aboutsummaryrefslogtreecommitdiffstats
path: root/fs/xfs/scrub/repair.c
blob: fca8e3c7887dad8884adf508cad549e59a2e36e0 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
/*
 * Copyright (C) 2018 Oracle.  All Rights Reserved.
 *
 * Author: Darrick J. Wong <darrick.wong@oracle.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it would be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write the Free Software Foundation,
 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301, USA.
 */
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_trans_resv.h"
#include "xfs_mount.h"
#include "xfs_defer.h"
#include "xfs_btree.h"
#include "xfs_bit.h"
#include "xfs_log_format.h"
#include "xfs_trans.h"
#include "xfs_sb.h"
#include "xfs_inode.h"
#include "xfs_icache.h"
#include "xfs_alloc.h"
#include "xfs_alloc_btree.h"
#include "xfs_ialloc.h"
#include "xfs_ialloc_btree.h"
#include "xfs_rmap.h"
#include "xfs_rmap_btree.h"
#include "xfs_refcount.h"
#include "xfs_refcount_btree.h"
#include "xfs_extent_busy.h"
#include "xfs_ag_resv.h"
#include "xfs_trans_space.h"
#include "scrub/xfs_scrub.h"
#include "scrub/scrub.h"
#include "scrub/common.h"
#include "scrub/trace.h"
#include "scrub/repair.h"

/*
 * Attempt to repair some metadata, if the metadata is corrupt and userspace
 * told us to fix it.  This function returns -EAGAIN to mean "re-run scrub",
 * and will set *fixed to true if it thinks it repaired anything.
 */
int
xfs_repair_attempt(
	struct xfs_inode		*ip,
	struct xfs_scrub_context	*sc,
	bool				*fixed)
{
	int				error = 0;

	trace_xfs_repair_attempt(ip, sc->sm, error);

	xfs_scrub_ag_btcur_free(&sc->sa);

	/* Repair whatever's broken. */
	ASSERT(sc->ops->repair);
	error = sc->ops->repair(sc);
	trace_xfs_repair_done(ip, sc->sm, error);
	switch (error) {
	case 0:
		/*
		 * Repair succeeded.  Commit the fixes and perform a second
		 * scrub so that we can tell userspace if we fixed the problem.
		 */
		sc->sm->sm_flags &= ~XFS_SCRUB_FLAGS_OUT;
		*fixed = true;
		return -EAGAIN;
	case -EDEADLOCK:
	case -EAGAIN:
		/* Tell the caller to try again having grabbed all the locks. */
		if (!sc->try_harder) {
			sc->try_harder = true;
			return -EAGAIN;
		}
		/*
		 * We tried harder but still couldn't grab all the resources
		 * we needed to fix it.  The corruption has not been fixed,
		 * so report back to userspace.
		 */
		return -EFSCORRUPTED;
	default:
		return error;
	}
}

/*
 * Complain about unfixable problems in the filesystem.  We don't log
 * corruptions when IFLAG_REPAIR wasn't set on the assumption that the driver
 * program is xfs_scrub, which will call back with IFLAG_REPAIR set if the
 * administrator isn't running xfs_scrub in no-repairs mode.
 *
 * Use this helper function because _ratelimited silently declares a static
 * structure to track rate limiting information.
 */
void
xfs_repair_failure(
	struct xfs_mount		*mp)
{
	xfs_alert_ratelimited(mp,
"Corruption not fixed during online repair.  Unmount and run xfs_repair.");
}

/*
 * Repair probe -- userspace uses this to probe if we're willing to repair a
 * given mountpoint.
 */
int
xfs_repair_probe(
	struct xfs_scrub_context	*sc)
{
	int				error = 0;

	if (xfs_scrub_should_terminate(sc, &error))
		return error;

	return 0;
}

/*
 * Roll a transaction, keeping the AG headers locked and reinitializing
 * the btree cursors.
 */
int
xfs_repair_roll_ag_trans(
	struct xfs_scrub_context	*sc)
{
	int				error;

