aboutsummaryrefslogtreecommitdiffstats
path: root/tools/testing/selftests/kvm/x86_64/emulator_error_test.c
blob: f070ff0224fa3f88f1247273eb0a83c3e3e61613 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
// SPDX-License-Identifier: GPL-2.0
/*
 * Copyright (C) 2020, Google LLC.
 *
 * Tests for KVM_CAP_EXIT_ON_EMULATION_FAILURE capability.
 */

#define _GNU_SOURCE /* for program_invocation_short_name */

#include "test_util.h"
#include "kvm_util.h"
#include "vmx.h"

#define VCPU_ID	   1
#define PAGE_SIZE  4096
#define MAXPHYADDR 36

#define MEM_REGION_GVA	0x0000123456789000
#define MEM_REGION_GPA	0x0000000700000000
#define MEM_REGION_SLOT	10
#define MEM_REGION_SIZE PAGE_SIZE

static void guest_code(void)
{
	__asm__ __volatile__("flds (%[addr])"
			     :: [addr]"r"(MEM_REGION_GVA));

	GUEST_DONE();
}

static void run_guest(struct kvm_vm *vm)
{
	int rc;

	rc = _vcpu_run(vm, VCPU_ID);
	TEST_ASSERT(rc == 0, "vcpu_run failed: %d\n", rc);
}

/*
 * Accessors to get R/M, REG, and Mod bits described in the SDM vol 2,
 * figure 2-2 "Table Interpretation of ModR/M Byte (C8H)".
 */
#define GET_RM(insn_byte) (insn_byte & 0x7)
#define GET_REG(insn_byte) ((insn_byte & 0x38) >> 3)
#define GET_MOD(insn_byte) ((insn_byte & 0xc) >> 6)

/* Ensure we are dealing with a simple 2-byte flds instruction. */
static bool is_flds(uint8_t *insn_bytes, uint8_t insn_size)
{
	return insn_size >= 2 &&
	       insn_bytes[0] == 0xd9 &&
	       GET_REG(insn_bytes[1]) == 0x0 &&
	       GET_MOD(insn_bytes[1]) == 0x0 &&
	       /* Ensure there is no SIB byte. */
	       GET_RM(insn_bytes[1]) != 0x4 &&
	       /* Ensure there is no displacement byte. */
	       GET_RM(insn_bytes[1]) != 0x5;
}

static void process_exit_on_emulation_error(struct kvm_vm *vm)
{
	struct kvm_run *run = vcpu_state(vm, VCPU_ID);
	struct kvm_regs regs;
	uint8_t *insn_bytes;
	uint8_t insn_size;
	uint64_t flags;

	TEST_ASSERT(run->exit_reason == KVM_EXIT_INTERNAL_ERROR,
		    "Unexpected exit reason: %u (%s)",
		    run->exit_reason,
		    exit_reason_str(run->exit_reason));

	TEST_ASSERT(run->emulation_failure.suberror == KVM_INTERNAL_ERROR_EMULATION,
		    "Unexpected suberror: %u",
		    run->emulation_failure.suberror);

	if (run->emulation_failure.ndata >= 1) {
		flags = run->emulation_failure.flags;
		if ((flags & KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES) &&
		    run->emulation_failure.ndata >= 3) {
			insn_size = run->emulation_failure.insn_size;
			insn_bytes = run->emulation_failure.insn_bytes;

			TEST_ASSERT(insn_size <= 15 && insn_size > 0,
				    "Unexpected instruction size: %u",
				    insn_size);

			TEST_ASSERT(is_flds(insn_bytes, insn_size),
				    "Unexpected instruction.  Expected 'flds' (0xd9 /0)");

			/*
			 * If is_flds() succeeded then the instruction bytes
			 * contained an flds instruction that is 2-bytes in
			 * length (ie: no prefix, no SIB, no displacement).
			 */
			vcpu_regs_get(vm, VCPU_ID, &regs);
			regs.rip += 2;
			vcpu_regs_set(vm, VCPU_ID, &regs);
		}
	}
}

static void do_guest_assert(struct kvm_vm *vm, struct ucall *uc)
{
	TEST_FAIL("%s at %s:%ld", (const char *)uc->args[0], __FILE__,
		  uc->args[1]);
}

static void check_for_guest_assert(struct kvm_vm *vm)
{
	struct kvm_run *run = vcpu_state(vm, VCPU_ID);
	struct ucall uc;

	if (run->exit_reason == KVM_EXIT_IO &&
	    get_ucall(vm, VCPU_ID, &uc) == UCALL_ABORT) {
		do_guest_assert(vm, &uc);
	}
}

static void process_ucall_done(struct kvm_vm *vm)
{
	struct kvm_run *run = vcpu_state(vm, VCPU_ID);
	struct ucall uc;

	check_for_guest_assert(vm);

