aboutsummaryrefslogtreecommitdiffstats
path: root/kernel/rcu/tasks.h
blob: 7f9ed20c26c755acecc941f7423a793a5ec1f990 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
/* SPDX-License-Identifier: GPL-2.0+ */
/*
 * Task-based RCU implementations.
 *
 * Copyright (C) 2020 Paul E. McKenney
 */


////////////////////////////////////////////////////////////////////////
//
// Generic data structures.

struct rcu_tasks;
typedef void (*rcu_tasks_gp_func_t)(struct rcu_tasks *rtp);

/**
 * Definition for a Tasks-RCU-like mechanism.
 * @cbs_head: Head of callback list.
 * @cbs_tail: Tail pointer for callback list.
 * @cbs_wq: Wait queue allowning new callback to get kthread's attention.
 * @cbs_lock: Lock protecting callback list.
 * @kthread_ptr: This flavor's grace-period/callback-invocation kthread.
 * @gp_func: This flavor's grace-period-wait function.
 * @call_func: This flavor's call_rcu()-equivalent function.
 */
struct rcu_tasks {
	struct rcu_head *cbs_head;
	struct rcu_head **cbs_tail;
	struct wait_queue_head cbs_wq;
	raw_spinlock_t cbs_lock;
	struct task_struct *kthread_ptr;
	rcu_tasks_gp_func_t gp_func;
	call_rcu_func_t call_func;
};

#define DEFINE_RCU_TASKS(name, gp, call)				\
static struct rcu_tasks name =						\
{									\
	.cbs_tail = &name.cbs_head,					\
	.cbs_wq = __WAIT_QUEUE_HEAD_INITIALIZER(name.cbs_wq),		\
	.cbs_lock = __RAW_SPIN_LOCK_UNLOCKED(name.cbs_lock),		\
	.gp_func = gp,							\
	.call_func = call,						\
}

/* Track exiting tasks in order to allow them to be waited for. */
DEFINE_STATIC_SRCU(tasks_rcu_exit_srcu);

/* Control stall timeouts.  Disable with <= 0, otherwise jiffies till stall. */
#define RCU_TASK_STALL_TIMEOUT (HZ * 60 * 10)
static int rcu_task_stall_timeout __read_mostly = RCU_TASK_STALL_TIMEOUT;
module_param(rcu_task_stall_timeout, int, 0644);

////////////////////////////////////////////////////////////////////////
//
// Generic code.

// Enqueue a callback for the specified flavor of Tasks RCU.
static void call_rcu_tasks_generic(struct rcu_head *rhp, rcu_callback_t func,
				   struct rcu_tasks *rtp)
{
	unsigned long flags;
	bool needwake;

	rhp->next = NULL;
	rhp->func = func;
	raw_spin_lock_irqsave(&rtp->cbs_lock, flags);
	needwake = !rtp->cbs_head;
	WRITE_ONCE(*rtp->cbs_tail, rhp);
	rtp->cbs_tail = &rhp->next;
	raw_spin_unlock_irqrestore(&rtp->cbs_lock, flags);
	/* We can't create the thread unless interrupts are enabled. */
	if (needwake && READ_ONCE(rtp->kthread_ptr))
		wake_up(&rtp->cbs_wq);
}

// Wait for a grace period for the specified flavor of Tasks RCU.
static void synchronize_rcu_tasks_generic(struct rcu_tasks *rtp)
{
	/* Complain if the scheduler has not started.  */
	RCU_LOCKDEP_WARN(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE,
			 "synchronize_rcu_tasks called too soon");

	/* Wait for the grace period. */
	wait_rcu_gp(rtp->call_func);
}

/* RCU-tasks kthread that detects grace periods and invokes callbacks. */
static int __noreturn rcu_tasks_kthread(void *arg)
{
	unsigned long flags;
	struct rcu_head *list;
	struct rcu_head *next;
	struct rcu_tasks *rtp = arg;

	/* Run on housekeeping CPUs by default.  Sysadm can move if desired. */
	housekeeping_affine(current, HK_FLAG_RCU);
	WRITE_ONCE(rtp->kthread_ptr, current); // Let GPs start!

