aboutsummaryrefslogtreecommitdiffstats
path: root/tun/offload_linux.go
blob: 9ff7fea8f98f27ac2197d87dbc4db5399af9aefc (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
/* SPDX-License-Identifier: MIT
 *
 * Copyright (C) 2017-2023 WireGuard LLC. All Rights Reserved.
 */

package tun

import (
	"bytes"
	"encoding/binary"
	"errors"
	"io"
	"unsafe"

	"golang.org/x/sys/unix"
	"golang.zx2c4.com/wireguard/conn"
)

const tcpFlagsOffset = 13

const (
	tcpFlagFIN uint8 = 0x01
	tcpFlagPSH uint8 = 0x08
	tcpFlagACK uint8 = 0x10
)

// virtioNetHdr is defined in the kernel in include/uapi/linux/virtio_net.h. The
// kernel symbol is virtio_net_hdr.
type virtioNetHdr struct {
	flags      uint8
	gsoType    uint8
	hdrLen     uint16
	gsoSize    uint16
	csumStart  uint16
	csumOffset uint16
}

func (v *virtioNetHdr) decode(b []byte) error {
	if len(b) < virtioNetHdrLen {
		return io.ErrShortBuffer
	}
	copy(unsafe.Slice((*byte)(unsafe.Pointer(v)), virtioNetHdrLen), b[:virtioNetHdrLen])
	return nil
}

func (v *virtioNetHdr) encode(b []byte) error {
	if len(b) < virtioNetHdrLen {
		return io.ErrShortBuffer
	}
	copy(b[:virtioNetHdrLen], unsafe.Slice((*byte)(unsafe.Pointer(v)), virtioNetHdrLen))
	return nil
}

const (
	// virtioNetHdrLen is the length in bytes of virtioNetHdr. This matches the
	// shape of the C ABI for its kernel counterpart -- sizeof(virtio_net_hdr).
	virtioNetHdrLen = int(unsafe.Sizeof(virtioNetHdr{}))
)

// tcpFlowKey represents the key for a TCP flow.
type tcpFlowKey struct {
	srcAddr, dstAddr [16]byte
	srcPort, dstPort uint16
	rxAck            uint32 // varying ack values should not be coalesced. Treat them as separate flows.
	isV6             bool
}

// tcpGROTable holds flow and coalescing information for the purposes of TCP GRO.
type tcpGROTable struct {
	itemsByFlow map[tcpFlowKey][]tcpGROItem
	itemsPool   [][]tcpGROItem
}

func newTCPGROTable() *tcpGROTable {
	t := &tcpGROTable{
		itemsByFlow: make(map[tcpFlowKey][]tcpGROItem, conn.IdealBatchSize),
		itemsPool:   make([][]tcpGROItem, conn.IdealBatchSize),
	}
	for i := range t.itemsPool {
		t.itemsPool[i] = make([]tcpGROItem, 0, conn.IdealBatchSize)
	}
	return t
}

func newTCPFlowKey(pkt []byte, srcAddrOffset, dstAddrOffset, tcphOffset int) tcpFlowKey {
	key := tcpFlowKey{}
	addrSize := dstAddrOffset - srcAddrOffset
	copy(key.srcAddr[:], pkt[srcAddrOffset:dstAddrOffset])
	copy(key.dstAddr[:], pkt[dstAddrOffset:dstAddrOffset+addrSize])
	key.srcPort = binary.BigEndian.Uint16(pkt[tcphOffset:])
	key.dstPort = binary.BigEndian.Uint16(pkt[tcphOffset+2:])
	key.rxAck = binary.BigEndian.Uint32(pkt[tcphOffset+8:])
	key.isV6 = addrSize == 16
	return key
}

// lookupOrInsert looks up a flow for the provided packet and metadata,
// returning the packets found for the flow, or inserting a new one if none
// is found.
func (t *tcpGROTable) lookupOrInsert(pkt []byte, srcAddrOffset, dstAddrOffset, tcphOffset, tcphLen, bufsIndex int) ([]tcpGROItem, bool) {
	key := newTCPFlowKey(pkt, srcAddrOffset, dstAddrOffset, tcphOffset)
	items, ok := t.itemsByFlow[key]
	if ok {
		return items, ok
	}
	// TODO: insert() performs another map lookup. This could be rearranged to avoid.
	t.insert(pkt, srcAddrOffset, dstAddrOffset, tcphOffset, tcphLen, bufsIndex)
	return nil, false
}

// insert an item in the table for the provided packet and packet metadata.
func (t *tcpGROTable) insert(pkt []byte, srcAddrOffset, dstAddrOffset, tcphOffset, tcphLen, bufsIndex int) {
	key := newTCPFlowKey(pkt, srcAddrOffset, dstAddrOffset, tcphOffset)
	item := tcpGROItem{
		key:       key,
		bufsIndex: uint16(bufsIndex),
		gsoSize:   uint16(len(pkt[tcphOffset+tcphLen:])),
		iphLen:    uint8(tcphOffset),
		tcphLen:   uint8(tcphLen),
		sentSeq:   binary.BigEndian.Uint32(pkt[tcphOffset+4:]),
		pshSet:    pkt[tcphOffset+tcpFlagsOffset]&tcpFlagPSH != 0,
	}
	items, ok := t.itemsByFlow[key]
	if !ok {
		items = t.newItems()
	}
	items = append(items, item)
	t.itemsByFlow[key] = items
}

func (t *tcpGROTable) updateAt(item tcpGROItem, i int) {
	items, _ := t.itemsByFlow[item.key]
	items[i] = item
}

func (t *tcpGROTable) deleteAt(key tcpFlowKey, i int) {
	items, _ := t.itemsByFlow[key]
	items = append(items[:i], items[i+1:]...)
	t.itemsByFlow[key] = items
}

