pDataBuf + 4)));
		}
		else
		{
			int idx;
			int ByteCnt = nDataBufBitCnt / 8;

			if ((nDataBufBitCnt % 8) != 0)
				panic("HwThreeWire(): nDataBufBitCnt(%d) should be multiple of 8!!!\n",
				nDataBufBitCnt);

			if (nDataBufBitCnt > 64)
				panic("HwThreeWire(): nDataBufBitCnt(%d) should <= 64!!!\n",
				nDataBufBitCnt);

			for(idx = 0; idx < ByteCnt; idx++)
			{
				write_nic_byte(dev, (SW_3W_DB0+idx), *(pDataBuf+idx));
			}
		}

		// Fill up length field.
		u1bTmp = (u8)(nDataBufBitCnt - 1); // Number of bits - 1.
		if(bHold)
			u1bTmp |= SW_3W_CMD0_HOLD;
		write_nic_byte(dev, SW_3W_CMD0, u1bTmp);

		// Set up command: WE or RE.
		if(bWrite)
		{
			write_nic_byte(dev, SW_3W_CMD1, SW_3W_CMD1_WE);
		}
		else
		{
			write_nic_byte(dev, SW_3W_CMD1, SW_3W_CMD1_RE);
		}

		// Check if WE and RE are cleared and DONE is set.
		for(TryCnt = 0; TryCnt < TC_3W_POLL_MAX_TRY_CNT; TryCnt++)
		{
			u1bTmp = read_nic_byte(dev, SW_3W_CMD1);
			if( (u1bTmp & (SW_3W_CMD1_RE|SW_3W_CMD1_WE)) == 0 &&
				(u1bTmp & SW_3W_CMD1_DONE) != 0 )
			{
				break;
			}
			udelay(10);
		}
		if(TryCnt == TC_3W_POLL_MAX_TRY_CNT)
		{
			//RT_ASSERT(TryCnt != TC_3W_POLL_MAX_TRY_CNT,
			//	("HwThreeWire(): CmdReg: %#X RE|WE bits are not clear or DONE is not set!!\n", u1bTmp));
			// Workaround suggested by wcchu: clear WE here. 2006.07.07, by rcnjko.
			write_nic_byte(dev, SW_3W_CMD1, 0);
		}

		// Read back data for read operation.
		// <RJ_TODO> I am not sure if this is correct output format of a read operation.
		if(bWrite == 0)
		{
			if(nDataBufBitCnt == 16)
			{
				*((u16 *)pDataBuf) = read_nic_word(dev, SW_3W_DB0);
			}
			else if(nDataBufBitCnt == 64)
			{
				*((u32 *)pDataBuf) = read_nic_dword(dev, SW_3W_DB0);
				*((u32 *)(pDataBuf + 4)) = read_nic_dword(dev, SW_3W_DB1);
			}
			else
			{
				int idx;
				int ByteCnt = nDataBufBitCnt / 8;

				if ((nDataBufBitCnt % 8) != 0)
					panic("HwThreeWire(): nDataBufBitCnt(%d) should be multiple of 8!!!\n",
					nDataBufBitCnt);

				if (nDataBufBitCnt > 64)
					panic("HwThreeWire(): nDataBufBitCnt(%d) should <= 64!!!\n",
					nDataBufBitCnt);

				for(idx = 0; idx < ByteCnt; idx++)
				{
					*(pDataBuf+idx) = read_nic_byte(dev, (SW_3W_DB0+idx));
				}
			}
		}

	}while(0);

	return bResult;
}


void
RF_WriteReg(
	struct net_device *dev,
	u8		offset,
	u32		data
	)
{
	//RFReg			reg;
	u32			data2Write;
	u8			len;
	u8			low2high;
	//u32			RF_Read = 0;
	struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);


	switch(priv->rf_chip)
	{
	case RFCHIPID_RTL8225:
	case RF_ZEBRA2:		// Annie 2006-05-12.
	case RF_ZEBRA4:        //by amy
		switch(priv->RegThreeWireMode)
		{
		case SW_THREE_WIRE:
			{ // Perform SW 3-wire programming by driver.
				data2Write = (data << 4) | (u32)(offset & 0x0f);
				len = 16;
				low2high = 0;
				ZEBRA_RFSerialWrite(dev, data2Write, len, low2high);
       			}
			break;

 		case HW_THREE_WIRE:
			{ // Pure HW 3-wire.
				data2Write = (data << 4) | (u32)(offset & 0x0f);
				len = 16;
				HwThreeWire(
					dev,
					(u8 *)(&data2Write),	// pDataBuf,
					len,				// nDataBufBitCnt,
					0,					// bHold,
					1);					// bWrite
         		}
			break;
			case HW_THREE_WIRE_PI: //Parallel Interface
			{ // Pure HW 3-wire.
				data2Write = (data << 4) | (u32)(offset & 0x0f);
				len = 16;
					HwHSSIThreeWire(
						dev,
						(u8*)(&data2Write),	// pDataBuf,
						len,						// nDataBufBitCnt,
						0, 					// bSI
						1); 					// bWrite

                                //printk("33333\n");
			}
			break;

			case HW_THREE_WIRE_SI: //Serial Interface
			{ // Pure HW 3-wire.
				data2Write = (data << 4) | (u32)(offset & 0x0f);
				len = 16;
//                                printk(" enter  ZEBRA_RFSerialWrite\n ");
//                                low2high = 0;
//                                ZEBRA_RFSerialWrite(dev, data2Write, len, low2high);

				HwHSSIThreeWire(
					dev,
					(u8*)(&data2Write),	// pDataBuf,
					len,						// nDataBufBitCnt,
					1, 					// bSI
					1); 					// bWrite

//                                 printk(" exit ZEBRA_RFSerialWrite\n ");
			}
			break;


		default:
			DMESGE("RF_WriteReg(): invalid RegThreeWireMode(%d) !!!", priv->RegThreeWireMode);
			break;
		}
		break;

	default:
		DMESGE("RF_WriteReg(): unknown RFChipID: %#X", priv->rf_chip);
		break;
	}
}


void
ZEBRA_RFSerialRead(
	struct net_device *dev,
	u32		data2Write,
	u8		wLength,
	u32		*data2Read,
	u8		rLength,
	u8		low2high
	)
{
	ThreeWireReg	twreg;
	int				i;
	u16			oval,oval2,oval3,tmp, wReg80;
	u32			mask;
	u8			u1bTmp;
	ThreeWireReg	tdata;
	//PHAL_DATA_8187	pHalData = GetHalData8187(pAdapter);
	{ // RTL8187S HSSI Read/Write Function
		u1bTmp = read_nic_byte(dev, RF_SW_CONFIG);
		u1bTmp |=   RF_SW_CFG_SI;   //reg08[1]=1 Serial Interface(SI)
		write_nic_byte(dev, RF_SW_CONFIG, u1bTmp);
	}

	wReg80 = oval = read_nic_word(dev, RFPinsOutput);
	oval2 = read_nic_word(dev, RFPinsEnable);
	oval3 = read_nic_word(dev, RFPinsSelect);

	write_nic_word(dev, RFPinsEnable, oval2|0xf);
	write_nic_word(dev, RFPinsSelect, oval3|0xf);

	*data2Read = 0;

	// We must clear BIT0-3 here, otherwise,
	// SW_Enalbe will be true when we first call ZEBRA_RFSerialRead() after 8187MPVC open,
	// which will cause the value read become 0. 2005.04.11, by rcnjko.
	oval &= ~0xf;

	// Avoid collision with hardware three-wire.
	twreg.longData = 0;
	twreg.struc.enableB = 1;
	write_nic_word(dev, RFPinsOutput, twreg.longData|oval); udelay(4);

	twreg.longData = 0;
	twreg.struc.enableB = 0;
	twreg.struc.clk = 0;
	twreg.struc.read_write = 0;
	write_nic_word(dev, RFPinsOutput, twreg.longData|oval); udelay(5);

	mask = (low2high) ? 0x01 : ((u32)0x01<<(32-1));
	for(i = 0; i < wLength/2; i++)
	{
		twreg.struc.data = ((data2Write&mask) != 0) ? 1 : 0;
		write_nic_word(dev, RFPinsOutput, twreg.longData|oval); udelay(1);
		twreg.struc.clk = 1;
		write_nic_word(dev, RFPinsOutput, twreg.longData|oval); udelay(2);
		write_nic_word(dev, RFPinsOutput, twreg.longData|oval); udelay(2);

		mask = (low2high) ? (mask<<1): (mask>>1);

		if(i == 2)
		{
			// Commented out by Jackie, 2004.08.26. <RJ_NOTE> We must comment out the following two lines for we cannot pull down VCOPDN during RF Serail Read.
			//PlatformEFIOWrite2Byte(pAdapter, RFPinsEnable, 0xe);     // turn off data enable
			//PlatformEFIOWrite2Byte(pAdapter, RFPinsSelect, 0xe);

			twreg.struc.read_write=1;
			write_nic_word(dev, RFPinsOutput, twreg.longData|oval); udelay(2);
			twreg.struc.clk = 0;
			write_nic_word(dev, RFPinsOutput, twreg.longData|oval); udelay(2);
			break;
		}
		twreg.struc.data = ((data2Write&mask) != 0) ? 1: 0;
		write_nic_word(dev, RFPinsOutput, twreg.longData|oval); udelay(2);
		write_nic_word(dev, RFPinsOutput, twreg.longData|oval); udelay(2);

		twreg.struc.clk = 0;
		write_nic_word(dev, RFPinsOutput, twreg.longData|oval); udelay(1);

		mask = (low2high) ? (mask<<1) : (mask>>1);
	}

	twreg.struc.clk = 0;
	twreg.struc.data = 0;
	write_nic_word(dev, RFPinsOutput, twreg.longData|oval); udelay(2);
	mask = (low2high) ? 0x01 : ((u32)0x01 << (12-1));

