aboutsummaryrefslogtreecommitdiffstats
path: root/include/asm-xtensa/bitops.h
blob: d395ef226c32ad52c68bffc6c6c5a34dcffd38cb (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
/*
 * include/asm-xtensa/bitops.h
 *
 * Atomic operations that C can't guarantee us.Useful for resource counting etc.
 *
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file "COPYING" in the main directory of this archive
 * for more details.
 *
 * Copyright (C) 2001 - 2005 Tensilica Inc.
 */

#ifndef _XTENSA_BITOPS_H
#define _XTENSA_BITOPS_H

#ifdef __KERNEL__

#include <asm/processor.h>
#include <asm/byteorder.h>
#include <asm/system.h>

#ifdef CONFIG_SMP
# error SMP not supported on this architecture
#endif

static __inline__ void set_bit(int nr, volatile void * addr)
{
	unsigned long mask = 1 << (nr & 0x1f);
	unsigned long *a = ((unsigned long *)addr) + (nr >> 5);
	unsigned long flags;

	local_irq_save(flags);
	*a |= mask;
	local_irq_restore(flags);
}

static __inline__ void __set_bit(int nr, volatile unsigned long * addr)
{
	unsigned long mask = 1 << (nr & 0x1f);
	unsigned long *a = ((unsigned long *)addr) + (nr >> 5);

	*a |= mask;
}

static __inline__ void clear_bit(int nr, volatile void * addr)
{
	unsigned long mask = 1 << (nr & 0x1f);
	unsigned long *a = ((unsigned long *)addr) + (nr >> 5);
	unsigned long flags;

	local_irq_save(flags);
	*a &= ~mask;
	local_irq_restore(flags);
}

static __inline__ void __clear_bit(int nr, volatile unsigned long *addr)
{
	unsigned long mask = 1 << (nr & 0x1f);
	unsigned long *a = ((unsigned long *)addr) + (nr >> 5);

	*a &= ~mask;
}

/*
 * clear_bit() doesn't provide any barrier for the compiler.
 */

#define smp_mb__before_clear_bit()	barrier()
#define smp_mb__after_clear_bit()	barrier()

static __inline__ void change_bit(int nr, volatile void * addr)
{
	unsigned long mask = 1 << (nr & 0x1f);
	unsigned long *a = ((unsigned long *)addr) + (nr >> 5);
	unsigned long flags;

	local_irq_save(flags);
	*a ^= mask;
	local_irq_restore(flags);
}

static __inline__ void __change_bit(int nr, volatile void * addr)
{
	unsigned long mask = 1 << (nr & 0x1f);
	unsigned long *a = ((unsigned long *)addr) + (nr >> 5);

	*a ^= mask;
}

static __inline__ int test_and_set_bit(int nr, volatile void * addr)
{
  	unsigned long retval;
	unsigned long mask = 1 << (nr & 0x1f);
	unsigned long *a = ((unsigned long *)addr) + (nr >> 5);
	unsigned long flags;

	local_irq_save(flags);
	retval = (mask & *a) != 0;
	*a |= mask;
	local_irq_restore(flags);

	return retval;
}

static __inline__ int __test_and_set_bit(int nr, volatile void * addr)
{
  	unsigned long retval;
	unsigned long mask = 1 << (nr & 0x1f);
	unsigned long *a = ((unsigned long *)addr) + (nr >> 5);

	retval = (mask & *a) != 0;
	*a |= mask;

	return retval;
}

static __inline__ int test_and_clear_bit(int nr, volatile void * addr)
{
  	unsigned long retval;
	unsigned long mask = 1 << (nr & 0x1f);
	unsigned long *a = ((unsigned long *)addr) + (nr >> 5);
	unsigned long flags;

	local_irq_save(flags);
	retval = (mask & *a) != 0;
	*a &= ~mask;
	local_irq_restore(flags);

	return retval;
}

static __inline__ int __test_and_clear_bit(int nr, volatile void * addr)
{
	unsigned long mask = 1 << (nr & 0x1f);
	unsigned long *a = ((unsigned long *)addr) + (nr >> 5);
  	unsigned long old = *a;