	/*
	 * Each pass through the following loop makes one check for
	 * newly arrived callbacks, and, if there are some, waits for
	 * one RCU-tasks grace period and then invokes the callbacks.
	 * This loop is terminated by the system going down.  ;-)
	 */
	for (;;) {

		/* Pick up any new callbacks. */
		raw_spin_lock_irqsave(&rtp->cbs_lock, flags);
		list = rtp->cbs_head;
		rtp->cbs_head = NULL;
		rtp->cbs_tail = &rtp->cbs_head;
		raw_spin_unlock_irqrestore(&rtp->cbs_lock, flags);

		/* If there were none, wait a bit and start over. */
		if (!list) {
			wait_event_interruptible(rtp->cbs_wq,
						 READ_ONCE(rtp->cbs_head));
			if (!rtp->cbs_head) {
				WARN_ON(signal_pending(current));
				schedule_timeout_interruptible(HZ/10);
			}
			continue;
		}

		// Wait for one grace period.
		rtp->gp_func(rtp);

		/* Invoke the callbacks. */
		while (list) {
			next = list->next;
			local_bh_disable();
			list->func(list);
			local_bh_enable();
			list = next;
			cond_resched();
		}
		/* Paranoid sleep to keep this from entering a tight loop */
		schedule_timeout_uninterruptible(HZ/10);
	}
}

/* Spawn RCU-tasks grace-period kthread, e.g., at core_initcall() time. */
static void __init rcu_spawn_tasks_kthread_generic(struct rcu_tasks *rtp)
{
	struct task_struct *t;

	t = kthread_run(rcu_tasks_kthread, rtp, "rcu_tasks_kthread");
	if (WARN_ONCE(IS_ERR(t), "%s: Could not start Tasks-RCU grace-period kthread, OOM is now expected behavior\n", __func__))
		return;
	smp_mb(); /* Ensure others see full kthread. */
}

/* Do the srcu_read_lock() for the above synchronize_srcu().  */
void exit_tasks_rcu_start(void) __acquires(&tasks_rcu_exit_srcu)
{
	preempt_disable();
	current->rcu_tasks_idx = __srcu_read_lock(&tasks_rcu_exit_srcu);
	preempt_enable();
}

/* Do the srcu_read_unlock() for the above synchronize_srcu().  */
void exit_tasks_rcu_finish(void) __releases(&tasks_rcu_exit_srcu)
{
	preempt_disable();
	__srcu_read_unlock(&tasks_rcu_exit_srcu, current->rcu_tasks_idx);
	preempt_enable();
}

#ifndef CONFIG_TINY_RCU

/*
 * Print any non-default Tasks RCU settings.
 */
static void __init rcu_tasks_bootup_oddness(void)
{
#ifdef CONFIG_TASKS_RCU
	if (rcu_task_stall_timeout != RCU_TASK_STALL_TIMEOUT)
		pr_info("\tTasks-RCU CPU stall warnings timeout set to %d (rcu_task_stall_timeout).\n", rcu_task_stall_timeout);
	else
		pr_info("\tTasks RCU enabled.\n");
#endif /* #ifdef CONFIG_TASKS_RCU */
#ifdef CONFIG_TASKS_RUDE_RCU
	pr_info("\tRude variant of Tasks RCU enabled.\n");
#endif /* #ifdef CONFIG_TASKS_RUDE_RCU */
}

#endif /* #ifndef CONFIG_TINY_RCU */

#ifdef CONFIG_TASKS_RCU

////////////////////////////////////////////////////////////////////////
//
// Simple variant of RCU whose quiescent states are voluntary context
// switch, cond_resched_rcu_qs(), user-space execution, and idle.
// As such, grace periods can take one good long time.  There are no
// read-side primitives similar to rcu_read_lock() and rcu_read_unlock()
// because this implementation is intended to get the system into a safe
// state for some of the manipulations involved in tracing and the like.
// Finally, this implementation does not support high call_rcu_tasks()
// rates from multiple CPUs.  If this is required, per-CPU callback lists
// will be needed.