	//
	// 061016, by rcnjko:
	// We must set data pin to HW controled, otherwise RF can't driver it and
	// value RF register won't be able to read back properly.
	//
	write_nic_word(dev, RFPinsEnable, ( ((oval2|0x0E) & (~0x01))) );

	for(i = 0; i < rLength; i++)
	{
		write_nic_word(dev, RFPinsOutput, twreg.longData|oval); udelay(1);
		twreg.struc.clk = 1;
		write_nic_word(dev, RFPinsOutput, twreg.longData|oval); udelay(2);
		write_nic_word(dev, RFPinsOutput, twreg.longData|oval); udelay(2);
		write_nic_word(dev, RFPinsOutput, twreg.longData|oval); udelay(2);
		tmp = read_nic_word(dev, RFPinsInput);
		tdata.longData = tmp;
		*data2Read |= tdata.struc.clk ? mask : 0;

		twreg.struc.clk = 0;
		write_nic_word(dev, RFPinsOutput, twreg.longData|oval); udelay(2);

		mask = (low2high) ? (mask<<1) : (mask>>1);
	}
	twreg.struc.enableB = 1;
	twreg.struc.clk = 0;
	twreg.struc.data = 0;
	twreg.struc.read_write = 1;
	write_nic_word(dev, RFPinsOutput, twreg.longData|oval); udelay(2);

	//PlatformEFIOWrite2Byte(pAdapter, RFPinsEnable, oval2|0x8);   // Set To Output Enable
	write_nic_word(dev, RFPinsEnable, oval2);   // Set To Output Enable, <RJ_NOTE> We cannot enable BIT3 here, otherwise, we will failed to switch channel. 2005.04.12.
	//PlatformEFIOWrite2Byte(pAdapter, RFPinsEnable, 0x1bff);
	write_nic_word(dev, RFPinsSelect, oval3);   // Set To SW Switch
	//PlatformEFIOWrite2Byte(pAdapter, RFPinsSelect, 0x0488);
	write_nic_word(dev, RFPinsOutput, 0x3a0);
	//PlatformEFIOWrite2Byte(pAdapter, RFPinsOutput, 0x0480);
}


u32
RF_ReadReg(
	struct net_device *dev,
	u8		offset
	)
{
	struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
	u32			data2Write;
	u8			wlen;
	u8			rlen;
	u8			low2high;
	u32			dataRead;

	switch(priv->rf_chip)
	{
	case RFCHIPID_RTL8225:
	case RF_ZEBRA2:
	case RF_ZEBRA4:
		switch(priv->RegThreeWireMode)
		{
			case HW_THREE_WIRE_PI: // For 87S  Parallel Interface.
			{
				data2Write = ((u32)(offset&0x0f));
				wlen=16;
				HwHSSIThreeWire(
					dev,
					(u8*)(&data2Write),	// pDataBuf,
					wlen,					// nDataBufBitCnt,
					0, 					// bSI
					0); 					// bWrite
				dataRead= data2Write;
			}
			break;

			case HW_THREE_WIRE_SI: // For 87S Serial Interface.
			{
				data2Write = ((u32)(offset&0x0f)) ;
				wlen=16;
				HwHSSIThreeWire(
					dev,
					(u8*)(&data2Write),	// pDataBuf,
					wlen,					// nDataBufBitCnt,
					1, 					// bSI
					0					// bWrite
					);
				dataRead= data2Write;
			}
			break;

			// Perform SW 3-wire programming by driver.
			default:
			{
				data2Write = ((u32)(offset&0x1f)) << 27; // For Zebra E-cut. 2005.04.11, by rcnjko.
				wlen = 6;
				rlen = 12;
				low2high = 0;
				ZEBRA_RFSerialRead(dev, data2Write, wlen,&dataRead,rlen, low2high);
			}
			break;
		}
		break;
	default:
		dataRead = 0;
		break;
	}

	return dataRead;
}


// by Owen on 04/07/14 for writing BB register successfully
void
WriteBBPortUchar(
	struct net_device *dev,
	u32		Data
	)
{
	//u8	TimeoutCounter;
	u8	RegisterContent;
	u8	UCharData;

	UCharData = (u8)((Data & 0x0000ff00) >> 8);
	PlatformIOWrite4Byte(dev, PhyAddr, Data);
	//for(TimeoutCounter = 10; TimeoutCounter > 0; TimeoutCounter--)
	{
		PlatformIOWrite4Byte(dev, PhyAddr, Data & 0xffffff7f);
		RegisterContent = PlatformIORead1Byte(dev, PhyDataR);
		//if(UCharData == RegisterContent)
		//	break;
	}
}

u8
ReadBBPortUchar(
	struct net_device *dev,
	u32		addr
	)
{
	//u8	TimeoutCounter;
	u8	RegisterContent;

	PlatformIOWrite4Byte(dev, PhyAddr, addr & 0xffffff7f);
	RegisterContent = PlatformIORead1Byte(dev, PhyDataR);

	return RegisterContent;
}
//{by amy 080312
//
//	Description:
//		Perform Antenna settings with antenna diversity on 87SE.
//    Created by Roger, 2008.01.25.
//
bool
SetAntennaConfig87SE(
	struct net_device *dev,
	u8			DefaultAnt,		// 0: Main, 1: Aux.
	bool		bAntDiversity 	// 1:Enable, 0: Disable.
)
{
	struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
	bool   bAntennaSwitched = true;

	//printk("SetAntennaConfig87SE(): DefaultAnt(%d), bAntDiversity(%d)\n", DefaultAnt, bAntDiversity);

	// Threshold for antenna diversity.
	write_phy_cck(dev, 0x0c, 0x09); // Reg0c : 09

	if( bAntDiversity )  //  Enable Antenna Diversity.
	{
		if( DefaultAnt == 1 )  // aux antenna
		{
			// Mac register, aux antenna
			write_nic_byte(dev, ANTSEL, 0x00);

			// Config CCK RX antenna.
			write_phy_cck(dev, 0x11, 0xbb); // Reg11 : bb
			write_phy_cck(dev, 0x01, 0xc7); // Reg01 : c7

			// Config OFDM RX antenna.
			write_phy_ofdm(dev, 0x0D, 0x54);   // Reg0d : 54
			write_phy_ofdm(dev, 0x18, 0xb2);  // Reg18 : b2
		}
		else //  use main antenna
		{
			// Mac register, main antenna
			write_nic_byte(dev, ANTSEL, 0x03);
			//base band
			// Config CCK RX antenna.
			write_phy_cck(dev, 0x11, 0x9b); // Reg11 : 9b
			write_phy_cck(dev, 0x01, 0xc7); // Reg01 : c7

			// Config OFDM RX antenna.
			write_phy_ofdm(dev, 0x0d, 0x5c);   // Reg0d : 5c
			write_phy_ofdm(dev, 0x18, 0xb2);  // Reg18 : b2
		}
	}
	else   // Disable Antenna Diversity.
	{
		if( DefaultAnt == 1 ) // aux Antenna
		{
			// Mac register, aux antenna
			write_nic_byte(dev, ANTSEL, 0x00);

			// Config CCK RX antenna.
			write_phy_cck(dev, 0x11, 0xbb); // Reg11 : bb
			write_phy_cck(dev, 0x01, 0x47); // Reg01 : 47

			// Config OFDM RX antenna.
			write_phy_ofdm(dev, 0x0D, 0x54);   // Reg0d : 54
			write_phy_ofdm(dev, 0x18, 0x32);  // Reg18 : 32
		}
		else // main Antenna
		{
			// Mac register, main antenna
			write_nic_byte(dev, ANTSEL, 0x03);

			// Config CCK RX antenna.
			write_phy_cck(dev, 0x11, 0x9b); // Reg11 : 9b
			write_phy_cck(dev, 0x01, 0x47); // Reg01 : 47

			// Config OFDM RX antenna.
			write_phy_ofdm(dev, 0x0D, 0x5c);   // Reg0d : 5c
			write_phy_ofdm(dev, 0x18, 0x32);  // Reg18 : 32
		}
	}
	priv->CurrAntennaIndex = DefaultAnt; // Update default settings.
	return	bAntennaSwitched;
}
//by amy 080312
/*---------------------------------------------------------------
  * Hardware Initialization.
  * the code is ported from Windows source code
  ----------------------------------------------------------------*/

void
ZEBRA_Config_85BASIC_HardCode(
	struct net_device *dev
	)
{

	struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
	u32			i;
	u32	addr,data;
	u32	u4bRegOffset, u4bRegValue, u4bRF23, u4bRF24;
       u8			u1b24E;
	int d_cut = 0;


	//=============================================================================
	// 87S_PCIE :: RADIOCFG.TXT
	//=============================================================================


	// Page1 : reg16-reg30
	RF_WriteReg(dev, 0x00, 0x013f);			mdelay(1); // switch to page1
	u4bRF23= RF_ReadReg(dev, 0x08);			mdelay(1);
	u4bRF24= RF_ReadReg(dev, 0x09);			mdelay(1);

	if (u4bRF23 == 0x818 && u4bRF24 == 0x70C) {
		d_cut = 1;
		printk(KERN_INFO "rtl8187se: card type changed from C- to D-cut\n");
	}

	// Page0 : reg0-reg15

//	RF_WriteReg(dev, 0x00, 0x003f);			mdelay(1);//1
	RF_WriteReg(dev, 0x00, 0x009f);      	mdelay(1);// 1

	RF_WriteReg(dev, 0x01, 0x06e0);			mdelay(1);

//	RF_WriteReg(dev, 0x02, 0x004c);			mdelay(1);//2
	RF_WriteReg(dev, 0x02, 0x004d);			mdelay(1);// 2

//	RF_WriteReg(dev, 0x03, 0x0000);			mdelay(1);//3
	RF_WriteReg(dev, 0x03, 0x07f1);			mdelay(1);// 3

	RF_WriteReg(dev, 0x04, 0x0975);			mdelay(1);
	RF_WriteReg(dev, 0x05, 0x0c72);			mdelay(1);
	RF_WriteReg(dev, 0x06, 0x0ae6);			mdelay(1);
	RF_WriteReg(dev, 0x07, 0x00ca);			mdelay(1);
	RF_WriteReg(dev, 0x08, 0x0e1c);			mdelay(1);
	RF_WriteReg(dev, 0x09, 0x02f0);			mdelay(1);
	RF_WriteReg(dev, 0x0a, 0x09d0);			mdelay(1);
	RF_WriteReg(dev, 0x0b, 0x01ba);			mdelay(1);
	RF_WriteReg(dev, 0x0c, 0x0640);			mdelay(1);
	RF_WriteReg(dev, 0x0d, 0x08df);			mdelay(1);
	RF_WriteReg(dev, 0x0e, 0x0020);			mdelay(1);
	RF_WriteReg(dev, 0x0f, 0x0990);			mdelay(1);


	// Page1 : reg16-reg30
	RF_WriteReg(dev, 0x00, 0x013f);			mdelay(1);

	RF_WriteReg(dev, 0x03, 0x0806);			mdelay(1);