// tcpGROItem represents bookkeeping data for a TCP packet during the lifetime
// of a GRO evaluation across a vector of packets.
type tcpGROItem struct {
	key       tcpFlowKey
	sentSeq   uint32 // the sequence number
	bufsIndex uint16 // the index into the original bufs slice
	numMerged uint16 // the number of packets merged into this item
	gsoSize   uint16 // payload size
	iphLen    uint8  // ip header len
	tcphLen   uint8  // tcp header len
	pshSet    bool   // psh flag is set
}

func (t *tcpGROTable) newItems() []tcpGROItem {
	var items []tcpGROItem
	items, t.itemsPool = t.itemsPool[len(t.itemsPool)-1], t.itemsPool[:len(t.itemsPool)-1]
	return items
}

func (t *tcpGROTable) reset() {
	for k, items := range t.itemsByFlow {
		items = items[:0]
		t.itemsPool = append(t.itemsPool, items)
		delete(t.itemsByFlow, k)
	}
}

// udpFlowKey represents the key for a UDP flow.
type udpFlowKey struct {
	srcAddr, dstAddr [16]byte
	srcPort, dstPort uint16
	isV6             bool
}

// udpGROTable holds flow and coalescing information for the purposes of UDP GRO.
type udpGROTable struct {
	itemsByFlow map[udpFlowKey][]udpGROItem
	itemsPool   [][]udpGROItem
}

func newUDPGROTable() *udpGROTable {
	u := &udpGROTable{
		itemsByFlow: make(map[udpFlowKey][]udpGROItem, conn.IdealBatchSize),
		itemsPool:   make([][]udpGROItem, conn.IdealBatchSize),
	}
	for i := range u.itemsPool {
		u.itemsPool[i] = make([]udpGROItem, 0, conn.IdealBatchSize)
	}
	return u
}

func newUDPFlowKey(pkt []byte, srcAddrOffset, dstAddrOffset, udphOffset int) udpFlowKey {
	key := udpFlowKey{}
	addrSize := dstAddrOffset - srcAddrOffset
	copy(key.srcAddr[:], pkt[srcAddrOffset:dstAddrOffset])
	copy(key.dstAddr[:], pkt[dstAddrOffset:dstAddrOffset+addrSize])
	key.srcPort = binary.BigEndian.Uint16(pkt[udphOffset:])
	key.dstPort = binary.BigEndian.Uint16(pkt[udphOffset+2:])
	key.isV6 = addrSize == 16
	return key
}

// lookupOrInsert looks up a flow for the provided packet and metadata,
// returning the packets found for the flow, or inserting a new one if none
// is found.
func (u *udpGROTable) lookupOrInsert(pkt []byte, srcAddrOffset, dstAddrOffset, udphOffset, bufsIndex int) ([]udpGROItem, bool) {
	key := newUDPFlowKey(pkt, srcAddrOffset, dstAddrOffset, udphOffset)
	items, ok := u.itemsByFlow[key]
	if ok {
		return items, ok
	}
	// TODO: insert() performs another map lookup. This could be rearranged to avoid.
	u.insert(pkt, srcAddrOffset, dstAddrOffset, udphOffset, bufsIndex, false)
	return nil, false
}

// insert an item in the table for the provided packet and packet metadata.
func (u *udpGROTable) insert(pkt []byte, srcAddrOffset, dstAddrOffset, udphOffset, bufsIndex int, cSumKnownInvalid bool) {
	key := newUDPFlowKey(pkt, srcAddrOffset, dstAddrOffset, udphOffset)
	item := udpGROItem{
		key:              key,
		bufsIndex:        uint16(bufsIndex),
		gsoSize:          uint16(len(pkt[udphOffset+udphLen:])),
		iphLen:           uint8(udphOffset),
		cSumKnownInvalid: cSumKnownInvalid,
	}
	items, ok := u.itemsByFlow[key]
	if !ok {
		items = u.newItems()
	}
	items = append(items, item)
	u.itemsByFlow[key] = items
}

func (u *udpGROTable) updateAt(item udpGROItem, i int) {
	items, _ := u.itemsByFlow[item.key]
	items[i] = item
}

// udpGROItem represents bookkeeping data for a UDP packet during the lifetime
// of a GRO evaluation across a vector of packets.
type udpGROItem struct {
	key              udpFlowKey
	bufsIndex        uint16 // the index into the original bufs slice
	numMerged        uint16 // the number of packets merged into this item
	gsoSize          uint16 // payload size
	iphLen           uint8  // ip header len
	cSumKnownInvalid bool   // UDP header checksum validity; a false value DOES NOT imply valid, just unknown.
}

func (u *udpGROTable) newItems() []udpGROItem {
	var items []udpGROItem
	items, u.itemsPool = u.itemsPool[len(u.itemsPool)-1], u.itemsPool[:len(u.itemsPool)-1]
	return items
}

func (u *udpGROTable) reset() {
	for k, items := range u.itemsByFlow {
		items = items[:0]
		u.itemsPool = append(u.itemsPool, items)
		delete(u.itemsByFlow, k)
	}
}