	*a = old & ~mask;
	return (old & mask) != 0;
}

static __inline__ int test_and_change_bit(int nr, volatile void * addr)
{
  	unsigned long retval;
	unsigned long mask = 1 << (nr & 0x1f);
	unsigned long *a = ((unsigned long *)addr) + (nr >> 5);
	unsigned long flags;

	local_irq_save(flags);

	retval = (mask & *a) != 0;
	*a ^= mask;
	local_irq_restore(flags);

	return retval;
}

/*
 * non-atomic version; can be reordered
 */

static __inline__ int __test_and_change_bit(int nr, volatile void *addr)
{
	unsigned long mask = 1 << (nr & 0x1f);
	unsigned long *a = ((unsigned long *)addr) + (nr >> 5);
	unsigned long old = *a;

	*a = old ^ mask;
	return (old & mask) != 0;
}

static __inline__ int test_bit(int nr, const volatile void *addr)
{
	return 1UL & (((const volatile unsigned int *)addr)[nr>>5] >> (nr&31));
}

#if XCHAL_HAVE_NSAU

static __inline__ int __cntlz (unsigned long x)
{
	int lz;
	asm ("nsau %0, %1" : "=r" (lz) : "r" (x));
	return 31 - lz;
}

#else

static __inline__ int __cntlz (unsigned long x)
{
	unsigned long sum, x1, x2, x4, x8, x16;
	x1  = x & 0xAAAAAAAA;
	x2  = x & 0xCCCCCCCC;
	x4  = x & 0xF0F0F0F0;
	x8  = x & 0xFF00FF00;
	x16 = x & 0xFFFF0000;
	sum = x2 ? 2 : 0;
	sum += (x16 != 0) * 16;
	sum += (x8 != 0) * 8;
	sum += (x4 != 0) * 4;
	sum += (x1 != 0);

	return sum;
}

#endif

/*
 * ffz: Find first zero in word. Undefined if no zero exists.
 * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
 */

static __inline__ int ffz(unsigned long x)
{
	if ((x = ~x) == 0)
		return 32;
	return __cntlz(x & -x);
}

/*
 * __ffs: Find first bit set in word. Return 0 for bit 0
 */

static __inline__ int __ffs(unsigned long x)
{
	return __cntlz(x & -x);
}

/*
 * ffs: Find first bit set in word. This is defined the same way as
 * the libc and compiler builtin ffs routines, therefore
 * differs in spirit from the above ffz (man ffs).
 */

static __inline__ int ffs(unsigned long x)
{
	return __cntlz(x & -x) + 1;
}

/*
 * fls: Find last (most-significant) bit set in word.
 * Note fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32.
 */

static __inline__ int fls (unsigned int x)
{
	return __cntlz(x);
}

static __inline__ int
find_next_bit(const unsigned long *addr, int size, int offset)
{
	const unsigned long *p = addr + (offset >> 5);
	unsigned long result = offset & ~31UL;
	unsigned long tmp;

	if (offset >= size)
		return size;
	size -= result;
	offset &= 31UL;
	if (offset) {
		tmp = *p++;
		tmp &= ~0UL << offset;
		if (size < 32)
			goto found_first;
		if (tmp)
			goto found_middle;
		size -= 32;
		result += 32;
	}
	while (size >= 32) {
		if ((tmp = *p++) != 0)
			goto found_middle;
		result += 32;
		size -= 32;
	}
	if (!size)
		return result;
	tmp = *p;

found_first:
	tmp &= ~0UL >> (32 - size);
	if (tmp == 0UL)	/* Are any bits set? */
		return result + size;	/* Nope. */
found_middle:
	return result + __ffs(tmp);
}

/**
 * find_first_bit - find the first set bit in a memory region
 * @addr: The address to start the search at
 * @size: The maximum size to search
 *
 * Returns the bit-number of the first set bit, not the number of the byte
 * containing a bit.
 */

#define find_first_bit(addr, size) \
        find_next_bit((addr), (size), 0)

static __inline__ int
find_next_zero_bit(const unsigned long *addr, int size, int offset)
{
	const unsigned long *p = addr + (offset >> 5);
	unsigned long result = offset & ~31UL;
	unsigned long tmp;

	if (offset >= size)
		return size;
	size -= result;
	offset &= 31UL;
	if (offset) {
		tmp = *p++;
		tmp |= ~0UL >> (32-offset);
		if (size < 32)
			goto found_first;
		if (~tmp)
			goto found_middle;
		size -= 32;
		result += 32;
	}
	while (size & ~31UL) {
		if (~(tmp = *p++))
			goto found_middle;
		result += 32;
		size -= 32;
	}
	if (!size)
		return result;
	tmp = *p;

found_first:
	tmp |= ~0UL << size;
found_middle:
	return result + ffz(tmp);
}

#define find_first_zero_bit(addr, size) \
        find_next_zero_bit((addr), (size), 0)