	TEST_ASSERT(run->exit_reason == KVM_EXIT_IO,
		    "Unexpected exit reason: %u (%s)",
		    run->exit_reason,
		    exit_reason_str(run->exit_reason));

	TEST_ASSERT(get_ucall(vm, VCPU_ID, &uc) == UCALL_DONE,
		    "Unexpected ucall command: %lu, expected UCALL_DONE (%d)",
		    uc.cmd, UCALL_DONE);
}

static uint64_t process_ucall(struct kvm_vm *vm)
{
	struct kvm_run *run = vcpu_state(vm, VCPU_ID);
	struct ucall uc;

	TEST_ASSERT(run->exit_reason == KVM_EXIT_IO,
		    "Unexpected exit reason: %u (%s)",
		    run->exit_reason,
		    exit_reason_str(run->exit_reason));

	switch (get_ucall(vm, VCPU_ID, &uc)) {
	case UCALL_SYNC:
		break;
	case UCALL_ABORT:
		do_guest_assert(vm, &uc);
		break;
	case UCALL_DONE:
		process_ucall_done(vm);
		break;
	default:
		TEST_ASSERT(false, "Unexpected ucall");
	}

	return uc.cmd;
}

int main(int argc, char *argv[])
{
	struct kvm_enable_cap emul_failure_cap = {
		.cap = KVM_CAP_EXIT_ON_EMULATION_FAILURE,
		.args[0] = 1,
	};
	struct kvm_cpuid_entry2 *entry;
	struct kvm_cpuid2 *cpuid;
	struct kvm_vm *vm;
	uint64_t gpa, pte;
	uint64_t *hva;
	int rc;

	/* Tell stdout not to buffer its content */
	setbuf(stdout, NULL);

	vm = vm_create_default(VCPU_ID, 0, guest_code);

	if (!kvm_check_cap(KVM_CAP_SMALLER_MAXPHYADDR)) {
		printf("module parameter 'allow_smaller_maxphyaddr' is not set.  Skipping test.\n");
		return 0;
	}

	cpuid = kvm_get_supported_cpuid();

	entry = kvm_get_supported_cpuid_index(0x80000008, 0);
	entry->eax = (entry->eax & 0xffffff00) | MAXPHYADDR;
	set_cpuid(cpuid, entry);

	vcpu_set_cpuid(vm, VCPU_ID, cpuid);

	rc = kvm_check_cap(KVM_CAP_EXIT_ON_EMULATION_FAILURE);
	TEST_ASSERT(rc, "KVM_CAP_EXIT_ON_EMULATION_FAILURE is unavailable");
	vm_enable_cap(vm, &emul_failure_cap);

	vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS,
				    MEM_REGION_GPA, MEM_REGION_SLOT,
				    MEM_REGION_SIZE / PAGE_SIZE, 0);
	gpa = vm_phy_pages_alloc(vm, MEM_REGION_SIZE / PAGE_SIZE,
				 MEM_REGION_GPA, MEM_REGION_SLOT);
	TEST_ASSERT(gpa == MEM_REGION_GPA, "Failed vm_phy_pages_alloc\n");
	virt_map(vm, MEM_REGION_GVA, MEM_REGION_GPA, 1);
	hva = addr_gpa2hva(vm, MEM_REGION_GPA);
	memset(hva, 0, PAGE_SIZE);
	pte = vm_get_page_table_entry(vm, VCPU_ID, MEM_REGION_GVA);
	vm_set_page_table_entry(vm, VCPU_ID, MEM_REGION_GVA, pte | (1ull << 36));

	run_guest(vm);
	process_exit_on_emulation_error(vm);
	run_guest(vm);

	TEST_ASSERT(process_ucall(vm) == UCALL_DONE, "Expected UCALL_DONE");

	kvm_vm_free(vm);

	return 0;
}