// canCoalesce represents the outcome of checking if two TCP packets are
// candidates for coalescing.
type canCoalesce int

const (
	coalescePrepend     canCoalesce = -1
	coalesceUnavailable canCoalesce = 0
	coalesceAppend      canCoalesce = 1
)

// ipHeadersCanCoalesce returns true if the IP headers found in pktA and pktB
// meet all requirements to be merged as part of a GRO operation, otherwise it
// returns false.
func ipHeadersCanCoalesce(pktA, pktB []byte) bool {
	if len(pktA) < 9 || len(pktB) < 9 {
		return false
	}
	if pktA[0]>>4 == 6 {
		if pktA[0] != pktB[0] || pktA[1]>>4 != pktB[1]>>4 {
			// cannot coalesce with unequal Traffic class values
			return false
		}
		if pktA[7] != pktB[7] {
			// cannot coalesce with unequal Hop limit values
			return false
		}
	} else {
		if pktA[1] != pktB[1] {
			// cannot coalesce with unequal ToS values
			return false
		}
		if pktA[6]>>5 != pktB[6]>>5 {
			// cannot coalesce with unequal DF or reserved bits. MF is checked
			// further up the stack.
			return false
		}
		if pktA[8] != pktB[8] {
			// cannot coalesce with unequal TTL values
			return false
		}
	}
	return true
}

// udpPacketsCanCoalesce evaluates if pkt can be coalesced with the packet
// described by item. iphLen and gsoSize describe pkt. bufs is the vector of
// packets involved in the current GRO evaluation. bufsOffset is the offset at
// which packet data begins within bufs.
func udpPacketsCanCoalesce(pkt []byte, iphLen uint8, gsoSize uint16, item udpGROItem, bufs [][]byte, bufsOffset int) canCoalesce {
	pktTarget := bufs[item.bufsIndex][bufsOffset:]
	if !ipHeadersCanCoalesce(pkt, pktTarget) {
		return coalesceUnavailable
	}
	if len(pktTarget[iphLen+udphLen:])%int(item.gsoSize) != 0 {
		// A smaller than gsoSize packet has been appended previously.
		// Nothing can come after a smaller packet on the end.
		return coalesceUnavailable
	}
	if gsoSize > item.gsoSize {
		// We cannot have a larger packet following a smaller one.
		return coalesceUnavailable
	}
	return coalesceAppend
}

// tcpPacketsCanCoalesce evaluates if pkt can be coalesced with the packet
// described by item. This function makes considerations that match the kernel's
// GRO self tests, which can be found in tools/testing/selftests/net/gro.c.
func tcpPacketsCanCoalesce(pkt []byte, iphLen, tcphLen uint8, seq uint32, pshSet bool, gsoSize uint16, item tcpGROItem, bufs [][]byte, bufsOffset int) canCoalesce {
	pktTarget := bufs[item.bufsIndex][bufsOffset:]
	if tcphLen != item.tcphLen {
		// cannot coalesce with unequal tcp options len
		return coalesceUnavailable
	}
	if tcphLen > 20 {
		if !bytes.Equal(pkt[iphLen+20:iphLen+tcphLen], pktTarget[item.iphLen+20:iphLen+tcphLen]) {
			// cannot coalesce with unequal tcp options
			return coalesceUnavailable
		}
	}
	if !ipHeadersCanCoalesce(pkt, pktTarget) {
		return coalesceUnavailable
	}
	// seq adjacency
	lhsLen := item.gsoSize
	lhsLen += item.numMerged * item.gsoSize
	if seq == item.sentSeq+uint32(lhsLen) { // pkt aligns following item from a seq num perspective
		if item.pshSet {
			// We cannot append to a segment that has the PSH flag set, PSH
			// can only be set on the final segment in a reassembled group.
			return coalesceUnavailable
		}
		if len(pktTarget[iphLen+tcphLen:])%int(item.gsoSize) != 0 {
			// A smaller than gsoSize packet has been appended previously.
			// Nothing can come after a smaller packet on the end.
			return coalesceUnavailable
		}
		if gsoSize > item.gsoSize {
			// We cannot have a larger packet following a smaller one.
			return coalesceUnavailable
		}
		return coalesceAppend
	} else if seq+uint32(gsoSize) == item.sentSeq { // pkt aligns in front of item from a seq num perspective
		if pshSet {
			// We cannot prepend with a segment that has the PSH flag set, PSH
			// can only be set on the final segment in a reassembled group.
			return coalesceUnavailable
		}
		if gsoSize < item.gsoSize {
			// We cannot have a larger packet following a smaller one.
			return coalesceUnavailable
		}
		if gsoSize > item.gsoSize && item.numMerged > 0 {
			// There's at least one previous merge, and we're larger than all
			// previous. This would put multiple smaller packets on the end.
			return coalesceUnavailable
		}
		return coalescePrepend
	}
	return coalesceUnavailable
}

func checksumValid(pkt []byte, iphLen, proto uint8, isV6 bool) bool {
	srcAddrAt := ipv4SrcAddrOffset
	addrSize := 4
	if isV6 {
		srcAddrAt = ipv6SrcAddrOffset
		addrSize = 16
	}
	lenForPseudo := uint16(len(pkt) - int(iphLen))
	cSum := pseudoHeaderChecksumNoFold(proto, pkt[srcAddrAt:srcAddrAt+addrSize], pkt[srcAddrAt+addrSize:srcAddrAt+addrSize*2], lenForPseudo)
	return ^checksum(pkt[iphLen:], cSum) == 0
}