	RF_WriteReg(dev, 0x04, 0x03a7);			mdelay(1);
	RF_WriteReg(dev, 0x05, 0x059b);			mdelay(1);
	RF_WriteReg(dev, 0x06, 0x0081);			mdelay(1);


	RF_WriteReg(dev, 0x07, 0x01A0);			mdelay(1);
// Don't write RF23/RF24 to make a difference between 87S C cut and D cut. asked by SD3 stevenl.
//	RF_WriteReg(dev, 0x08, 0x0597);			mdelay(1);
//	RF_WriteReg(dev, 0x09, 0x050a);			mdelay(1);
	RF_WriteReg(dev, 0x0a, 0x0001);			mdelay(1);
	RF_WriteReg(dev, 0x0b, 0x0418);			mdelay(1);

	if (d_cut) {
		RF_WriteReg(dev, 0x0c, 0x0fbe);			mdelay(1);
		RF_WriteReg(dev, 0x0d, 0x0008);			mdelay(1);
		RF_WriteReg(dev, 0x0e, 0x0807);			mdelay(1); // RX LO buffer
	} else {
		RF_WriteReg(dev, 0x0c, 0x0fbe);			mdelay(1);
		RF_WriteReg(dev, 0x0d, 0x0008);			mdelay(1);
		RF_WriteReg(dev, 0x0e, 0x0806);			mdelay(1); // RX LO buffer
	}

	RF_WriteReg(dev, 0x0f, 0x0acc);			mdelay(1);

//	RF_WriteReg(dev, 0x00, 0x017f);			mdelay(1);//6
	RF_WriteReg(dev, 0x00, 0x01d7);			mdelay(1);// 6

	RF_WriteReg(dev, 0x03, 0x0e00);			mdelay(1);
	RF_WriteReg(dev, 0x04, 0x0e50);			mdelay(1);
	for(i=0;i<=36;i++)
	{
		RF_WriteReg(dev, 0x01, i);                     mdelay(1);
		RF_WriteReg(dev, 0x02, ZEBRA_RF_RX_GAIN_TABLE[i]); mdelay(1);
		//DbgPrint("RF - 0x%x = 0x%x", i, ZEBRA_RF_RX_GAIN_TABLE[i]);
	}

	RF_WriteReg(dev, 0x05, 0x0203);			mdelay(1); 	/// 203, 343
	//RF_WriteReg(dev, 0x06, 0x0300);			mdelay(1);	// 400
	RF_WriteReg(dev, 0x06, 0x0200);			mdelay(1);	// 400

	RF_WriteReg(dev, 0x00, 0x0137);			mdelay(1);	// switch to reg16-reg30, and HSSI disable 137
	mdelay(10); 	// Deay 10 ms. //0xfd

//	RF_WriteReg(dev, 0x0c, 0x09be);			mdelay(1);	// 7
	//RF_WriteReg(dev, 0x0c, 0x07be);			mdelay(1);
	//mdelay(10); 	// Deay 10 ms. //0xfd

	RF_WriteReg(dev, 0x0d, 0x0008);			mdelay(1);	// Z4 synthesizer loop filter setting, 392
	mdelay(10); 	// Deay 10 ms. //0xfd

	RF_WriteReg(dev, 0x00, 0x0037);			mdelay(1);	// switch to reg0-reg15, and HSSI disable
	mdelay(10); 	// Deay 10 ms. //0xfd

	RF_WriteReg(dev, 0x04, 0x0160);			mdelay(1); 	// CBC on, Tx Rx disable, High gain
	mdelay(10); 	// Deay 10 ms. //0xfd

	RF_WriteReg(dev, 0x07, 0x0080);			mdelay(1);	// Z4 setted channel 1
	mdelay(10); 	// Deay 10 ms. //0xfd

	RF_WriteReg(dev, 0x02, 0x088D);			mdelay(1);	// LC calibration
	mdelay(200); 	// Deay 200 ms. //0xfd
	mdelay(10); 	// Deay 10 ms. //0xfd
	mdelay(10); 	// Deay 10 ms. //0xfd

	RF_WriteReg(dev, 0x00, 0x0137);			mdelay(1);	// switch to reg16-reg30 137, and HSSI disable 137
	mdelay(10); 	// Deay 10 ms. //0xfd

	RF_WriteReg(dev, 0x07, 0x0000);			mdelay(1);
	RF_WriteReg(dev, 0x07, 0x0180);			mdelay(1);
	RF_WriteReg(dev, 0x07, 0x0220);			mdelay(1);
	RF_WriteReg(dev, 0x07, 0x03E0);			mdelay(1);

	// DAC calibration off 20070702
	RF_WriteReg(dev, 0x06, 0x00c1);			mdelay(1);
	RF_WriteReg(dev, 0x0a, 0x0001);			mdelay(1);
//{by amy 080312
	// For crystal calibration, added by Roger, 2007.12.11.
	if( priv->bXtalCalibration ) // reg 30.
	{ // enable crystal calibration.
		// RF Reg[30], (1)Xin:[12:9], Xout:[8:5],  addr[4:0].
		// (2)PA Pwr delay timer[15:14], default: 2.4us, set BIT15=0
		// (3)RF signal on/off when calibration[13], default: on, set BIT13=0.
		// So we should minus 4 BITs offset.
		RF_WriteReg(dev, 0x0f, (priv->XtalCal_Xin<<5)|(priv->XtalCal_Xout<<1)|BIT11|BIT9);			mdelay(1);
		printk("ZEBRA_Config_85BASIC_HardCode(): (%02x)\n",
				(priv->XtalCal_Xin<<5) | (priv->XtalCal_Xout<<1) | BIT11| BIT9);
	}
	else
	{ // using default value. Xin=6, Xout=6.
		RF_WriteReg(dev, 0x0f, 0x0acc);			mdelay(1);
	}
//by amy 080312
//	RF_WriteReg(dev, 0x0f, 0x0acc);			mdelay(1);  //-by amy 080312

	RF_WriteReg(dev, 0x00, 0x00bf);			mdelay(1); // switch to reg0-reg15, and HSSI enable
//	RF_WriteReg(dev, 0x0d, 0x009f);			mdelay(1); // Rx BB start calibration, 00c//-edward
	RF_WriteReg(dev, 0x0d, 0x08df);			mdelay(1); // Rx BB start calibration, 00c//+edward
	RF_WriteReg(dev, 0x02, 0x004d);			mdelay(1); // temperature meter off
	RF_WriteReg(dev, 0x04, 0x0975);			mdelay(1); // Rx mode
	mdelay(10);	// Deay 10 ms. //0xfe
	mdelay(10);	// Deay 10 ms. //0xfe
	mdelay(10);	// Deay 10 ms. //0xfe
	RF_WriteReg(dev, 0x00, 0x0197);			mdelay(1); // Rx mode//+edward
	RF_WriteReg(dev, 0x05, 0x05ab);			mdelay(1); // Rx mode//+edward
	RF_WriteReg(dev, 0x00, 0x009f);			mdelay(1); // Rx mode//+edward

	RF_WriteReg(dev, 0x01, 0x0000);			mdelay(1); // Rx mode//+edward
	RF_WriteReg(dev, 0x02, 0x0000);			mdelay(1); // Rx mode//+edward
	//power save parameters.
	u1b24E = read_nic_byte(dev, 0x24E);
	write_nic_byte(dev, 0x24E, (u1b24E & (~(BIT5|BIT6))));

	//=============================================================================

	//=============================================================================
	// CCKCONF.TXT
	//=============================================================================

	/*	[POWER SAVE] Power Saving Parameters by jong. 2007-11-27
	   	CCK reg0x00[7]=1'b1 :power saving for TX (default)
		CCK reg0x00[6]=1'b1: power saving for RX (default)
		CCK reg0x06[4]=1'b1: turn off channel estimation related circuits if not doing channel estimation.
		CCK reg0x06[3]=1'b1: turn off unused circuits before cca = 1
		CCK reg0x06[2]=1'b1: turn off cck's circuit if macrst =0
	*/

	write_phy_cck(dev,0x00,0xc8);
	write_phy_cck(dev,0x06,0x1c);
	write_phy_cck(dev,0x10,0x78);
	write_phy_cck(dev,0x2e,0xd0);
	write_phy_cck(dev,0x2f,0x06);
	write_phy_cck(dev,0x01,0x46);

	// power control
	write_nic_byte(dev, CCK_TXAGC, 0x10);
	write_nic_byte(dev, OFDM_TXAGC, 0x1B);
	write_nic_byte(dev, ANTSEL, 0x03);



	//=============================================================================
	// AGC.txt
	//=============================================================================

//	PlatformIOWrite4Byte( dev, PhyAddr, 0x00001280);	// Annie, 2006-05-05
	write_phy_ofdm(dev, 0x00, 0x12);
	//WriteBBPortUchar(dev, 0x00001280);

	for (i=0; i<128; i++)
	{
		//DbgPrint("AGC - [%x+1] = 0x%x\n", i, ZEBRA_AGC[i+1]);

		data = ZEBRA_AGC[i+1];
		data = data << 8;
		data = data | 0x0000008F;

		addr = i + 0x80; //enable writing AGC table
		addr = addr << 8;
		addr = addr | 0x0000008E;

		WriteBBPortUchar(dev, data);
		WriteBBPortUchar(dev, addr);
		WriteBBPortUchar(dev, 0x0000008E);
	}

	PlatformIOWrite4Byte( dev, PhyAddr, 0x00001080);	// Annie, 2006-05-05
	//WriteBBPortUchar(dev, 0x00001080);

	//=============================================================================

	//=============================================================================
	// OFDMCONF.TXT
	//=============================================================================

	for(i=0; i<60; i++)
	{
		u4bRegOffset=i;
		u4bRegValue=OFDM_CONFIG[i];

		//DbgPrint("OFDM - 0x%x = 0x%x\n", u4bRegOffset, u4bRegValue);

		WriteBBPortUchar(dev,
						(0x00000080 |
						(u4bRegOffset & 0x7f) |
						((u4bRegValue & 0xff) << 8)));
	}

	//=============================================================================
//by amy for antenna
	//=============================================================================
//{by amy 080312
	// Config Sw/Hw  Combinational Antenna Diversity. Added by Roger, 2008.02.26.
	SetAntennaConfig87SE(dev, priv->bDefaultAntenna1, priv->bSwAntennaDiverity);
//by amy 080312}
//by amy for antenna
}


void
UpdateInitialGain(
	struct net_device *dev
	)
{
	struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
	//unsigned char* IGTable;
	//u8			DIG_CurrentInitialGain = 4;
	//unsigned char u1Tmp;