/* See if tasks are still holding out, complain if so. */
static void check_holdout_task(struct task_struct *t,
			       bool needreport, bool *firstreport)
{
	int cpu;

	if (!READ_ONCE(t->rcu_tasks_holdout) ||
	    t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) ||
	    !READ_ONCE(t->on_rq) ||
	    (IS_ENABLED(CONFIG_NO_HZ_FULL) &&
	     !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) {
		WRITE_ONCE(t->rcu_tasks_holdout, false);
		list_del_init(&t->rcu_tasks_holdout_list);
		put_task_struct(t);
		return;
	}
	rcu_request_urgent_qs_task(t);
	if (!needreport)
		return;
	if (*firstreport) {
		pr_err("INFO: rcu_tasks detected stalls on tasks:\n");
		*firstreport = false;
	}
	cpu = task_cpu(t);
	pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n",
		 t, ".I"[is_idle_task(t)],
		 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)],
		 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout,
		 t->rcu_tasks_idle_cpu, cpu);
	sched_show_task(t);
}

/* Wait for one RCU-tasks grace period. */
static void rcu_tasks_wait_gp(struct rcu_tasks *rtp)
{
	struct task_struct *g, *t;
	unsigned long lastreport;
	LIST_HEAD(rcu_tasks_holdouts);
	int fract;

	/*
	 * Wait for all pre-existing t->on_rq and t->nvcsw transitions
	 * to complete.  Invoking synchronize_rcu() suffices because all
	 * these transitions occur with interrupts disabled.  Without this
	 * synchronize_rcu(), a read-side critical section that started
	 * before the grace period might be incorrectly seen as having
	 * started after the grace period.
	 *
	 * This synchronize_rcu() also dispenses with the need for a
	 * memory barrier on the first store to t->rcu_tasks_holdout,
	 * as it forces the store to happen after the beginning of the
	 * grace period.
	 */
	synchronize_rcu();

	/*
	 * There were callbacks, so we need to wait for an RCU-tasks
	 * grace period.  Start off by scanning the task list for tasks
	 * that are not already voluntarily blocked.  Mark these tasks
	 * and make a list of them in rcu_tasks_holdouts.
	 */
	rcu_read_lock();
	for_each_process_thread(g, t) {
		if (t != current && READ_ONCE(t->on_rq) && !is_idle_task(t)) {
			get_task_struct(t);
			t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw);
			WRITE_ONCE(t->rcu_tasks_holdout, true);
			list_add(&t->rcu_tasks_holdout_list,
				 &rcu_tasks_holdouts);
		}
	}
	rcu_read_unlock();

	/*
	 * Wait for tasks that are in the process of exiting.  This
	 * does only part of the job, ensuring that all tasks that were
	 * previously exiting reach the point where they have disabled
	 * preemption, allowing the later synchronize_rcu() to finish
	 * the job.
	 */
	synchronize_srcu(&tasks_rcu_exit_srcu);

	/*
	 * Each pass through the following loop scans the list of holdout
	 * tasks, removing any that are no longer holdouts.  When the list
	 * is empty, we are done.
	 */
	lastreport = jiffies;

	/* Start off with HZ/10 wait and slowly back off to 1 HZ wait. */
	fract = 10;

	for (;;) {
		bool firstreport;
		bool needreport;
		int rtst;
		struct task_struct *t1;

		if (list_empty(&rcu_tasks_holdouts))
			break;