// coalesceResult represents the result of attempting to coalesce two TCP
// packets.
type coalesceResult int

const (
	coalesceInsufficientCap coalesceResult = iota
	coalescePSHEnding
	coalesceItemInvalidCSum
	coalescePktInvalidCSum
	coalesceSuccess
)

// coalesceUDPPackets attempts to coalesce pkt with the packet described by
// item, and returns the outcome.
func coalesceUDPPackets(pkt []byte, item *udpGROItem, bufs [][]byte, bufsOffset int, isV6 bool) coalesceResult {
	pktHead := bufs[item.bufsIndex][bufsOffset:] // the packet that will end up at the front
	headersLen := item.iphLen + udphLen
	coalescedLen := len(bufs[item.bufsIndex][bufsOffset:]) + len(pkt) - int(headersLen)

	if cap(pktHead)-bufsOffset < coalescedLen {
		// We don't want to allocate a new underlying array if capacity is
		// too small.
		return coalesceInsufficientCap
	}
	if item.numMerged == 0 {
		if item.cSumKnownInvalid || !checksumValid(bufs[item.bufsIndex][bufsOffset:], item.iphLen, unix.IPPROTO_UDP, isV6) {
			return coalesceItemInvalidCSum
		}
	}
	if !checksumValid(pkt, item.iphLen, unix.IPPROTO_UDP, isV6) {
		return coalescePktInvalidCSum
	}
	extendBy := len(pkt) - int(headersLen)
	bufs[item.bufsIndex] = append(bufs[item.bufsIndex], make([]byte, extendBy)...)
	copy(bufs[item.bufsIndex][bufsOffset+len(pktHead):], pkt[headersLen:])

	item.numMerged++
	return coalesceSuccess
}

// coalesceTCPPackets attempts to coalesce pkt with the packet described by
// item, and returns the outcome. This function may swap bufs elements in the
// event of a prepend as item's bufs index is already being tracked for writing
// to a Device.
func coalesceTCPPackets(mode canCoalesce, pkt []byte, pktBuffsIndex int, gsoSize uint16, seq uint32, pshSet bool, item *tcpGROItem, bufs [][]byte, bufsOffset int, isV6 bool) coalesceResult {
	var pktHead []byte // the packet that will end up at the front
	headersLen := item.iphLen + item.tcphLen
	coalescedLen := len(bufs[item.bufsIndex][bufsOffset:]) + len(pkt) - int(headersLen)

	// Copy data
	if mode == coalescePrepend {
		pktHead = pkt
		if cap(pkt)-bufsOffset < coalescedLen {
			// We don't want to allocate a new underlying array if capacity is
			// too small.
			return coalesceInsufficientCap
		}
		if pshSet {
			return coalescePSHEnding
		}
		if item.numMerged == 0 {
			if !checksumValid(bufs[item.bufsIndex][bufsOffset:], item.iphLen, unix.IPPROTO_TCP, isV6) {
				return coalesceItemInvalidCSum
			}
		}
		if !checksumValid(pkt, item.iphLen, unix.IPPROTO_TCP, isV6) {
			return coalescePktInvalidCSum
		}
		item.sentSeq = seq
		extendBy := coalescedLen - len(pktHead)
		bufs[pktBuffsIndex] = append(bufs[pktBuffsIndex], make([]byte, extendBy)...)
		copy(bufs[pktBuffsIndex][bufsOffset+len(pkt):], bufs[item.bufsIndex][bufsOffset+int(headersLen):])
		// Flip the slice headers in bufs as part of prepend. The index of item
		// is already being tracked for writing.
		bufs[item.bufsIndex], bufs[pktBuffsIndex] = bufs[pktBuffsIndex], bufs[item.bufsIndex]
	} else {
		pktHead = bufs[item.bufsIndex][bufsOffset:]
		if cap(pktHead)-bufsOffset < coalescedLen {
			// We don't want to allocate a new underlying array if capacity is
			// too small.
			return coalesceInsufficientCap
		}
		if item.numMerged == 0 {
			if !checksumValid(bufs[item.bufsIndex][bufsOffset:], item.iphLen, unix.IPPROTO_TCP, isV6) {
				return coalesceItemInvalidCSum
			}
		}
		if !checksumValid(pkt, item.iphLen, unix.IPPROTO_TCP, isV6) {
			return coalescePktInvalidCSum
		}
		if pshSet {
			// We are appending a segment with PSH set.
			item.pshSet = pshSet
			pktHead[item.iphLen+tcpFlagsOffset] |= tcpFlagPSH
		}
		extendBy := len(pkt) - int(headersLen)
		bufs[item.bufsIndex] = append(bufs[item.bufsIndex], make([]byte, extendBy)...)
		copy(bufs[item.bufsIndex][bufsOffset+len(pktHead):], pkt[headersLen:])
	}