	//lzm add 080826
	if(priv->eRFPowerState != eRfOn)
	{
		//Don't access BB/RF under disable PLL situation.
		//RT_TRACE(COMP_DIG, DBG_LOUD, ("UpdateInitialGain - pHalData->eRFPowerState!=eRfOn\n"));
		// Back to the original state
		priv->InitialGain= priv->InitialGainBackUp;
		return;
	}

	switch(priv->rf_chip)
	{
	case RF_ZEBRA4:
		// Dynamic set initial gain, follow 87B
		switch(priv->InitialGain)
		{
			case 1: //m861dBm
				//DMESG("RTL8187 + 8225 Initial Gain State 1: -82 dBm \n");
				write_phy_ofdm(dev, 0x17, 0x26);	mdelay(1);
				write_phy_ofdm(dev, 0x24, 0x86);	mdelay(1);
				write_phy_ofdm(dev, 0x05, 0xfa);	mdelay(1);
				break;

			case 2: //m862dBm
				//DMESG("RTL8187 + 8225 Initial Gain State 2: -82 dBm \n");
				write_phy_ofdm(dev, 0x17, 0x36);	mdelay(1);
				write_phy_ofdm(dev, 0x24, 0x86);	mdelay(1);
				write_phy_ofdm(dev, 0x05, 0xfa);	mdelay(1);
				break;

			case 3: //m863dBm
				//DMESG("RTL8187 + 8225 Initial Gain State 3: -82 dBm \n");
				write_phy_ofdm(dev, 0x17, 0x36);	mdelay(1);
				write_phy_ofdm(dev, 0x24, 0x86);	mdelay(1);
				write_phy_ofdm(dev, 0x05, 0xfb);	mdelay(1);
				break;

			case 4: //m864dBm
				//DMESG("RTL8187 + 8225 Initial Gain State 4: -78 dBm \n");
				write_phy_ofdm(dev, 0x17, 0x46);	mdelay(1);
				write_phy_ofdm(dev, 0x24, 0x86);	mdelay(1);
				write_phy_ofdm(dev, 0x05, 0xfb);	mdelay(1);
				break;

			case 5: //m82dBm
				//DMESG("RTL8187 + 8225 Initial Gain State 5: -74 dBm \n");
				write_phy_ofdm(dev, 0x17, 0x46);	mdelay(1);
				write_phy_ofdm(dev, 0x24, 0x96);	mdelay(1);
				write_phy_ofdm(dev, 0x05, 0xfb);	mdelay(1);
				break;

			case 6: //m78dBm
				//DMESG ("RTL8187 + 8225 Initial Gain State 6: -70 dBm \n");
				write_phy_ofdm(dev, 0x17, 0x56);	mdelay(1);
				write_phy_ofdm(dev, 0x24, 0x96);	mdelay(1);
				write_phy_ofdm(dev, 0x05, 0xfc);	mdelay(1);
				break;

			case 7: //m74dBm
				//DMESG("RTL8187 + 8225 Initial Gain State 7: -66 dBm \n");
				write_phy_ofdm(dev, 0x17, 0x56);	mdelay(1);
				write_phy_ofdm(dev, 0x24, 0xa6);	mdelay(1);
				write_phy_ofdm(dev, 0x05, 0xfc);	mdelay(1);
				break;

			case 8:
				//DMESG("RTL8187 + 8225 Initial Gain State 8:\n");
				write_phy_ofdm(dev, 0x17, 0x66);	mdelay(1);
				write_phy_ofdm(dev, 0x24, 0xb6);	mdelay(1);
				write_phy_ofdm(dev, 0x05, 0xfc);	mdelay(1);
				break;


			default:	//MP
				//DMESG("RTL8187 + 8225 Initial Gain State 1: -82 dBm (default)\n");
				write_phy_ofdm(dev, 0x17, 0x26);	mdelay(1);
				write_phy_ofdm(dev, 0x24, 0x86);	mdelay(1);
				write_phy_ofdm(dev, 0x05, 0xfa);	mdelay(1);
				break;
		}
		break;


	default:
		DMESG("UpdateInitialGain(): unknown RFChipID: %#X\n", priv->rf_chip);
		break;
	}
}
//
//	Description:
//		Tx Power tracking mechanism routine on 87SE.
// 	Created by Roger, 2007.12.11.
//
void
InitTxPwrTracking87SE(
	struct net_device *dev
)
{
	//struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
	u32	u4bRfReg;

	u4bRfReg = RF_ReadReg(dev, 0x02);

	// Enable Thermal meter indication.
	//printk("InitTxPwrTracking87SE(): Enable thermal meter indication, Write RF[0x02] = %#x", u4bRfReg|PWR_METER_EN);
	RF_WriteReg(dev, 0x02, u4bRfReg|PWR_METER_EN);			mdelay(1);
}

void
PhyConfig8185(
	struct net_device *dev
	)
{
	struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
       write_nic_dword(dev, RCR, priv->ReceiveConfig);
	   priv->RFProgType = read_nic_byte(dev, CONFIG4) & 0x03;
     	// RF config
	switch(priv->rf_chip)
	{
	case RF_ZEBRA2:
	case RF_ZEBRA4:
		ZEBRA_Config_85BASIC_HardCode( dev);
		break;
	}
//{by amy 080312
	// Set default initial gain state to 4, approved by SD3 DZ, by Bruce, 2007-06-06.
	if(priv->bDigMechanism)
	{
		if(priv->InitialGain == 0)
			priv->InitialGain = 4;
		//printk("PhyConfig8185(): DIG is enabled, set default initial gain index to %d\n", priv->InitialGain);
	}

	//
	// Enable thermal meter indication to implement TxPower tracking on 87SE.
	// We initialize thermal meter here to avoid unsuccessful configuration.
	// Added by Roger, 2007.12.11.
	//
	if(priv->bTxPowerTrack)
		InitTxPwrTracking87SE(dev);

//by amy 080312}
	priv->InitialGainBackUp= priv->InitialGain;
	UpdateInitialGain(dev);

	return;
}




void
HwConfigureRTL8185(
		struct net_device *dev
		)
{
	//RTL8185_TODO: Determine Retrylimit, TxAGC, AutoRateFallback control.
//	u8		bUNIVERSAL_CONTROL_RL = 1;
        u8              bUNIVERSAL_CONTROL_RL = 0;

	u8		bUNIVERSAL_CONTROL_AGC = 1;
	u8		bUNIVERSAL_CONTROL_ANT = 1;
	u8		bAUTO_RATE_FALLBACK_CTL = 1;
	u8		val8;
	//struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
	//struct ieee80211_device *ieee = priv->ieee80211;
      	//if(IS_WIRELESS_MODE_A(dev) || IS_WIRELESS_MODE_G(dev))
//{by amy 080312	if((ieee->mode == IEEE_G)||(ieee->mode == IEEE_A))
//	{
//		write_nic_word(dev, BRSR, 0xffff);
//	}
//	else
//	{
//		write_nic_word(dev, BRSR, 0x000f);
//	}
//by amy 080312}
        write_nic_word(dev, BRSR, 0x0fff);
	// Retry limit
	val8 = read_nic_byte(dev, CW_CONF);

	if(bUNIVERSAL_CONTROL_RL)
		val8 = val8 & 0xfd;
	else
		val8 = val8 | 0x02;

	write_nic_byte(dev, CW_CONF, val8);

	// Tx AGC
	val8 = read_nic_byte(dev, TXAGC_CTL);
	if(bUNIVERSAL_CONTROL_AGC)
	{
		write_nic_byte(dev, CCK_TXAGC, 128);
		write_nic_byte(dev, OFDM_TXAGC, 128);
		val8 = val8 & 0xfe;
	}
	else
	{
		val8 = val8 | 0x01 ;
	}


	write_nic_byte(dev, TXAGC_CTL, val8);

	// Tx Antenna including Feedback control
	val8 = read_nic_byte(dev, TXAGC_CTL );

	if(bUNIVERSAL_CONTROL_ANT)
	{
		write_nic_byte(dev, ANTSEL, 0x00);
		val8 = val8 & 0xfd;
	}
	else
	{
		val8 = val8 & (val8|0x02); //xiong-2006-11-15
	}

	write_nic_byte(dev, TXAGC_CTL, val8);

	// Auto Rate fallback control
	val8 = read_nic_byte(dev, RATE_FALLBACK);
	val8 &= 0x7c;
	if( bAUTO_RATE_FALLBACK_CTL )
	{
		val8 |= RATE_FALLBACK_CTL_ENABLE | RATE_FALLBACK_CTL_AUTO_STEP1;

		// <RJ_TODO_8185B> We shall set up the ARFR according to user's setting.
		//write_nic_word(dev, ARFR, 0x0fff); // set 1M ~ 54M
//by amy
	        // Aadded by Roger, 2007.11.15.
	        PlatformIOWrite2Byte(dev, ARFR, 0x0fff); //set 1M ~ 54Mbps.
//by amy
	}
	else
	{
	}
	write_nic_byte(dev, RATE_FALLBACK, val8);
}



static void
MacConfig_85BASIC_HardCode(
	struct net_device *dev)
{
	//============================================================================
	// MACREG.TXT
	//============================================================================
	int			nLinesRead = 0;

	u32	u4bRegOffset, u4bRegValue,u4bPageIndex = 0;
	int	i;

	nLinesRead=sizeof(MAC_REG_TABLE)/2;

	for(i = 0; i < nLinesRead; i++)  //nLinesRead=101
	{
		u4bRegOffset=MAC_REG_TABLE[i][0];
		u4bRegValue=MAC_REG_TABLE[i][1];

                if(u4bRegOffset == 0x5e)
                {
                    u4bPageIndex = u4bRegValue;
                }
                else
                {
                    u4bRegOffset |= (u4bPageIndex << 8);
                }
                //DbgPrint("MAC - 0x%x = 0x%x\n", u4bRegOffset, u4bRegValue);
		write_nic_byte(dev, u4bRegOffset, (u8)u4bRegValue);
	}
	//============================================================================
}



static void
MacConfig_85BASIC(
	struct net_device *dev)
{

       u8			u1DA;
	MacConfig_85BASIC_HardCode(dev);

	//============================================================================

	// Follow TID_AC_MAP of WMac.
	write_nic_word(dev, TID_AC_MAP, 0xfa50);

	// Interrupt Migration, Jong suggested we use set 0x0000 first, 2005.12.14, by rcnjko.
	write_nic_word(dev, IntMig, 0x0000);

	// Prevent TPC to cause CRC error. Added by Annie, 2006-06-10.
	PlatformIOWrite4Byte(dev, 0x1F0, 0x00000000);
	PlatformIOWrite4Byte(dev, 0x1F4, 0x00000000);
	PlatformIOWrite1Byte(dev, 0x1F8, 0x00);

	// Asked for by SD3 CM Lin, 2006.06.27, by rcnjko.
	//PlatformIOWrite4Byte(dev, RFTiming, 0x00004001);
//by amy
	// power save parameter based on "87SE power save parameters 20071127.doc", as follow.