		/* Slowly back off waiting for holdouts */
		schedule_timeout_interruptible(HZ/fract);

		if (fract > 1)
			fract--;

		rtst = READ_ONCE(rcu_task_stall_timeout);
		needreport = rtst > 0 && time_after(jiffies, lastreport + rtst);
		if (needreport)
			lastreport = jiffies;
		firstreport = true;
		WARN_ON(signal_pending(current));
		list_for_each_entry_safe(t, t1, &rcu_tasks_holdouts,
					 rcu_tasks_holdout_list) {
			check_holdout_task(t, needreport, &firstreport);
			cond_resched();
		}
	}

	/*
	 * Because ->on_rq and ->nvcsw are not guaranteed to have a full
	 * memory barriers prior to them in the schedule() path, memory
	 * reordering on other CPUs could cause their RCU-tasks read-side
	 * critical sections to extend past the end of the grace period.
	 * However, because these ->nvcsw updates are carried out with
	 * interrupts disabled, we can use synchronize_rcu() to force the
	 * needed ordering on all such CPUs.
	 *
	 * This synchronize_rcu() also confines all ->rcu_tasks_holdout
	 * accesses to be within the grace period, avoiding the need for
	 * memory barriers for ->rcu_tasks_holdout accesses.
	 *
	 * In addition, this synchronize_rcu() waits for exiting tasks
	 * to complete their final preempt_disable() region of execution,
	 * cleaning up after the synchronize_srcu() above.
	 */
	synchronize_rcu();
}

void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func);
DEFINE_RCU_TASKS(rcu_tasks, rcu_tasks_wait_gp, call_rcu_tasks);

/**
 * call_rcu_tasks() - Queue an RCU for invocation task-based grace period
 * @rhp: structure to be used for queueing the RCU updates.
 * @func: actual callback function to be invoked after the grace period
 *
 * The callback function will be invoked some time after a full grace
 * period elapses, in other words after all currently executing RCU
 * read-side critical sections have completed. call_rcu_tasks() assumes
 * that the read-side critical sections end at a voluntary context
 * switch (not a preemption!), cond_resched_rcu_qs(), entry into idle,
 * or transition to usermode execution.  As such, there are no read-side
 * primitives analogous to rcu_read_lock() and rcu_read_unlock() because
 * this primitive is intended to determine that all tasks have passed
 * through a safe state, not so much for data-strcuture synchronization.
 *
 * See the description of call_rcu() for more detailed information on
 * memory ordering guarantees.
 */
void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func)
{
	call_rcu_tasks_generic(rhp, func, &rcu_tasks);
}
EXPORT_SYMBOL_GPL(call_rcu_tasks);

/**
 * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu-tasks
 * grace period has elapsed, in other words after all currently
 * executing rcu-tasks read-side critical sections have elapsed.  These
 * read-side critical sections are delimited by calls to schedule(),
 * cond_resched_tasks_rcu_qs(), idle execution, userspace execution, calls
 * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched().
 *
 * This is a very specialized primitive, intended only for a few uses in
 * tracing and other situations requiring manipulation of function
 * preambles and profiling hooks.  The synchronize_rcu_tasks() function
 * is not (yet) intended for heavy use from multiple CPUs.
 *
 * See the description of synchronize_rcu() for more detailed information
 * on memory ordering guarantees.
 */
void synchronize_rcu_tasks(void)
{
	synchronize_rcu_tasks_generic(&rcu_tasks);
}
EXPORT_SYMBOL_GPL(synchronize_rcu_tasks);

/**
 * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks.
 *
 * Although the current implementation is guaranteed to wait, it is not
 * obligated to, for example, if there are no pending callbacks.
 */
void rcu_barrier_tasks(void)
{
	/* There is only one callback queue, so this is easy.  ;-) */
	synchronize_rcu_tasks();
}
EXPORT_SYMBOL_GPL(rcu_barrier_tasks);

static int __init rcu_spawn_tasks_kthread(void)
{
	rcu_spawn_tasks_kthread_generic(&rcu_tasks);
	return 0;
}
core_initcall(rcu_spawn_tasks_kthread);