	if gsoSize > item.gsoSize {
		item.gsoSize = gsoSize
	}

	item.numMerged++
	return coalesceSuccess
}

const (
	ipv4FlagMoreFragments uint8 = 0x20
)

const (
	ipv4SrcAddrOffset = 12
	ipv6SrcAddrOffset = 8
	maxUint16         = 1<<16 - 1
)

type groResult int

const (
	groResultNoop groResult = iota
	groResultTableInsert
	groResultCoalesced
)

// tcpGRO evaluates the TCP packet at pktI in bufs for coalescing with
// existing packets tracked in table. It returns a groResultNoop when no
// action was taken, groResultTableInsert when the evaluated packet was
// inserted into table, and groResultCoalesced when the evaluated packet was
// coalesced with another packet in table.
func tcpGRO(bufs [][]byte, offset int, pktI int, table *tcpGROTable, isV6 bool) groResult {
	pkt := bufs[pktI][offset:]
	if len(pkt) > maxUint16 {
		// A valid IPv4 or IPv6 packet will never exceed this.
		return groResultNoop
	}
	iphLen := int((pkt[0] & 0x0F) * 4)
	if isV6 {
		iphLen = 40
		ipv6HPayloadLen := int(binary.BigEndian.Uint16(pkt[4:]))
		if ipv6HPayloadLen != len(pkt)-iphLen {
			return groResultNoop
		}
	} else {
		totalLen := int(binary.BigEndian.Uint16(pkt[2:]))
		if totalLen != len(pkt) {
			return groResultNoop
		}
	}
	if len(pkt) < iphLen {
		return groResultNoop
	}
	tcphLen := int((pkt[iphLen+12] >> 4) * 4)
	if tcphLen < 20 || tcphLen > 60 {
		return groResultNoop
	}
	if len(pkt) < iphLen+tcphLen {
		return groResultNoop
	}
	if !isV6 {
		if pkt[6]&ipv4FlagMoreFragments != 0 || pkt[6]<<3 != 0 || pkt[7] != 0 {
			// no GRO support for fragmented segments for now
			return groResultNoop
		}
	}
	tcpFlags := pkt[iphLen+tcpFlagsOffset]
	var pshSet bool
	// not a candidate if any non-ACK flags (except PSH+ACK) are set
	if tcpFlags != tcpFlagACK {
		if pkt[iphLen+tcpFlagsOffset] != tcpFlagACK|tcpFlagPSH {
			return groResultNoop
		}
		pshSet = true
	}
	gsoSize := uint16(len(pkt) - tcphLen - iphLen)
	// not a candidate if payload len is 0
	if gsoSize < 1 {
		return groResultNoop
	}
	seq := binary.BigEndian.Uint32(pkt[iphLen+4:])
	srcAddrOffset := ipv4SrcAddrOffset
	addrLen := 4
	if isV6 {
		srcAddrOffset = ipv6SrcAddrOffset
		addrLen = 16
	}
	items, existing := table.lookupOrInsert(pkt, srcAddrOffset, srcAddrOffset+addrLen, iphLen, tcphLen, pktI)
	if !existing {
		return groResultTableInsert
	}
	for i := len(items) - 1; i >= 0; i-- {
		// In the best case of packets arriving in order iterating in reverse is
		// more efficient if there are multiple items for a given flow. This
		// also enables a natural table.deleteAt() in the
		// coalesceItemInvalidCSum case without the need for index tracking.
		// This algorithm makes a best effort to coalesce in the event of
		// unordered packets, where pkt may land anywhere in items from a
		// sequence number perspective, however once an item is inserted into
		// the table it is never compared across other items later.
		item := items[i]
		can := tcpPacketsCanCoalesce(pkt, uint8(iphLen), uint8(tcphLen), seq, pshSet, gsoSize, item, bufs, offset)
		if can != coalesceUnavailable {
			result := coalesceTCPPackets(can, pkt, pktI, gsoSize, seq, pshSet, &item, bufs, offset, isV6)
			switch result {
			case coalesceSuccess:
				table.updateAt(item, i)
				return groResultCoalesced
			case coalesceItemInvalidCSum:
				// delete the item with an invalid csum
				table.deleteAt(item.key, i)
			case coalescePktInvalidCSum:
				// no point in inserting an item that we can't coalesce
				return groResultNoop
			default:
			}
		}
	}
	// failed to coalesce with any other packets; store the item in the flow
	table.insert(pkt, srcAddrOffset, srcAddrOffset+addrLen, iphLen, tcphLen, pktI)
	return groResultTableInsert
}