	//Enable DA10 TX power saving
	u1DA = read_nic_byte(dev, PHYPR);
	write_nic_byte(dev, PHYPR, (u1DA | BIT2) );

	//POWER:
	write_nic_word(dev, 0x360, 0x1000);
	write_nic_word(dev, 0x362, 0x1000);

	// AFE.
	write_nic_word(dev, 0x370, 0x0560);
	write_nic_word(dev, 0x372, 0x0560);
	write_nic_word(dev, 0x374, 0x0DA4);
	write_nic_word(dev, 0x376, 0x0DA4);
	write_nic_word(dev, 0x378, 0x0560);
	write_nic_word(dev, 0x37A, 0x0560);
	write_nic_word(dev, 0x37C, 0x00EC);
//	write_nic_word(dev, 0x37E, 0x00FE);//-edward
	write_nic_word(dev, 0x37E, 0x00EC);//+edward
       write_nic_byte(dev, 0x24E,0x01);
//by amy

}




u8
GetSupportedWirelessMode8185(
	struct net_device *dev
)
{
	u8			btSupportedWirelessMode = 0;
	struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);

	switch(priv->rf_chip)
	{
	case RF_ZEBRA2:
	case RF_ZEBRA4:
		btSupportedWirelessMode = (WIRELESS_MODE_B | WIRELESS_MODE_G);
		break;
	default:
		btSupportedWirelessMode = WIRELESS_MODE_B;
		break;
	}

	return btSupportedWirelessMode;
}

void
ActUpdateChannelAccessSetting(
	struct net_device *dev,
	WIRELESS_MODE			WirelessMode,
	PCHANNEL_ACCESS_SETTING	ChnlAccessSetting
	)
{
	struct r8180_priv *priv = ieee80211_priv(dev);
	struct ieee80211_device *ieee = priv->ieee80211;
	AC_CODING	eACI;
	AC_PARAM	AcParam;
	//PSTA_QOS	pStaQos = Adapter->MgntInfo.pStaQos;
	u8	bFollowLegacySetting = 0;
	u8   u1bAIFS;

	//
	// <RJ_TODO_8185B>
	// TODO: We still don't know how to set up these registers, just follow WMAC to
	// verify 8185B FPAG.
	//
	// <RJ_TODO_8185B>
	// Jong said CWmin/CWmax register are not functional in 8185B,
	// so we shall fill channel access realted register into AC parameter registers,
	// even in nQBss.
	//
	ChnlAccessSetting->SIFS_Timer = 0x22; // Suggested by Jong, 2005.12.08.
	ChnlAccessSetting->DIFS_Timer = 0x1C; // 2006.06.02, by rcnjko.
	ChnlAccessSetting->SlotTimeTimer = 9; // 2006.06.02, by rcnjko.
	ChnlAccessSetting->EIFS_Timer = 0x5B; // Suggested by wcchu, it is the default value of EIFS register, 2005.12.08.
	ChnlAccessSetting->CWminIndex = 3; // 2006.06.02, by rcnjko.
	ChnlAccessSetting->CWmaxIndex = 7; // 2006.06.02, by rcnjko.

	write_nic_byte(dev, SIFS, ChnlAccessSetting->SIFS_Timer);
	//Adapter->HalFunc.SetHwRegHandler( Adapter, HW_VAR_SLOT_TIME, &ChnlAccessSetting->SlotTimeTimer );	// Rewrited from directly use PlatformEFIOWrite1Byte(), by Annie, 2006-03-29.
	write_nic_byte(dev, SLOT, ChnlAccessSetting->SlotTimeTimer);	// Rewrited from directly use PlatformEFIOWrite1Byte(), by Annie, 2006-03-29.

	u1bAIFS = aSifsTime + (2 * ChnlAccessSetting->SlotTimeTimer );

	//write_nic_byte(dev, AC_VO_PARAM, u1bAIFS);
	//write_nic_byte(dev, AC_VI_PARAM, u1bAIFS);
	//write_nic_byte(dev, AC_BE_PARAM, u1bAIFS);
	//write_nic_byte(dev, AC_BK_PARAM, u1bAIFS);

	write_nic_byte(dev, EIFS, ChnlAccessSetting->EIFS_Timer);

	write_nic_byte(dev, AckTimeOutReg, 0x5B); // <RJ_EXPR_QOS> Suggested by wcchu, it is the default value of EIFS register, 2005.12.08.

#ifdef TODO
	// <RJ_TODO_NOW_8185B> Update ECWmin/ECWmax, AIFS, TXOP Limit of each AC to the value defined by SPEC.
	if( pStaQos->CurrentQosMode > QOS_DISABLE )
	{ // QoS mode.
		if(pStaQos->QBssWirelessMode == WirelessMode)
		{
			// Follow AC Parameters of the QBSS.
			for(eACI = 0; eACI < AC_MAX; eACI++)
			{
				Adapter->HalFunc.SetHwRegHandler(Adapter, HW_VAR_AC_PARAM, (pu1Byte)(&(pStaQos->WMMParamEle.AcParam[eACI])) );
			}
		}
		else
		{
			// Follow Default WMM AC Parameters.
			bFollowLegacySetting = 1;
		}
	}
	else
#endif
	{ // Legacy 802.11.
		bFollowLegacySetting = 1;

	}

	// this setting is copied from rtl8187B.  xiong-2006-11-13
	if(bFollowLegacySetting)
	{


		//
		// Follow 802.11 seeting to AC parameter, all AC shall use the same parameter.
		// 2005.12.01, by rcnjko.
		//
		AcParam.longData = 0;
		AcParam.f.AciAifsn.f.AIFSN = 2; // Follow 802.11 DIFS.
		AcParam.f.AciAifsn.f.ACM = 0;
		AcParam.f.Ecw.f.ECWmin = ChnlAccessSetting->CWminIndex; // Follow 802.11 CWmin.
		AcParam.f.Ecw.f.ECWmax = ChnlAccessSetting->CWmaxIndex; // Follow 802.11 CWmax.
		AcParam.f.TXOPLimit = 0;

		//lzm reserved 080826
#if 1
		// For turbo mode setting. port from 87B by Isaiah 2008-08-01
		if( ieee->current_network.Turbo_Enable == 1 )
			AcParam.f.TXOPLimit = 0x01FF;
		// For 87SE with Intel 4965  Ad-Hoc mode have poor throughput (19MB)
		if (ieee->iw_mode == IW_MODE_ADHOC)
			AcParam.f.TXOPLimit = 0x0020;
#endif

		for(eACI = 0; eACI < AC_MAX; eACI++)
		{
			AcParam.f.AciAifsn.f.ACI = (u8)eACI;
			{
				PAC_PARAM	pAcParam = (PAC_PARAM)(&AcParam);
				AC_CODING	eACI;
				u8		u1bAIFS;
				u32		u4bAcParam;

				// Retrive paramters to udpate.
				eACI = pAcParam->f.AciAifsn.f.ACI;
				u1bAIFS = pAcParam->f.AciAifsn.f.AIFSN * ChnlAccessSetting->SlotTimeTimer + aSifsTime;
				u4bAcParam = (	(((u32)(pAcParam->f.TXOPLimit)) << AC_PARAM_TXOP_LIMIT_OFFSET)	|
						(((u32)(pAcParam->f.Ecw.f.ECWmax)) << AC_PARAM_ECW_MAX_OFFSET)	|
						(((u32)(pAcParam->f.Ecw.f.ECWmin)) << AC_PARAM_ECW_MIN_OFFSET)	|
						(((u32)u1bAIFS) << AC_PARAM_AIFS_OFFSET));

				switch(eACI)
				{
					case AC1_BK:
						//write_nic_dword(dev, AC_BK_PARAM, u4bAcParam);
						break;

					case AC0_BE:
						//write_nic_dword(dev, AC_BE_PARAM, u4bAcParam);
						break;

					case AC2_VI:
						//write_nic_dword(dev, AC_VI_PARAM, u4bAcParam);
						break;

					case AC3_VO:
						//write_nic_dword(dev, AC_VO_PARAM, u4bAcParam);
						break;

					default:
						DMESGW( "SetHwReg8185(): invalid ACI: %d !\n", eACI);
						break;
				}

				// Cehck ACM bit.
				// If it is set, immediately set ACM control bit to downgrading AC for passing WMM testplan. Annie, 2005-12-13.
				//write_nic_byte(dev, ACM_CONTROL, pAcParam->f.AciAifsn);
				{
					PACI_AIFSN	pAciAifsn = (PACI_AIFSN)(&pAcParam->f.AciAifsn);
					AC_CODING	eACI = pAciAifsn->f.ACI;

					//modified Joseph
					//for 8187B AsynIORead issue
#ifdef TODO
					u8	AcmCtrl = pHalData->AcmControl;
#else
					u8	AcmCtrl = 0;
#endif
					if( pAciAifsn->f.ACM )
					{ // ACM bit is 1.
						switch(eACI)
						{
							case AC0_BE:
								AcmCtrl |= (BEQ_ACM_EN|BEQ_ACM_CTL|ACM_HW_EN);	// or 0x21
								break;

							case AC2_VI:
								AcmCtrl |= (VIQ_ACM_EN|VIQ_ACM_CTL|ACM_HW_EN);	// or 0x42
								break;

							case AC3_VO:
								AcmCtrl |= (VOQ_ACM_EN|VOQ_ACM_CTL|ACM_HW_EN);	// or 0x84
								break;

							default:
								DMESGW("SetHwReg8185(): [HW_VAR_ACM_CTRL] ACM set failed: eACI is %d\n", eACI );
								break;
						}
					}
					else
					{ // ACM bit is 0.
						switch(eACI)
						{
							case AC0_BE:
								AcmCtrl &= ( (~BEQ_ACM_EN) & (~BEQ_ACM_CTL) & (~ACM_HW_EN) );	// and 0xDE
								break;

							case AC2_VI:
								AcmCtrl &= ( (~VIQ_ACM_EN) & (~VIQ_ACM_CTL) & (~ACM_HW_EN) );	// and 0xBD
								break;

							case AC3_VO:
								AcmCtrl &= ( (~VOQ_ACM_EN) & (~VOQ_ACM_CTL) & (~ACM_HW_EN) );	// and 0x7B
								break;

							default:
								break;
						}
					}

					//printk(KERN_WARNING "SetHwReg8185(): [HW_VAR_ACM_CTRL] Write 0x%X\n", AcmCtrl);