#ifdef __XTENSA_EL__
# define ext2_set_bit(nr,addr) __test_and_set_bit((nr), (addr))
# define ext2_set_bit_atomic(lock,nr,addr) test_and_set_bit((nr),(addr))
# define ext2_clear_bit(nr,addr) __test_and_clear_bit((nr), (addr))
# define ext2_clear_bit_atomic(lock,nr,addr) test_and_clear_bit((nr),(addr))
# define ext2_test_bit(nr,addr) test_bit((nr), (addr))
# define ext2_find_first_zero_bit(addr, size) find_first_zero_bit((addr),(size))
# define ext2_find_next_zero_bit(addr, size, offset) \
                find_next_zero_bit((addr), (size), (offset))
#elif defined(__XTENSA_EB__)
# define ext2_set_bit(nr,addr) __test_and_set_bit((nr) ^ 0x18, (addr))
# define ext2_set_bit_atomic(lock,nr,addr) test_and_set_bit((nr) ^ 0x18, (addr))
# define ext2_clear_bit(nr,addr) __test_and_clear_bit((nr) ^ 18, (addr))
# define ext2_clear_bit_atomic(lock,nr,addr) test_and_clear_bit((nr)^0x18,(addr))
# define ext2_test_bit(nr,addr) test_bit((nr) ^ 0x18, (addr))
# define ext2_find_first_zero_bit(addr, size) \
        ext2_find_next_zero_bit((addr), (size), 0)

static __inline__ unsigned long ext2_find_next_zero_bit(void *addr, unsigned long size, unsigned long offset)
{
	unsigned long *p = ((unsigned long *) addr) + (offset >> 5);
	unsigned long result = offset & ~31UL;
	unsigned long tmp;

	if (offset >= size)
		return size;
	size -= result;
	offset &= 31UL;
	if(offset) {
		/* We hold the little endian value in tmp, but then the
		 * shift is illegal. So we could keep a big endian value
		 * in tmp, like this:
		 *
		 * tmp = __swab32(*(p++));
		 * tmp |= ~0UL >> (32-offset);
		 *
		 * but this would decrease preformance, so we change the
		 * shift:
		 */
		tmp = *(p++);
		tmp |= __swab32(~0UL >> (32-offset));
		if(size < 32)
			goto found_first;
		if(~tmp)
			goto found_middle;
		size -= 32;
		result += 32;
	}
	while(size & ~31UL) {
		if(~(tmp = *(p++)))
			goto found_middle;
		result += 32;
		size -= 32;
	}
	if(!size)
		return result;
	tmp = *p;

found_first:
	/* tmp is little endian, so we would have to swab the shift,
	 * see above. But then we have to swab tmp below for ffz, so
	 * we might as well do this here.
	 */
	return result + ffz(__swab32(tmp) | (~0UL << size));
found_middle:
	return result + ffz(__swab32(tmp));
}

#else
# error processor byte order undefined!
#endif


#define hweight32(x)	generic_hweight32(x)
#define hweight16(x)	generic_hweight16(x)
#define hweight8(x)	generic_hweight8(x)

/*
 * Find the first bit set in a 140-bit bitmap.
 * The first 100 bits are unlikely to be set.
 */

static inline int sched_find_first_bit(const unsigned long *b)
{
	if (unlikely(b[0]))
		return __ffs(b[0]);
	if (unlikely(b[1]))
		return __ffs(b[1]) + 32;
	if (unlikely(b[2]))
		return __ffs(b[2]) + 64;
	if (b[3])
		return __ffs(b[3]) + 96;
	return __ffs(b[4]) + 128;
}


/* Bitmap functions for the minix filesystem.  */

#define minix_test_and_set_bit(nr,addr) test_and_set_bit(nr,addr)
#define minix_set_bit(nr,addr) set_bit(nr,addr)
#define minix_test_and_clear_bit(nr,addr) test_and_clear_bit(nr,addr)
#define minix_test_bit(nr,addr) test_bit(nr,addr)
#define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size)

#endif	/* __KERNEL__ */

#endif	/* _XTENSA_BITOPS_H */