// applyTCPCoalesceAccounting updates bufs to account for coalescing based on the
// metadata found in table.
func applyTCPCoalesceAccounting(bufs [][]byte, offset int, table *tcpGROTable) error {
	for _, items := range table.itemsByFlow {
		for _, item := range items {
			if item.numMerged > 0 {
				hdr := virtioNetHdr{
					flags:      unix.VIRTIO_NET_HDR_F_NEEDS_CSUM, // this turns into CHECKSUM_PARTIAL in the skb
					hdrLen:     uint16(item.iphLen + item.tcphLen),
					gsoSize:    item.gsoSize,
					csumStart:  uint16(item.iphLen),
					csumOffset: 16,
				}
				pkt := bufs[item.bufsIndex][offset:]

				// Recalculate the total len (IPv4) or payload len (IPv6).
				// Recalculate the (IPv4) header checksum.
				if item.key.isV6 {
					hdr.gsoType = unix.VIRTIO_NET_HDR_GSO_TCPV6
					binary.BigEndian.PutUint16(pkt[4:], uint16(len(pkt))-uint16(item.iphLen)) // set new IPv6 header payload len
				} else {
					hdr.gsoType = unix.VIRTIO_NET_HDR_GSO_TCPV4
					pkt[10], pkt[11] = 0, 0
					binary.BigEndian.PutUint16(pkt[2:], uint16(len(pkt))) // set new total length
					iphCSum := ^checksum(pkt[:item.iphLen], 0)            // compute IPv4 header checksum
					binary.BigEndian.PutUint16(pkt[10:], iphCSum)         // set IPv4 header checksum field
				}
				err := hdr.encode(bufs[item.bufsIndex][offset-virtioNetHdrLen:])
				if err != nil {
					return err
				}

				// Calculate the pseudo header checksum and place it at the TCP
				// checksum offset. Downstream checksum offloading will combine
				// this with computation of the tcp header and payload checksum.
				addrLen := 4
				addrOffset := ipv4SrcAddrOffset
				if item.key.isV6 {
					addrLen = 16
					addrOffset = ipv6SrcAddrOffset
				}
				srcAddrAt := offset + addrOffset
				srcAddr := bufs[item.bufsIndex][srcAddrAt : srcAddrAt+addrLen]
				dstAddr := bufs[item.bufsIndex][srcAddrAt+addrLen : srcAddrAt+addrLen*2]
				psum := pseudoHeaderChecksumNoFold(unix.IPPROTO_TCP, srcAddr, dstAddr, uint16(len(pkt)-int(item.iphLen)))
				binary.BigEndian.PutUint16(pkt[hdr.csumStart+hdr.csumOffset:], checksum([]byte{}, psum))
			} else {
				hdr := virtioNetHdr{}
				err := hdr.encode(bufs[item.bufsIndex][offset-virtioNetHdrLen:])
				if err != nil {
					return err
				}
			}
		}
	}
	return nil
}

// applyUDPCoalesceAccounting updates bufs to account for coalescing based on the
// metadata found in table.
func applyUDPCoalesceAccounting(bufs [][]byte, offset int, table *udpGROTable) error {
	for _, items := range table.itemsByFlow {
		for _, item := range items {
			if item.numMerged > 0 {
				hdr := virtioNetHdr{
					flags:      unix.VIRTIO_NET_HDR_F_NEEDS_CSUM, // this turns into CHECKSUM_PARTIAL in the skb
					hdrLen:     uint16(item.iphLen + udphLen),
					gsoSize:    item.gsoSize,
					csumStart:  uint16(item.iphLen),
					csumOffset: 6,
				}
				pkt := bufs[item.bufsIndex][offset:]

				// Recalculate the total len (IPv4) or payload len (IPv6).
				// Recalculate the (IPv4) header checksum.
				hdr.gsoType = unix.VIRTIO_NET_HDR_GSO_UDP_L4
				if item.key.isV6 {
					binary.BigEndian.PutUint16(pkt[4:], uint16(len(pkt))-uint16(item.iphLen)) // set new IPv6 header payload len
				} else {
					pkt[10], pkt[11] = 0, 0
					binary.BigEndian.PutUint16(pkt[2:], uint16(len(pkt))) // set new total length
					iphCSum := ^checksum(pkt[:item.iphLen], 0)            // compute IPv4 header checksum
					binary.BigEndian.PutUint16(pkt[10:], iphCSum)         // set IPv4 header checksum field
				}
				err := hdr.encode(bufs[item.bufsIndex][offset-virtioNetHdrLen:])
				if err != nil {
					return err
				}

				// Recalculate the UDP len field value
				binary.BigEndian.PutUint16(pkt[item.iphLen+4:], uint16(len(pkt[item.iphLen:])))

				// Calculate the pseudo header checksum and place it at the UDP
				// checksum offset. Downstream checksum offloading will combine
				// this with computation of the udp header and payload checksum.
				addrLen := 4
				addrOffset := ipv4SrcAddrOffset
				if item.key.isV6 {
					addrLen = 16
					addrOffset = ipv6SrcAddrOffset
				}
				srcAddrAt := offset + addrOffset
				srcAddr := bufs[item.bufsIndex][srcAddrAt : srcAddrAt+addrLen]
				dstAddr := bufs[item.bufsIndex][srcAddrAt+addrLen : srcAddrAt+addrLen*2]
				psum := pseudoHeaderChecksumNoFold(unix.IPPROTO_UDP, srcAddr, dstAddr, uint16(len(pkt)-int(item.iphLen)))
				binary.BigEndian.PutUint16(pkt[hdr.csumStart+hdr.csumOffset:], checksum([]byte{}, psum))
			} else {
				hdr := virtioNetHdr{}
				err := hdr.encode(bufs[item.bufsIndex][offset-virtioNetHdrLen:])
				if err != nil {
					return err
				}
			}
		}
	}
	return nil
}