#ifdef TO_DO
					pHalData->AcmControl = AcmCtrl;
#endif
					//write_nic_byte(dev, ACM_CONTROL, AcmCtrl);
					write_nic_byte(dev, ACM_CONTROL, 0);
				}
			}
		}


	}
}

void
ActSetWirelessMode8185(
	struct net_device *dev,
	u8				btWirelessMode
	)
{
	struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
	struct ieee80211_device *ieee = priv->ieee80211;
	//PMGNT_INFO		pMgntInfo = &(Adapter->MgntInfo);
	u8	btSupportedWirelessMode = GetSupportedWirelessMode8185(dev);

	if( (btWirelessMode & btSupportedWirelessMode) == 0 )
	{ // Don't switch to unsupported wireless mode, 2006.02.15, by rcnjko.
		DMESGW("ActSetWirelessMode8185(): WirelessMode(%d) is not supported (%d)!\n",
			btWirelessMode, btSupportedWirelessMode);
		return;
	}

	// 1. Assign wireless mode to swtich if necessary.
	if (btWirelessMode == WIRELESS_MODE_AUTO)
	{
		if((btSupportedWirelessMode & WIRELESS_MODE_A))
		{
			btWirelessMode = WIRELESS_MODE_A;
		}
		else if((btSupportedWirelessMode & WIRELESS_MODE_G))
		{
			btWirelessMode = WIRELESS_MODE_G;
		}
		else if((btSupportedWirelessMode & WIRELESS_MODE_B))
		{
			btWirelessMode = WIRELESS_MODE_B;
		}
		else
		{
			DMESGW("ActSetWirelessMode8185(): No valid wireless mode supported, btSupportedWirelessMode(%x)!!!\n",
					 btSupportedWirelessMode);
			btWirelessMode = WIRELESS_MODE_B;
		}
	}


	// 2. Swtich band: RF or BB specific actions,
	// for example, refresh tables in omc8255, or change initial gain if necessary.
	switch(priv->rf_chip)
	{
	case RF_ZEBRA2:
	case RF_ZEBRA4:
		{
			// Nothing to do for Zebra to switch band.
			// Update current wireless mode if we swtich to specified band successfully.
			ieee->mode = (WIRELESS_MODE)btWirelessMode;
		}
		break;

	default:
		DMESGW("ActSetWirelessMode8185(): unsupported RF: 0x%X !!!\n", priv->rf_chip);
		break;
	}

	// 3. Change related setting.
	if( ieee->mode == WIRELESS_MODE_A ){
		DMESG("WIRELESS_MODE_A\n");
	}
	else if( ieee->mode == WIRELESS_MODE_B ){
		DMESG("WIRELESS_MODE_B\n");
	}
	else if( ieee->mode == WIRELESS_MODE_G ){
		DMESG("WIRELESS_MODE_G\n");
	}

	ActUpdateChannelAccessSetting( dev, ieee->mode, &priv->ChannelAccessSetting);
}

void rtl8185b_irq_enable(struct net_device *dev)
{
	struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);

	priv->irq_enabled = 1;
	write_nic_dword(dev, IMR, priv->IntrMask);
}
//by amy for power save
void
DrvIFIndicateDisassociation(
	struct net_device *dev,
	u16			reason
	)
{
	//printk("==> DrvIFIndicateDisassociation()\n");

	// nothing is needed after disassociation request.

	//printk("<== DrvIFIndicateDisassociation()\n");
}
void
MgntDisconnectIBSS(
	struct net_device *dev
)
{
	struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
	u8			i;

	//printk("XXXXXXXXXX MgntDisconnect IBSS\n");

	DrvIFIndicateDisassociation(dev, unspec_reason);

//	PlatformZeroMemory( pMgntInfo->Bssid, 6 );
	for(i=0;i<6;i++)  priv->ieee80211->current_network.bssid[i] = 0x55;

	priv->ieee80211->state = IEEE80211_NOLINK;

	//Stop Beacon.

	// Vista add a Adhoc profile, HW radio off untill OID_DOT11_RESET_REQUEST
	// Driver would set MSR=NO_LINK, then HW Radio ON, MgntQueue Stuck.
	// Because Bcn DMA isn't complete, mgnt queue would stuck until Bcn packet send.

	// Disable Beacon Queue Own bit, suggested by jong
//	Adapter->HalFunc.SetTxDescOWNHandler(Adapter, BEACON_QUEUE, 0, 0);
	ieee80211_stop_send_beacons(priv->ieee80211);

	priv->ieee80211->link_change(dev);
	notify_wx_assoc_event(priv->ieee80211);

	// Stop SW Beacon.Use hw beacon so do not need to do so.by amy

//		MgntIndicateMediaStatus( Adapter, RT_MEDIA_DISCONNECT, GENERAL_INDICATE );

}
void
MlmeDisassociateRequest(
	struct net_device *dev,
	u8*			asSta,
	u8			asRsn
	)
{
	struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
	u8 i;

	SendDisassociation(priv->ieee80211, asSta, asRsn );

	if( memcmp(priv->ieee80211->current_network.bssid, asSta, 6 ) == 0 ){
		//ShuChen TODO: change media status.
		//ShuChen TODO: What to do when disassociate.
		DrvIFIndicateDisassociation(dev, unspec_reason);


	//	pMgntInfo->AsocTimestamp = 0;
		for(i=0;i<6;i++)  priv->ieee80211->current_network.bssid[i] = 0x22;
//		pMgntInfo->mBrates.Length = 0;
//		Adapter->HalFunc.SetHwRegHandler( Adapter, HW_VAR_BASIC_RATE, (pu1Byte)(&pMgntInfo->mBrates) );

		ieee80211_disassociate(priv->ieee80211);


	}

}

void
MgntDisconnectAP(
	struct net_device *dev,
	u8			asRsn
)
{
	struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);

//
// Commented out by rcnjko, 2005.01.27:
// I move SecClearAllKeys() to MgntActSet_802_11_DISASSOCIATE().
//
//	//2004/09/15, kcwu, the key should be cleared, or the new handshaking will not success
//	SecClearAllKeys(Adapter);

	// In WPA WPA2 need to Clear all key ... because new key will set after new handshaking.
#ifdef TODO
	if(   pMgntInfo->SecurityInfo.AuthMode > RT_802_11AuthModeAutoSwitch ||
		(pMgntInfo->bAPSuportCCKM && pMgntInfo->bCCX8021xenable) )  // In CCKM mode will Clear key
	{
		SecClearAllKeys(Adapter);
		RT_TRACE(COMP_SEC, DBG_LOUD,("======>CCKM clear key..."))
	}
#endif
	// 2004.10.11, by rcnjko.
	//MlmeDisassociateRequest( Adapter, pMgntInfo->Bssid, disas_lv_ss );
	MlmeDisassociateRequest( dev, priv->ieee80211->current_network.bssid, asRsn );

	priv->ieee80211->state = IEEE80211_NOLINK;
//	pMgntInfo->AsocTimestamp = 0;
}
bool
MgntDisconnect(
	struct net_device *dev,
	u8			asRsn
)
{
	struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
	//
	// Schedule an workitem to wake up for ps mode, 070109, by rcnjko.
	//
#ifdef TODO
	if(pMgntInfo->mPss != eAwake)
	{
		//
		// Using AwkaeTimer to prevent mismatch ps state.
		// In the timer the state will be changed according to the RF is being awoke or not. By Bruce, 2007-10-31.
		//
		// PlatformScheduleWorkItem( &(pMgntInfo->AwakeWorkItem) );
		PlatformSetTimer( Adapter, &(pMgntInfo->AwakeTimer), 0 );
	}
#endif

	// Indication of disassociation event.
	//DrvIFIndicateDisassociation(Adapter, asRsn);
	if(IS_DOT11D_ENABLE(priv->ieee80211))
		Dot11d_Reset(priv->ieee80211);
	// In adhoc mode, update beacon frame.
	if( priv->ieee80211->state == IEEE80211_LINKED )
	{
		if( priv->ieee80211->iw_mode == IW_MODE_ADHOC )
		{
//			RT_TRACE(COMP_MLME, DBG_LOUD, ("MgntDisconnect() ===> MgntDisconnectIBSS\n"));
			//printk("MgntDisconnect() ===> MgntDisconnectIBSS\n");
			MgntDisconnectIBSS(dev);
		}
		if( priv->ieee80211->iw_mode == IW_MODE_INFRA )
		{
			// We clear key here instead of MgntDisconnectAP() because that
			// MgntActSet_802_11_DISASSOCIATE() is an interface called by OS,
			// e.g. OID_802_11_DISASSOCIATE in Windows while as MgntDisconnectAP() is
			// used to handle disassociation related things to AP, e.g. send Disassoc
			// frame to AP.  2005.01.27, by rcnjko.
//			SecClearAllKeys(Adapter);

//			RT_TRACE(COMP_MLME, DBG_LOUD, ("MgntDisconnect() ===> MgntDisconnectAP\n"));
			//printk("MgntDisconnect() ===> MgntDisconnectAP\n");
			MgntDisconnectAP(dev, asRsn);
		}

		// Inidicate Disconnect, 2005.02.23, by rcnjko.
//		MgntIndicateMediaStatus( Adapter, RT_MEDIA_DISCONNECT, GENERAL_INDICATE);
	}

	return true;
}
//
//	Description:
//		Chang RF Power State.
//		Note that, only MgntActSet_RF_State() is allowed to set HW_VAR_RF_STATE.
//
//	Assumption:
//		PASSIVE LEVEL.
//
bool
SetRFPowerState(
	struct net_device *dev,
	RT_RF_POWER_STATE	eRFPowerState
	)
{
	struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
	bool			bResult = false;