	/* Keep the AG header buffers locked so we can keep going. */
	xfs_trans_bhold(sc->tp, sc->sa.agi_bp);
	xfs_trans_bhold(sc->tp, sc->sa.agf_bp);
	xfs_trans_bhold(sc->tp, sc->sa.agfl_bp);

	/* Roll the transaction. */
	error = xfs_trans_roll(&sc->tp);
	if (error)
		goto out_release;

	/* Join AG headers to the new transaction. */
	xfs_trans_bjoin(sc->tp, sc->sa.agi_bp);
	xfs_trans_bjoin(sc->tp, sc->sa.agf_bp);
	xfs_trans_bjoin(sc->tp, sc->sa.agfl_bp);

	return 0;

out_release:
	/*
	 * Rolling failed, so release the hold on the buffers.  The
	 * buffers will be released during teardown on our way out
	 * of the kernel.
	 */
	xfs_trans_bhold_release(sc->tp, sc->sa.agi_bp);
	xfs_trans_bhold_release(sc->tp, sc->sa.agf_bp);
	xfs_trans_bhold_release(sc->tp, sc->sa.agfl_bp);

	return error;
}

/*
 * Does the given AG have enough space to rebuild a btree?  Neither AG
 * reservation can be critical, and we must have enough space (factoring
 * in AG reservations) to construct a whole btree.
 */
bool
xfs_repair_ag_has_space(
	struct xfs_perag		*pag,
	xfs_extlen_t			nr_blocks,
	enum xfs_ag_resv_type		type)
{
	return  !xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) &&
		!xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA) &&
		pag->pagf_freeblks > xfs_ag_resv_needed(pag, type) + nr_blocks;
}

/*
 * Figure out how many blocks to reserve for an AG repair.  We calculate the
 * worst case estimate for the number of blocks we'd need to rebuild one of
 * any type of per-AG btree.
 */
xfs_extlen_t
xfs_repair_calc_ag_resblks(
	struct xfs_scrub_context	*sc)
{
	struct xfs_mount		*mp = sc->mp;
	struct xfs_scrub_metadata	*sm = sc->sm;
	struct xfs_perag		*pag;
	struct xfs_buf			*bp;
	xfs_agino_t			icount = 0;
	xfs_extlen_t			aglen = 0;
	xfs_extlen_t			usedlen;
	xfs_extlen_t			freelen;
	xfs_extlen_t			bnobt_sz;
	xfs_extlen_t			inobt_sz;
	xfs_extlen_t			rmapbt_sz;
	xfs_extlen_t			refcbt_sz;
	int				error;

	if (!(sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR))
		return 0;

	/* Use in-core counters if possible. */
	pag = xfs_perag_get(mp, sm->sm_agno);
	if (pag->pagi_init)
		icount = pag->pagi_count;

	/*
	 * Otherwise try to get the actual counters from disk; if not, make
	 * some worst case assumptions.
	 */
	if (icount == 0) {
		error = xfs_ialloc_read_agi(mp, NULL, sm->sm_agno, &bp);
		if (error) {
			icount = mp->m_sb.sb_agblocks / mp->m_sb.sb_inopblock;
		} else {
			icount = pag->pagi_count;
			xfs_buf_relse(bp);
		}
	}

	/* Now grab the block counters from the AGF. */
	error = xfs_alloc_read_agf(mp, NULL, sm->sm_agno, 0, &bp);
	if (error) {
		aglen = mp->m_sb.sb_agblocks;
		freelen = aglen;
		usedlen = aglen;
	} else {
		aglen = be32_to_cpu(XFS_BUF_TO_AGF(bp)->agf_length);
		freelen = pag->pagf_freeblks;
		usedlen = aglen - freelen;
		xfs_buf_relse(bp);
	}
	xfs_perag_put(pag);

	trace_xfs_repair_calc_ag_resblks(mp, sm->sm_agno, icount, aglen,
			freelen, usedlen);

