aboutsummaryrefslogtreecommitdiffstats
path: root/tools/testing/selftests/powerpc/tm/tm-signal-pagefault.c
blob: 0b84c9208d629c621e0be33d25bf673d4feb53d5 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
// SPDX-License-Identifier: GPL-2.0
/*
 * Copyright 2020, Gustavo Luiz Duarte, IBM Corp.
 *
 * This test starts a transaction and triggers a signal, forcing a pagefault to
 * happen when the kernel signal handling code touches the user signal stack.
 *
 * In order to avoid pre-faulting the signal stack memory and to force the
 * pagefault to happen precisely in the kernel signal handling code, the
 * pagefault handling is done in userspace using the userfaultfd facility.
 *
 * Further pagefaults are triggered by crafting the signal handler's ucontext
 * to point to additional memory regions managed by the userfaultfd, so using
 * the same mechanism used to avoid pre-faulting the signal stack memory.
 *
 * On failure (bug is present) kernel crashes or never returns control back to
 * userspace. If bug is not present, tests completes almost immediately.
 */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <linux/userfaultfd.h>
#include <poll.h>
#include <unistd.h>
#include <sys/ioctl.h>
#include <sys/syscall.h>
#include <fcntl.h>
#include <sys/mman.h>
#include <pthread.h>
#include <signal.h>
#include <errno.h>

#include "tm.h"


#define UF_MEM_SIZE 655360	/* 10 x 64k pages */

/* Memory handled by userfaultfd */
static char *uf_mem;
static size_t uf_mem_offset = 0;

/*
 * Data that will be copied into the faulting pages (instead of zero-filled
 * pages). This is used to make the test more reliable and avoid segfaulting
 * when we return from the signal handler. Since we are making the signal
 * handler's ucontext point to newly allocated memory, when that memory is
 * paged-in it will contain the expected content.
 */
static char backing_mem[UF_MEM_SIZE];

static size_t pagesize;

/*
 * Return a chunk of at least 'size' bytes of memory that will be handled by
 * userfaultfd. If 'backing_data' is not NULL, its content will be save to
 * 'backing_mem' and then copied into the faulting pages when the page fault
 * is handled.
 */
void *get_uf_mem(size_t size, void *backing_data)
{
	void *ret;

	if (uf_mem_offset + size > UF_MEM_SIZE) {
		fprintf(stderr, "Requesting more uf_mem than expected!\n");
		exit(EXIT_FAILURE);
	}

	ret = &uf_mem[uf_mem_offset];

	/* Save the data that will be copied into the faulting page */
	if (backing_data != NULL)
		memcpy(&backing_mem[uf_mem_offset], backing_data, size);

	/* Reserve the requested amount of uf_mem */
	uf_mem_offset += size;
	/* Keep uf_mem_offset aligned to the page size (round up) */
	uf_mem_offset = (uf_mem_offset + pagesize - 1) & ~(pagesize - 1);

	return ret;
}

void *fault_handler_thread(void *arg)
{
	struct uffd_msg msg;	/* Data read from userfaultfd */
	long uffd;		/* userfaultfd file descriptor */
	struct uffdio_copy uffdio_copy;
	struct pollfd pollfd;
	ssize_t nread, offset;

	uffd = (long) arg;

	for (;;) {
		pollfd.fd = uffd;
		pollfd.events = POLLIN;
		if (poll(&pollfd, 1, -1) == -1) {
			perror("poll() failed");
			exit(EXIT_FAILURE);
		}

		nread = read(uffd, &msg, sizeof(msg));
		if (nread == 0) {
			fprintf(stderr, "read(): EOF on userfaultfd\n");
			exit(EXIT_FAILURE);
		}

		if (nread == -1) {
			perror("read() failed");
			exit(EXIT_FAILURE);
		}

		/* We expect only one kind of event */
		if (msg.event != UFFD_EVENT_PAGEFAULT) {
			fprintf(stderr, "Unexpected event on userfaultfd\n");
			exit(EXIT_FAILURE);
		}

		/*
		 * We need to handle page faults in units of pages(!).
		 * So, round faulting address down to page boundary.
		 */
		uffdio_copy.dst = msg.arg.pagefault.address & ~(pagesize-1);

		offset = (char *) uffdio_copy.dst - uf_mem;
		uffdio_copy.src = (unsigned long) &backing_mem[offset];

		uffdio_copy.len = pagesize;
		uffdio_copy.mode = 0;
		uffdio_copy.copy = 0;
		if (ioctl(uffd, UFFDIO_COPY, &uffdio_copy) == -1) {
			perror("ioctl-UFFDIO_COPY failed");
			exit(EXIT_FAILURE);
		}
	}
}

void setup_uf_mem(void)
{
	long uffd;		/* userfaultfd file descriptor */
	pthread_t thr;
	struct uffdio_api uffdio_api;
	struct uffdio_register uffdio_register;
	int ret;

	pagesize = sysconf(_SC_PAGE_SIZE);