//	printk("---------> SetRFPowerState(): eRFPowerState(%d)\n", eRFPowerState);
	if(eRFPowerState == priv->eRFPowerState)
	{
//		printk("<--------- SetRFPowerState(): discard the request for eRFPowerState(%d) is the same.\n", eRFPowerState);
		return bResult;
	}

	switch(priv->rf_chip)
	{
		case RF_ZEBRA2:
		case RF_ZEBRA4:
			 bResult = SetZebraRFPowerState8185(dev, eRFPowerState);
			break;

		default:
			printk("SetRFPowerState8185(): unknown RFChipID: 0x%X!!!\n", priv->rf_chip);
			break;;
}
//	printk("<--------- SetRFPowerState(): bResult(%d)\n", bResult);

	return bResult;
}
void
HalEnableRx8185Dummy(
	struct net_device *dev
	)
{
}
void
HalDisableRx8185Dummy(
	struct net_device *dev
	)
{
}

bool
MgntActSet_RF_State(
	struct net_device *dev,
	RT_RF_POWER_STATE	StateToSet,
	u32	ChangeSource
	)
{
	struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
	bool				bActionAllowed = false;
	bool				bConnectBySSID = false;
	RT_RF_POWER_STATE 	rtState;
	u16				RFWaitCounter = 0;
	unsigned long flag;
//	 printk("===>MgntActSet_RF_State(): StateToSet(%d), ChangeSource(0x%x)\n",StateToSet, ChangeSource);
	//
	// Prevent the race condition of RF state change. By Bruce, 2007-11-28.
	// Only one thread can change the RF state at one time, and others should wait to be executed.
	//
#if 1
	while(true)
	{
//		down(&priv->rf_state);
		spin_lock_irqsave(&priv->rf_ps_lock,flag);
		if(priv->RFChangeInProgress)
		{
//			printk("====================>haha111111111\n");
//			up(&priv->rf_state);
//			RT_TRACE(COMP_RF, DBG_LOUD, ("MgntActSet_RF_State(): RF Change in progress! Wait to set..StateToSet(%d).\n", StateToSet));
			spin_unlock_irqrestore(&priv->rf_ps_lock,flag);
			// Set RF after the previous action is done.
			while(priv->RFChangeInProgress)
			{
				RFWaitCounter ++;
//				RT_TRACE(COMP_RF, DBG_LOUD, ("MgntActSet_RF_State(): Wait 1 ms (%d times)...\n", RFWaitCounter));
				udelay(1000); // 1 ms

				// Wait too long, return FALSE to avoid to be stuck here.
				if(RFWaitCounter > 1000) // 1sec
				{
//					RT_ASSERT(FALSE, ("MgntActSet_RF_State(): Wait too logn to set RF\n"));
					printk("MgntActSet_RF_State(): Wait too long to set RF\n");
					// TODO: Reset RF state?
					return false;
				}
			}
		}
		else
		{
//			printk("========================>haha2\n");
			priv->RFChangeInProgress = true;
//			up(&priv->rf_state);
			spin_unlock_irqrestore(&priv->rf_ps_lock,flag);
			break;
		}
	}
#endif
	rtState = priv->eRFPowerState;


	switch(StateToSet)
	{
	case eRfOn:
		//
		// Turn On RF no matter the IPS setting because we need to update the RF state to Ndis under Vista, or
		// the Windows does not allow the driver to perform site survey any more. By Bruce, 2007-10-02.
		//
		priv->RfOffReason &= (~ChangeSource);

		if(! priv->RfOffReason)
		{
			priv->RfOffReason = 0;
			bActionAllowed = true;

			if(rtState == eRfOff && ChangeSource >=RF_CHANGE_BY_HW && !priv->bInHctTest)
			{
				bConnectBySSID = true;
			}
		}
		else
//			RT_TRACE(COMP_RF, DBG_LOUD, ("MgntActSet_RF_State - eRfon reject pMgntInfo->RfOffReason= 0x%x, ChangeSource=0x%X\n", pMgntInfo->RfOffReason, ChangeSource));
			;
		break;

	case eRfOff:
		 // 070125, rcnjko: we always keep connected in AP mode.

			if (priv->RfOffReason > RF_CHANGE_BY_IPS)
			{
				//
				// 060808, Annie:
				// Disconnect to current BSS when radio off. Asked by QuanTa.
				//

				//
				// Calling MgntDisconnect() instead of MgntActSet_802_11_DISASSOCIATE(),
				// because we do NOT need to set ssid to dummy ones.
				// Revised by Roger, 2007.12.04.
				//
				MgntDisconnect( dev, disas_lv_ss );

				// Clear content of bssDesc[] and bssDesc4Query[] to avoid reporting old bss to UI.
				// 2007.05.28, by shien chang.
//				PlatformZeroMemory( pMgntInfo->bssDesc, sizeof(RT_WLAN_BSS)*MAX_BSS_DESC );
//				pMgntInfo->NumBssDesc = 0;
//				PlatformZeroMemory( pMgntInfo->bssDesc4Query, sizeof(RT_WLAN_BSS)*MAX_BSS_DESC );
//				pMgntInfo->NumBssDesc4Query = 0;
			}



		priv->RfOffReason |= ChangeSource;
		bActionAllowed = true;
		break;

	case eRfSleep:
		priv->RfOffReason |= ChangeSource;
		bActionAllowed = true;
		break;

	default:
		break;
	}

	if(bActionAllowed)
	{
//		RT_TRACE(COMP_RF, DBG_LOUD, ("MgntActSet_RF_State(): Action is allowed.... StateToSet(%d), RfOffReason(%#X)\n", StateToSet, pMgntInfo->RfOffReason));
                // Config HW to the specified mode.
//		printk("MgntActSet_RF_State(): Action is allowed.... StateToSet(%d), RfOffReason(%#X)\n", StateToSet, priv->RfOffReason);
		SetRFPowerState(dev, StateToSet);

		// Turn on RF.
		if(StateToSet == eRfOn)
		{
			HalEnableRx8185Dummy(dev);
			if(bConnectBySSID)
			{
			// by amy not supported
//				MgntActSet_802_11_SSID(Adapter, Adapter->MgntInfo.Ssid.Octet, Adapter->MgntInfo.Ssid.Length, TRUE );
			}
		}
		// Turn off RF.
		else if(StateToSet == eRfOff)
		{
			HalDisableRx8185Dummy(dev);
		}
	}
	else
	{
	//	printk("MgntActSet_RF_State(): Action is rejected.... StateToSet(%d), ChangeSource(%#X), RfOffReason(%#X)\n", StateToSet, ChangeSource, priv->RfOffReason);
	}

	// Release RF spinlock
//	down(&priv->rf_state);
	spin_lock_irqsave(&priv->rf_ps_lock,flag);
	priv->RFChangeInProgress = false;
//	up(&priv->rf_state);
	spin_unlock_irqrestore(&priv->rf_ps_lock,flag);
//	printk("<===MgntActSet_RF_State()\n");
	return bActionAllowed;
}
void
InactivePowerSave(
	struct net_device *dev
	)
{
	struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
	//u8 index = 0;

	//
	// This flag "bSwRfProcessing", indicates the status of IPS procedure, should be set if the IPS workitem
	// is really scheduled.
	// The old code, sets this flag before scheduling the IPS workitem and however, at the same time the
	// previous IPS workitem did not end yet, fails to schedule the current workitem. Thus, bSwRfProcessing
	// blocks the IPS procedure of switching RF.
	// By Bruce, 2007-12-25.
	//
	priv->bSwRfProcessing = true;

	MgntActSet_RF_State(dev, priv->eInactivePowerState, RF_CHANGE_BY_IPS);

	//
	// To solve CAM values miss in RF OFF, rewrite CAM values after RF ON. By Bruce, 2007-09-20.
	//

	priv->bSwRfProcessing = false;
}

//
//	Description:
//		Enter the inactive power save mode. RF will be off
//	2007.08.17, by shien chang.
//
void
IPSEnter(
	struct net_device *dev
	)
{
	struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
	RT_RF_POWER_STATE rtState;
	//printk("==============================>enter IPS\n");
	if (priv->bInactivePs)
	{
		rtState = priv->eRFPowerState;

		//
		// Added by Bruce, 2007-12-25.
		// Do not enter IPS in the following conditions:
		// (1) RF is already OFF or Sleep
		// (2) bSwRfProcessing (indicates the IPS is still under going)
		// (3) Connectted (only disconnected can trigger IPS)
		// (4) IBSS (send Beacon)
		// (5) AP mode (send Beacon)
		//
		if (rtState == eRfOn && !priv->bSwRfProcessing
			&& (priv->ieee80211->state != IEEE80211_LINKED ))
		{
	//		printk("IPSEnter(): Turn off RF.\n");
			priv->eInactivePowerState = eRfOff;
			InactivePowerSave(dev);
		}
	}
//	printk("priv->eRFPowerState is %d\n",priv->eRFPowerState);
}
void
IPSLeave(
	struct net_device *dev
	)
{
	struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
	RT_RF_POWER_STATE rtState;
	//printk("===================================>leave IPS\n");
	if (priv->bInactivePs)
	{
		rtState = priv->eRFPowerState;
		if ((rtState == eRfOff || rtState == eRfSleep) && (!priv->bSwRfProcessing) && priv->RfOffReason <= RF_CHANGE_BY_IPS)
		{
//			printk("IPSLeave(): Turn on RF.\n");
			priv->eInactivePowerState = eRfOn;
			InactivePowerSave(dev);
		}
	}
//	printk("priv->eRFPowerState is %d\n",priv->eRFPowerState);
}
//by amy for power save
void rtl8185b_adapter_start(struct net_device *dev)
{
      struct r8180_priv *priv = ieee80211_priv(dev);
	struct ieee80211_device *ieee = priv->ieee80211;

	u8 SupportedWirelessMode;
	u8			InitWirelessMode;
	u8			bInvalidWirelessMode = 0;
	//int i;
	u8 tmpu8;
    	//u8 u1tmp,u2tmp;
	u8 btCR9346;
	u8 TmpU1b;
	u8 btPSR;

	//rtl8180_rtx_disable(dev);
//{by amy 080312
	write_nic_byte(dev,0x24e, (BIT5|BIT6|BIT0));
//by amy 080312}
	rtl8180_reset(dev);

	priv->dma_poll_mask = 0;
	priv->dma_poll_stop_mask = 0;

	//rtl8180_beacon_tx_disable(dev);

	HwConfigureRTL8185(dev);

	write_nic_dword(dev, MAC0, ((u32*)dev->dev_addr)[0]);
	write_nic_word(dev, MAC4, ((u32*)dev->dev_addr)[1] & 0xffff );

	write_nic_byte(dev, MSR, read_nic_byte(dev, MSR) & 0xf3);	// default network type to 'No	Link'