	/*
	 * Figure out how many blocks we'd need worst case to rebuild
	 * each type of btree.  Note that we can only rebuild the
	 * bnobt/cntbt or inobt/finobt as pairs.
	 */
	bnobt_sz = 2 * xfs_allocbt_calc_size(mp, freelen);
	if (xfs_sb_version_hassparseinodes(&mp->m_sb))
		inobt_sz = xfs_iallocbt_calc_size(mp, icount /
				XFS_INODES_PER_HOLEMASK_BIT);
	else
		inobt_sz = xfs_iallocbt_calc_size(mp, icount /
				XFS_INODES_PER_CHUNK);
	if (xfs_sb_version_hasfinobt(&mp->m_sb))
		inobt_sz *= 2;
	if (xfs_sb_version_hasreflink(&mp->m_sb))
		refcbt_sz = xfs_refcountbt_calc_size(mp, usedlen);
	else
		refcbt_sz = 0;
	if (xfs_sb_version_hasrmapbt(&mp->m_sb)) {
		/*
		 * Guess how many blocks we need to rebuild the rmapbt.
		 * For non-reflink filesystems we can't have more records than
		 * used blocks.  However, with reflink it's possible to have
		 * more than one rmap record per AG block.  We don't know how
		 * many rmaps there could be in the AG, so we start off with
		 * what we hope is an generous over-estimation.
		 */
		if (xfs_sb_version_hasreflink(&mp->m_sb))
			rmapbt_sz = xfs_rmapbt_calc_size(mp,
					(unsigned long long)aglen * 2);
		else
			rmapbt_sz = xfs_rmapbt_calc_size(mp, usedlen);
	} else {
		rmapbt_sz = 0;
	}

	trace_xfs_repair_calc_ag_resblks_btsize(mp, sm->sm_agno, bnobt_sz,
			inobt_sz, rmapbt_sz, refcbt_sz);

	return max(max(bnobt_sz, inobt_sz), max(rmapbt_sz, refcbt_sz));
}

/* Allocate a block in an AG. */
int
xfs_repair_alloc_ag_block(
	struct xfs_scrub_context	*sc,
	struct xfs_owner_info		*oinfo,
	xfs_fsblock_t			*fsbno,
	enum xfs_ag_resv_type		resv)
{
	struct xfs_alloc_arg		args = {0};
	xfs_agblock_t			bno;
	int				error;

	switch (resv) {
	case XFS_AG_RESV_AGFL:
	case XFS_AG_RESV_RMAPBT:
		error = xfs_alloc_get_freelist(sc->tp, sc->sa.agf_bp, &bno, 1);
		if (error)
			return error;
		if (bno == NULLAGBLOCK)
			return -ENOSPC;
		xfs_extent_busy_reuse(sc->mp, sc->sa.agno, bno,
				1, false);
		*fsbno = XFS_AGB_TO_FSB(sc->mp, sc->sa.agno, bno);
		if (resv == XFS_AG_RESV_RMAPBT)
			xfs_ag_resv_rmapbt_alloc(sc->mp, sc->sa.agno);
		return 0;
	default:
		break;
	}

	args.tp = sc->tp;
	args.mp = sc->mp;
	args.oinfo = *oinfo;
	args.fsbno = XFS_AGB_TO_FSB(args.mp, sc->sa.agno, 0);
	args.minlen = 1;
	args.maxlen = 1;
	args.prod = 1;
	args.type = XFS_ALLOCTYPE_THIS_AG;
	args.resv = resv;

	error = xfs_alloc_vextent(&args);
	if (error)
		return error;
	if (args.fsbno == NULLFSBLOCK)
		return -ENOSPC;
	ASSERT(args.len == 1);
	*fsbno = args.fsbno;

	return 0;
}

/* Initialize a new AG btree root block with zero entries. */
int
xfs_repair_init_btblock(
	struct xfs_scrub_context	*sc,
	xfs_fsblock_t			fsb,
	struct xfs_buf			**bpp,
	xfs_btnum_t			btnum,
	const struct xfs_buf_ops	*ops)
{
	struct xfs_trans		*tp = sc->tp;
	struct xfs_mount		*mp = sc->mp;
	struct xfs_buf			*bp;

	trace_xfs_repair_init_btblock(mp, XFS_FSB_TO_AGNO(mp, fsb),
			XFS_FSB_TO_AGBNO(mp, fsb), btnum);