type groCandidateType uint8

const (
	notGROCandidate groCandidateType = iota
	tcp4GROCandidate
	tcp6GROCandidate
	udp4GROCandidate
	udp6GROCandidate
)

func packetIsGROCandidate(b []byte, canUDPGRO bool) groCandidateType {
	if len(b) < 28 {
		return notGROCandidate
	}
	if b[0]>>4 == 4 {
		if b[0]&0x0F != 5 {
			// IPv4 packets w/IP options do not coalesce
			return notGROCandidate
		}
		if b[9] == unix.IPPROTO_TCP && len(b) >= 40 {
			return tcp4GROCandidate
		}
		if b[9] == unix.IPPROTO_UDP && canUDPGRO {
			return udp4GROCandidate
		}
	} else if b[0]>>4 == 6 {
		if b[6] == unix.IPPROTO_TCP && len(b) >= 60 {
			return tcp6GROCandidate
		}
		if b[6] == unix.IPPROTO_UDP && len(b) >= 48 && canUDPGRO {
			return udp6GROCandidate
		}
	}
	return notGROCandidate
}

const (
	udphLen = 8
)

// udpGRO evaluates the UDP packet at pktI in bufs for coalescing with
// existing packets tracked in table. It returns a groResultNoop when no
// action was taken, groResultTableInsert when the evaluated packet was
// inserted into table, and groResultCoalesced when the evaluated packet was
// coalesced with another packet in table.
func udpGRO(bufs [][]byte, offset int, pktI int, table *udpGROTable, isV6 bool) groResult {
	pkt := bufs[pktI][offset:]
	if len(pkt) > maxUint16 {
		// A valid IPv4 or IPv6 packet will never exceed this.
		return groResultNoop
	}
	iphLen := int((pkt[0] & 0x0F) * 4)
	if isV6 {
		iphLen = 40
		ipv6HPayloadLen := int(binary.BigEndian.Uint16(pkt[4:]))
		if ipv6HPayloadLen != len(pkt)-iphLen {
			return groResultNoop
		}
	} else {
		totalLen := int(binary.BigEndian.Uint16(pkt[2:]))
		if totalLen != len(pkt) {
			return groResultNoop
		}
	}
	if len(pkt) < iphLen {
		return groResultNoop
	}
	if len(pkt) < iphLen+udphLen {
		return groResultNoop
	}
	if !isV6 {
		if pkt[6]&ipv4FlagMoreFragments != 0 || pkt[6]<<3 != 0 || pkt[7] != 0 {
			// no GRO support for fragmented segments for now
			return groResultNoop
		}
	}
	gsoSize := uint16(len(pkt) - udphLen - iphLen)
	// not a candidate if payload len is 0
	if gsoSize < 1 {
		return groResultNoop
	}
	srcAddrOffset := ipv4SrcAddrOffset
	addrLen := 4
	if isV6 {
		srcAddrOffset = ipv6SrcAddrOffset
		addrLen = 16
	}
	items, existing := table.lookupOrInsert(pkt, srcAddrOffset, srcAddrOffset+addrLen, iphLen, pktI)
	if !existing {
		return groResultTableInsert
	}
	// With UDP we only check the last item, otherwise we could reorder packets
	// for a given flow. We must also always insert a new item, or successfully
	// coalesce with an existing item, for the same reason.
	item := items[len(items)-1]
	can := udpPacketsCanCoalesce(pkt, uint8(iphLen), gsoSize, item, bufs, offset)
	var pktCSumKnownInvalid bool
	if can == coalesceAppend {
		result := coalesceUDPPackets(pkt, &item, bufs, offset, isV6)
		switch result {
		case coalesceSuccess:
			table.updateAt(item, len(items)-1)
			return groResultCoalesced
		case coalesceItemInvalidCSum:
			// If the existing item has an invalid csum we take no action. A new
			// item will be stored after it, and the existing item will never be
			// revisited as part of future coalescing candidacy checks.
		case coalescePktInvalidCSum:
			// We must insert a new item, but we also mark it as invalid csum
			// to prevent a repeat checksum validation.
			pktCSumKnownInvalid = true
		default:
		}
	}
	// failed to coalesce with any other packets; store the item in the flow
	table.insert(pkt, srcAddrOffset, srcAddrOffset+addrLen, iphLen, pktI, pktCSumKnownInvalid)
	return groResultTableInsert
}