	//write_nic_byte(dev, BRSR, 0x0);		// Set BRSR= 1M

	write_nic_word(dev, BcnItv, 100);
	write_nic_word(dev, AtimWnd, 2);

	//PlatformEFIOWrite2Byte(dev, FEMR, 0xFFFF);
	PlatformIOWrite2Byte(dev, FEMR, 0xFFFF);

	write_nic_byte(dev, WPA_CONFIG, 0);

	MacConfig_85BASIC(dev);

	// Override the RFSW_CTRL (MAC offset 0x272-0x273), 2006.06.07, by rcnjko.
	// BT_DEMO_BOARD type
	PlatformIOWrite2Byte(dev, RFSW_CTRL, 0x569a);
//by amy
//#ifdef CONFIG_RTL818X_S
		// for jong required
//	PlatformIOWrite2Byte(dev, RFSW_CTRL, 0x9a56);
//#endif
//by amy
	//BT_QA_BOARD
	//PlatformIOWrite2Byte(dev, RFSW_CTRL, 0x9a56);

	//-----------------------------------------------------------------------------
	// Set up PHY related.
	//-----------------------------------------------------------------------------
	// Enable Config3.PARAM_En to revise AnaaParm.
	write_nic_byte(dev, CR9346, 0xc0);	// enable config register write
//by amy
	tmpu8 = read_nic_byte(dev, CONFIG3);
	write_nic_byte(dev, CONFIG3, (tmpu8 |CONFIG3_PARM_En) );
//by amy
	// Turn on Analog power.
	// Asked for by William, otherwise, MAC 3-wire can't work, 2006.06.27, by rcnjko.
	write_nic_dword(dev, ANAPARAM2, ANAPARM2_ASIC_ON);
	write_nic_dword(dev, ANAPARAM, ANAPARM_ASIC_ON);
//by amy
	write_nic_word(dev, ANAPARAM3, 0x0010);
//by amy

	write_nic_byte(dev, CONFIG3, tmpu8);
	write_nic_byte(dev, CR9346, 0x00);
//{by amy 080312 for led
	// enable EEM0 and EEM1 in 9346CR
	btCR9346 = read_nic_byte(dev, CR9346);
	write_nic_byte(dev, CR9346, (btCR9346|0xC0) );

	// B cut use LED1 to control HW RF on/off
	TmpU1b = read_nic_byte(dev, CONFIG5);
	TmpU1b = TmpU1b & ~BIT3;
	write_nic_byte(dev,CONFIG5, TmpU1b);

	// disable EEM0 and EEM1 in 9346CR
	btCR9346 &= ~(0xC0);
	write_nic_byte(dev, CR9346, btCR9346);

	//Enable Led (suggested by Jong)
	// B-cut RF Radio on/off  5e[3]=0
	btPSR = read_nic_byte(dev, PSR);
	write_nic_byte(dev, PSR, (btPSR | BIT3));
//by amy 080312 for led}
	// setup initial timing for RFE.
	write_nic_word(dev, RFPinsOutput, 0x0480);
	SetOutputEnableOfRfPins(dev);
	write_nic_word(dev, RFPinsSelect, 0x2488);

	// PHY config.
	PhyConfig8185(dev);

	// We assume RegWirelessMode has already been initialized before,
	// however, we has to validate the wireless mode here and provide a
	// reasonable initialized value if necessary. 2005.01.13, by rcnjko.
	SupportedWirelessMode = GetSupportedWirelessMode8185(dev);
	if(	(ieee->mode != WIRELESS_MODE_B) &&
		(ieee->mode != WIRELESS_MODE_G) &&
		(ieee->mode != WIRELESS_MODE_A) &&
		(ieee->mode != WIRELESS_MODE_AUTO))
	{ // It should be one of B, G, A, or AUTO.
		bInvalidWirelessMode = 1;
	}
	else
	{ // One of B, G, A, or AUTO.
		// Check if the wireless mode is supported by RF.
		if( (ieee->mode != WIRELESS_MODE_AUTO) &&
			(ieee->mode & SupportedWirelessMode) == 0 )
		{
			bInvalidWirelessMode = 1;
		}
	}

	if(bInvalidWirelessMode || ieee->mode==WIRELESS_MODE_AUTO)
	{ // Auto or other invalid value.
		// Assigne a wireless mode to initialize.
		if((SupportedWirelessMode & WIRELESS_MODE_A))
		{
			InitWirelessMode = WIRELESS_MODE_A;
		}
		else if((SupportedWirelessMode & WIRELESS_MODE_G))
		{
			InitWirelessMode = WIRELESS_MODE_G;
		}
		else if((SupportedWirelessMode & WIRELESS_MODE_B))
		{
			InitWirelessMode = WIRELESS_MODE_B;
		}
		else
		{
			DMESGW("InitializeAdapter8185(): No valid wireless mode supported, SupportedWirelessMode(%x)!!!\n",
				 SupportedWirelessMode);
			InitWirelessMode = WIRELESS_MODE_B;
		}

		// Initialize RegWirelessMode if it is not a valid one.
		if(bInvalidWirelessMode)
		{
			ieee->mode = (WIRELESS_MODE)InitWirelessMode;
		}
	}
	else
	{ // One of B, G, A.
		InitWirelessMode = ieee->mode;
	}
//by amy for power save
//	printk("initialize ENABLE_IPS\n");
	priv->eRFPowerState = eRfOff;
	priv->RfOffReason = 0;
	{
	//	u32 tmp2;
	//	u32 tmp = jiffies;
		MgntActSet_RF_State(dev, eRfOn, 0);
	//	tmp2 = jiffies;
	//	printk("rf on cost jiffies:%lx\n", (tmp2-tmp)*1000/HZ);
	}
//	DrvIFIndicateCurrentPhyStatus(priv);
		//
		// If inactive power mode is enabled, disable rf while in disconnected state.
		// 2007.07.16, by shien chang.
		//
	if (priv->bInactivePs)
	{
	//	u32 tmp2;
	//	u32 tmp = jiffies;
		MgntActSet_RF_State(dev,eRfOff, RF_CHANGE_BY_IPS);
	//	tmp2 = jiffies;
	//	printk("rf off cost jiffies:%lx\n", (tmp2-tmp)*1000/HZ);

	}
//	IPSEnter(dev);
//by amy for power save
#ifdef TODO
	// Turn off RF if necessary. 2005.08.23, by rcnjko.
	// We shall turn off RF after setting CMDR, otherwise,
	// RF will be turnned on after we enable MAC Tx/Rx.
	if(Adapter->MgntInfo.RegRfOff == TRUE)
	{
		SetRFPowerState8185(Adapter, RF_OFF);
	}
	else
	{
		SetRFPowerState8185(Adapter, RF_ON);
	}
#endif

/*   //these is equal with above TODO.
	write_nic_byte(dev, CR9346, 0xc0);	// enable config register write
	write_nic_byte(dev, CONFIG3, read_nic_byte(dev, CONFIG3) | CONFIG3_PARM_En);
	RF_WriteReg(dev, 0x4, 0x9FF);
	write_nic_dword(dev, ANAPARAM2, ANAPARM2_ASIC_ON);
	write_nic_dword(dev, ANAPARAM, ANAPARM_ASIC_ON);
	write_nic_byte(dev, CONFIG3, (read_nic_byte(dev, CONFIG3)&(~CONFIG3_PARM_En)));
	write_nic_byte(dev, CR9346, 0x00);
*/

	ActSetWirelessMode8185(dev, (u8)(InitWirelessMode));

	//-----------------------------------------------------------------------------

	rtl8185b_irq_enable(dev);

	netif_start_queue(dev);

 }


void rtl8185b_rx_enable(struct net_device *dev)
{
	u8 cmd;
	//u32 rxconf;
	/* for now we accept data, management & ctl frame*/
	struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);

	if (dev->flags & IFF_PROMISC) DMESG ("NIC in promisc mode");

	if(priv->ieee80211->iw_mode == IW_MODE_MONITOR || \
	   dev->flags & IFF_PROMISC){
	   	priv->ReceiveConfig = priv->ReceiveConfig & (~RCR_APM);
		priv->ReceiveConfig = priv->ReceiveConfig | RCR_AAP;
	}

	/*if(priv->ieee80211->iw_mode == IW_MODE_MASTER){
		rxconf = rxconf | (1<<ACCEPT_ALLMAC_FRAME_SHIFT);
		rxconf = rxconf | (1<<RX_CHECK_BSSID_SHIFT);
	}*/

	if(priv->ieee80211->iw_mode == IW_MODE_MONITOR){
		priv->ReceiveConfig = priv->ReceiveConfig | RCR_ACF | RCR_APWRMGT | RCR_AICV;
	}

	if( priv->crcmon == 1 && priv->ieee80211->iw_mode == IW_MODE_MONITOR)
		priv->ReceiveConfig = priv->ReceiveConfig | RCR_ACRC32;

	write_nic_dword(dev, RCR, priv->ReceiveConfig);

	fix_rx_fifo(dev);

#ifdef DEBUG_RX
	DMESG("rxconf: %x %x",priv->ReceiveConfig ,read_nic_dword(dev,RCR));
#endif
	cmd=read_nic_byte(dev,CMD);
	write_nic_byte(dev,CMD,cmd | (1<<CMD_RX_ENABLE_SHIFT));

}

void rtl8185b_tx_enable(struct net_device *dev)
{
	u8 cmd;
	//u8 tx_agc_ctl;
	u8 byte;
	//u32 txconf;
	struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);

	write_nic_dword(dev, TCR, priv->TransmitConfig);
	byte = read_nic_byte(dev, MSR);
	byte |= MSR_LINK_ENEDCA;
	write_nic_byte(dev, MSR, byte);

	fix_tx_fifo(dev);

#ifdef DEBUG_TX
	DMESG("txconf: %x %x",priv->TransmitConfig,read_nic_dword(dev,TCR));
#endif

	cmd=read_nic_byte(dev,CMD);
	write_nic_byte(dev,CMD,cmd | (1<<CMD_TX_ENABLE_SHIFT));

	//write_nic_dword(dev,TX_CONF,txconf);


/*
	rtl8180_set_mode(dev,EPROM_CMD_CONFIG);
	write_nic_byte(dev, TX_DMA_POLLING, priv->dma_poll_mask);
	rtl8180_set_mode(dev,EPROM_CMD_NORMAL);
	*/
}