	ASSERT(XFS_FSB_TO_AGNO(mp, fsb) == sc->sa.agno);
	bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, XFS_FSB_TO_DADDR(mp, fsb),
			XFS_FSB_TO_BB(mp, 1), 0);
	xfs_buf_zero(bp, 0, BBTOB(bp->b_length));
	xfs_btree_init_block(mp, bp, btnum, 0, 0, sc->sa.agno, 0);
	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_BTREE_BUF);
	xfs_trans_log_buf(tp, bp, 0, bp->b_length);
	bp->b_ops = ops;
	*bpp = bp;

	return 0;
}

/*
 * Reconstructing per-AG Btrees
 *
 * When a space btree is corrupt, we don't bother trying to fix it.  Instead,
 * we scan secondary space metadata to derive the records that should be in
 * the damaged btree, initialize a fresh btree root, and insert the records.
 * Note that for rebuilding the rmapbt we scan all the primary data to
 * generate the new records.
 *
 * However, that leaves the matter of removing all the metadata describing the
 * old broken structure.  For primary metadata we use the rmap data to collect
 * every extent with a matching rmap owner (exlist); we then iterate all other
 * metadata structures with the same rmap owner to collect the extents that
 * cannot be removed (sublist).  We then subtract sublist from exlist to
 * derive the blocks that were used by the old btree.  These blocks can be
 * reaped.
 *
 * For rmapbt reconstructions we must use different tactics for extent
 * collection.  First we iterate all primary metadata (this excludes the old
 * rmapbt, obviously) to generate new rmap records.  The gaps in the rmap
 * records are collected as exlist.  The bnobt records are collected as
 * sublist.  As with the other btrees we subtract sublist from exlist, and the
 * result (since the rmapbt lives in the free space) are the blocks from the
 * old rmapbt.
 */

/* Collect a dead btree extent for later disposal. */
int
xfs_repair_collect_btree_extent(
	struct xfs_scrub_context	*sc,
	struct xfs_repair_extent_list	*exlist,
	xfs_fsblock_t			fsbno,
	xfs_extlen_t			len)
{
	struct xfs_repair_extent	*rex;

	trace_xfs_repair_collect_btree_extent(sc->mp,
			XFS_FSB_TO_AGNO(sc->mp, fsbno),
			XFS_FSB_TO_AGBNO(sc->mp, fsbno), len);

	rex = kmem_alloc(sizeof(struct xfs_repair_extent), KM_MAYFAIL);
	if (!rex)
		return -ENOMEM;

	INIT_LIST_HEAD(&rex->list);
	rex->fsbno = fsbno;
	rex->len = len;
	list_add_tail(&rex->list, &exlist->list);

	return 0;
}

/*
 * An error happened during the rebuild so the transaction will be cancelled.
 * The fs will shut down, and the administrator has to unmount and run repair.
 * Therefore, free all the memory associated with the list so we can die.
 */
void
xfs_repair_cancel_btree_extents(
	struct xfs_scrub_context	*sc,
	struct xfs_repair_extent_list	*exlist)
{
	struct xfs_repair_extent	*rex;
	struct xfs_repair_extent	*n;

	for_each_xfs_repair_extent_safe(rex, n, exlist) {
		list_del(&rex->list);
		kmem_free(rex);
	}
}

/* Compare two btree extents. */
static int
xfs_repair_btree_extent_cmp(
	void				*priv,
	struct list_head		*a,
	struct list_head		*b)
{
	struct xfs_repair_extent	*ap;
	struct xfs_repair_extent	*bp;

	ap = container_of(a, struct xfs_repair_extent, list);
	bp = container_of(b, struct xfs_repair_extent, list);

	if (ap->fsbno > bp->fsbno)
		return 1;
	if (ap->fsbno < bp->fsbno)
		return -1;
	return 0;
}