	/* Create and enable userfaultfd object */
	uffd = syscall(__NR_userfaultfd, O_CLOEXEC | O_NONBLOCK);
	if (uffd == -1) {
		perror("userfaultfd() failed");
		exit(EXIT_FAILURE);
	}
	uffdio_api.api = UFFD_API;
	uffdio_api.features = 0;
	if (ioctl(uffd, UFFDIO_API, &uffdio_api) == -1) {
		perror("ioctl-UFFDIO_API failed");
		exit(EXIT_FAILURE);
	}

	/*
	 * Create a private anonymous mapping. The memory will be demand-zero
	 * paged, that is, not yet allocated. When we actually touch the memory
	 * the related page will be allocated via the userfaultfd mechanism.
	 */
	uf_mem = mmap(NULL, UF_MEM_SIZE, PROT_READ | PROT_WRITE,
		      MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
	if (uf_mem == MAP_FAILED) {
		perror("mmap() failed");
		exit(EXIT_FAILURE);
	}

	/*
	 * Register the memory range of the mapping we've just mapped to be
	 * handled by the userfaultfd object. In 'mode' we request to track
	 * missing pages (i.e. pages that have not yet been faulted-in).
	 */
	uffdio_register.range.start = (unsigned long) uf_mem;
	uffdio_register.range.len = UF_MEM_SIZE;
	uffdio_register.mode = UFFDIO_REGISTER_MODE_MISSING;
	if (ioctl(uffd, UFFDIO_REGISTER, &uffdio_register) == -1) {
		perror("ioctl-UFFDIO_REGISTER");
		exit(EXIT_FAILURE);
	}

	/* Create a thread that will process the userfaultfd events */
	ret = pthread_create(&thr, NULL, fault_handler_thread, (void *) uffd);
	if (ret != 0) {
		fprintf(stderr, "pthread_create(): Error. Returned %d\n", ret);
		exit(EXIT_FAILURE);
	}
}

/*
 * Assumption: the signal was delivered while userspace was in transactional or
 * suspended state, i.e. uc->uc_link != NULL.
 */
void signal_handler(int signo, siginfo_t *si, void *uc)
{
	ucontext_t *ucp = uc;

	/* Skip 'trap' after returning, otherwise we get a SIGTRAP again */
	ucp->uc_link->uc_mcontext.regs->nip += 4;

	ucp->uc_mcontext.v_regs =
		get_uf_mem(sizeof(elf_vrreg_t), ucp->uc_mcontext.v_regs);

	ucp->uc_link->uc_mcontext.v_regs =
		get_uf_mem(sizeof(elf_vrreg_t), ucp->uc_link->uc_mcontext.v_regs);

	ucp->uc_link = get_uf_mem(sizeof(ucontext_t), ucp->uc_link);
}

bool have_userfaultfd(void)
{
	long rc;

	errno = 0;
	rc = syscall(__NR_userfaultfd, -1);

	return rc == 0 || errno != ENOSYS;
}

int tm_signal_pagefault(void)
{
	struct sigaction sa;
	stack_t ss;

	SKIP_IF(!have_htm());
	SKIP_IF(htm_is_synthetic());
	SKIP_IF(!have_userfaultfd());

	setup_uf_mem();

	/*
	 * Set an alternative stack that will generate a page fault when the
	 * signal is raised. The page fault will be treated via userfaultfd,
	 * i.e. via fault_handler_thread.
	 */
	ss.ss_sp = get_uf_mem(SIGSTKSZ, NULL);
	ss.ss_size = SIGSTKSZ;
	ss.ss_flags = 0;
	if (sigaltstack(&ss, NULL) == -1) {
		perror("sigaltstack() failed");
		exit(EXIT_FAILURE);
	}

	sa.sa_flags = SA_SIGINFO | SA_ONSTACK;
	sa.sa_sigaction = signal_handler;
	if (sigaction(SIGTRAP, &sa, NULL) == -1) {
		perror("sigaction() failed");
		exit(EXIT_FAILURE);
	}

	/* Trigger a SIGTRAP in transactional state */
	asm __volatile__(
			"tbegin.;"
			"beq    1f;"
			"trap;"
			"1: ;"
			: : : "memory");

	/* Trigger a SIGTRAP in suspended state */
	asm __volatile__(
			"tbegin.;"
			"beq    1f;"
			"tsuspend.;"
			"trap;"
			"tresume.;"
			"1: ;"
			: : : "memory");

	return EXIT_SUCCESS;
}

int main(int argc, char **argv)
{
	/*
	 * Depending on kernel config, the TM Bad Thing might not result in a
	 * crash, instead the kernel never returns control back to userspace, so
	 * set a tight timeout. If the test passes it completes almost
	 * immediately.
	 */
	test_harness_set_timeout(2);
	return test_harness(tm_signal_pagefault, "tm_signal_pagefault");
}