#endif /* #ifdef CONFIG_TASKS_RCU */

#ifdef CONFIG_TASKS_RUDE_RCU

////////////////////////////////////////////////////////////////////////
//
// "Rude" variant of Tasks RCU, inspired by Steve Rostedt's trick of
// passing an empty function to schedule_on_each_cpu().  This approach
// provides an asynchronous call_rcu_tasks_rude() API and batching
// of concurrent calls to the synchronous synchronize_rcu_rude() API.
// This sends IPIs far and wide and induces otherwise unnecessary context
// switches on all online CPUs, whether idle or not.

// Empty function to allow workqueues to force a context switch.
static void rcu_tasks_be_rude(struct work_struct *work)
{
}

// Wait for one rude RCU-tasks grace period.
static void rcu_tasks_rude_wait_gp(struct rcu_tasks *rtp)
{
	schedule_on_each_cpu(rcu_tasks_be_rude);
}

void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func);
DEFINE_RCU_TASKS(rcu_tasks_rude, rcu_tasks_rude_wait_gp, call_rcu_tasks_rude);

/**
 * call_rcu_tasks_rude() - Queue a callback rude task-based grace period
 * @rhp: structure to be used for queueing the RCU updates.
 * @func: actual callback function to be invoked after the grace period
 *
 * The callback function will be invoked some time after a full grace
 * period elapses, in other words after all currently executing RCU
 * read-side critical sections have completed. call_rcu_tasks_rude()
 * assumes that the read-side critical sections end at context switch,
 * cond_resched_rcu_qs(), or transition to usermode execution.  As such,
 * there are no read-side primitives analogous to rcu_read_lock() and
 * rcu_read_unlock() because this primitive is intended to determine
 * that all tasks have passed through a safe state, not so much for
 * data-strcuture synchronization.
 *
 * See the description of call_rcu() for more detailed information on
 * memory ordering guarantees.
 */
void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func)
{
	call_rcu_tasks_generic(rhp, func, &rcu_tasks_rude);
}
EXPORT_SYMBOL_GPL(call_rcu_tasks_rude);

/**
 * synchronize_rcu_tasks_rude - wait for a rude rcu-tasks grace period
 *
 * Control will return to the caller some time after a rude rcu-tasks
 * grace period has elapsed, in other words after all currently
 * executing rcu-tasks read-side critical sections have elapsed.  These
 * read-side critical sections are delimited by calls to schedule(),
 * cond_resched_tasks_rcu_qs(), userspace execution, and (in theory,
 * anyway) cond_resched().
 *
 * This is a very specialized primitive, intended only for a few uses in
 * tracing and other situations requiring manipulation of function preambles
 * and profiling hooks.  The synchronize_rcu_tasks_rude() function is not
 * (yet) intended for heavy use from multiple CPUs.
 *
 * See the description of synchronize_rcu() for more detailed information
 * on memory ordering guarantees.
 */
void synchronize_rcu_tasks_rude(void)
{
	synchronize_rcu_tasks_generic(&rcu_tasks_rude);
}
EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_rude);

/**
 * rcu_barrier_tasks_rude - Wait for in-flight call_rcu_tasks_rude() callbacks.
 *
 * Although the current implementation is guaranteed to wait, it is not
 * obligated to, for example, if there are no pending callbacks.
 */
void rcu_barrier_tasks_rude(void)
{
	/* There is only one callback queue, so this is easy.  ;-) */
	synchronize_rcu_tasks_rude();
}
EXPORT_SYMBOL_GPL(rcu_barrier_tasks_rude);

static int __init rcu_spawn_tasks_rude_kthread(void)
{
	rcu_spawn_tasks_kthread_generic(&rcu_tasks_rude);
	return 0;
}
core_initcall(rcu_spawn_tasks_rude_kthread);

#endif /* #ifdef CONFIG_TASKS_RUDE_RCU */