/*
 * Remove all the blocks mentioned in @sublist from the extents in @exlist.
 *
 * The intent is that callers will iterate the rmapbt for all of its records
 * for a given owner to generate @exlist; and iterate all the blocks of the
 * metadata structures that are not being rebuilt and have the same rmapbt
 * owner to generate @sublist.  This routine subtracts all the extents
 * mentioned in sublist from all the extents linked in @exlist, which leaves
 * @exlist as the list of blocks that are not accounted for, which we assume
 * are the dead blocks of the old metadata structure.  The blocks mentioned in
 * @exlist can be reaped.
 */
#define LEFT_ALIGNED	(1 << 0)
#define RIGHT_ALIGNED	(1 << 1)
int
xfs_repair_subtract_extents(
	struct xfs_scrub_context	*sc,
	struct xfs_repair_extent_list	*exlist,
	struct xfs_repair_extent_list	*sublist)
{
	struct list_head		*lp;
	struct xfs_repair_extent	*ex;
	struct xfs_repair_extent	*newex;
	struct xfs_repair_extent	*subex;
	xfs_fsblock_t			sub_fsb;
	xfs_extlen_t			sub_len;
	int				state;
	int				error = 0;

	if (list_empty(&exlist->list) || list_empty(&sublist->list))
		return 0;
	ASSERT(!list_empty(&sublist->list));

	list_sort(NULL, &exlist->list, xfs_repair_btree_extent_cmp);
	list_sort(NULL, &sublist->list, xfs_repair_btree_extent_cmp);

	/*
	 * Now that we've sorted both lists, we iterate exlist once, rolling
	 * forward through sublist and/or exlist as necessary until we find an
	 * overlap or reach the end of either list.  We do not reset lp to the
	 * head of exlist nor do we reset subex to the head of sublist.  The
	 * list traversal is similar to merge sort, but we're deleting
	 * instead.  In this manner we avoid O(n^2) operations.
	 */
	subex = list_first_entry(&sublist->list, struct xfs_repair_extent,
			list);
	lp = exlist->list.next;
	while (lp != &exlist->list) {
		ex = list_entry(lp, struct xfs_repair_extent, list);

		/*
		 * Advance subex and/or ex until we find a pair that
		 * intersect or we run out of extents.
		 */
		while (subex->fsbno + subex->len <= ex->fsbno) {
			if (list_is_last(&subex->list, &sublist->list))
				goto out;
			subex = list_next_entry(subex, list);
		}
		if (subex->fsbno >= ex->fsbno + ex->len) {
			lp = lp->next;
			continue;
		}

		/* trim subex to fit the extent we have */
		sub_fsb = subex->fsbno;
		sub_len = subex->len;
		if (subex->fsbno < ex->fsbno) {
			sub_len -= ex->fsbno - subex->fsbno;
			sub_fsb = ex->fsbno;
		}
		if (sub_len > ex->len)
			sub_len = ex->len;

		state = 0;
		if (sub_fsb == ex->fsbno)
			state |= LEFT_ALIGNED;
		if (sub_fsb + sub_len == ex->fsbno + ex->len)
			state |= RIGHT_ALIGNED;
		switch (state) {
		case LEFT_ALIGNED:
			/* Coincides with only the left. */
			ex->fsbno += sub_len;
			ex->len -= sub_len;
			break;
		case RIGHT_ALIGNED:
			/* Coincides with only the right. */
			ex->len -= sub_len;
			lp = lp->next;
			break;
		case LEFT_ALIGNED | RIGHT_ALIGNED:
			/* Total overlap, just delete ex. */
			lp = lp->next;
			list_del(&ex->list);
			kmem_free(ex);
			break;
		case 0:
			/*
			 * Deleting from the middle: add the new right extent
			 * and then shrink the left extent.
			 */
			newex = kmem_alloc(sizeof(struct xfs_repair_extent),
					KM_MAYFAIL);
			if (!newex) {
				error = -ENOMEM;
				goto out;
			}
			INIT_LIST_HEAD(&newex->list);
			newex->fsbno = sub_fsb + sub_len;
			newex->len = ex->fsbno + ex->len - newex->fsbno;
			list_add(&newex->list, &ex->list);
			ex->len = sub_fsb - ex->fsbno;
			lp = lp->next;
			break;
		default:
			ASSERT(0);
			break;
		}
	}

out:
	return error;
}
#undef LEFT_ALIGNED
#undef RIGHT_ALIGNED