// handleGRO evaluates bufs for GRO, and writes the indices of the resulting
// packets into toWrite. toWrite, tcpTable, and udpTable should initially be
// empty (but non-nil), and are passed in to save allocs as the caller may reset
// and recycle them across vectors of packets. canUDPGRO indicates if UDP GRO is
// supported.
func handleGRO(bufs [][]byte, offset int, tcpTable *tcpGROTable, udpTable *udpGROTable, canUDPGRO bool, toWrite *[]int) error {
	for i := range bufs {
		if offset < virtioNetHdrLen || offset > len(bufs[i])-1 {
			return errors.New("invalid offset")
		}
		var result groResult
		switch packetIsGROCandidate(bufs[i][offset:], canUDPGRO) {
		case tcp4GROCandidate:
			result = tcpGRO(bufs, offset, i, tcpTable, false)
		case tcp6GROCandidate:
			result = tcpGRO(bufs, offset, i, tcpTable, true)
		case udp4GROCandidate:
			result = udpGRO(bufs, offset, i, udpTable, false)
		case udp6GROCandidate:
			result = udpGRO(bufs, offset, i, udpTable, true)
		}
		switch result {
		case groResultNoop:
			hdr := virtioNetHdr{}
			err := hdr.encode(bufs[i][offset-virtioNetHdrLen:])
			if err != nil {
				return err
			}
			fallthrough
		case groResultTableInsert:
			*toWrite = append(*toWrite, i)
		}
	}
	errTCP := applyTCPCoalesceAccounting(bufs, offset, tcpTable)
	errUDP := applyUDPCoalesceAccounting(bufs, offset, udpTable)
	return errors.Join(errTCP, errUDP)
}

// gsoSplit splits packets from in into outBuffs, writing the size of each
// element into sizes. It returns the number of buffers populated, and/or an
// error.
func gsoSplit(in []byte, hdr virtioNetHdr, outBuffs [][]byte, sizes []int, outOffset int, isV6 bool) (int, error) {
	iphLen := int(hdr.csumStart)
	srcAddrOffset := ipv6SrcAddrOffset
	addrLen := 16
	if !isV6 {
		in[10], in[11] = 0, 0 // clear ipv4 header checksum
		srcAddrOffset = ipv4SrcAddrOffset
		addrLen = 4
	}
	transportCsumAt := int(hdr.csumStart + hdr.csumOffset)
	in[transportCsumAt], in[transportCsumAt+1] = 0, 0 // clear tcp/udp checksum
	var firstTCPSeqNum uint32
	var protocol uint8
	if hdr.gsoType == unix.VIRTIO_NET_HDR_GSO_TCPV4 || hdr.gsoType == unix.VIRTIO_NET_HDR_GSO_TCPV6 {
		protocol = unix.IPPROTO_TCP
		firstTCPSeqNum = binary.BigEndian.Uint32(in[hdr.csumStart+4:])
	} else {
		protocol = unix.IPPROTO_UDP
	}
	nextSegmentDataAt := int(hdr.hdrLen)
	i := 0
	for ; nextSegmentDataAt < len(in); i++ {
		if i == len(outBuffs) {
			return i - 1, ErrTooManySegments
		}
		nextSegmentEnd := nextSegmentDataAt + int(hdr.gsoSize)
		if nextSegmentEnd > len(in) {
			nextSegmentEnd = len(in)
		}
		segmentDataLen := nextSegmentEnd - nextSegmentDataAt
		totalLen := int(hdr.hdrLen) + segmentDataLen
		sizes[i] = totalLen
		out := outBuffs[i][outOffset:]

		copy(out, in[:iphLen])
		if !isV6 {
			// For IPv4 we are responsible for incrementing the ID field,
			// updating the total len field, and recalculating the header
			// checksum.
			if i > 0 {
				id := binary.BigEndian.Uint16(out[4:])
				id += uint16(i)
				binary.BigEndian.PutUint16(out[4:], id)
			}
			binary.BigEndian.PutUint16(out[2:], uint16(totalLen))
			ipv4CSum := ^checksum(out[:iphLen], 0)
			binary.BigEndian.PutUint16(out[10:], ipv4CSum)
		} else {
			// For IPv6 we are responsible for updating the payload length field.
			binary.BigEndian.PutUint16(out[4:], uint16(totalLen-iphLen))
		}

		// copy transport header
		copy(out[hdr.csumStart:hdr.hdrLen], in[hdr.csumStart:hdr.hdrLen])

		if protocol == unix.IPPROTO_TCP {
			// set TCP seq and adjust TCP flags
			tcpSeq := firstTCPSeqNum + uint32(hdr.gsoSize*uint16(i))
			binary.BigEndian.PutUint32(out[hdr.csumStart+4:], tcpSeq)
			if nextSegmentEnd != len(in) {
				// FIN and PSH should only be set on last segment
				clearFlags := tcpFlagFIN | tcpFlagPSH
				out[hdr.csumStart+tcpFlagsOffset] &^= clearFlags
			}
		} else {
			// set UDP header len
			binary.BigEndian.PutUint16(out[hdr.csumStart+4:], uint16(segmentDataLen)+(hdr.hdrLen-hdr.csumStart))
		}

		// payload
		copy(out[hdr.hdrLen:], in[nextSegmentDataAt:nextSegmentEnd])

		// transport checksum
		transportHeaderLen := int(hdr.hdrLen - hdr.csumStart)
		lenForPseudo := uint16(transportHeaderLen + segmentDataLen)
		transportCSumNoFold := pseudoHeaderChecksumNoFold(protocol, in[srcAddrOffset:srcAddrOffset+addrLen], in[srcAddrOffset+addrLen:srcAddrOffset+addrLen*2], lenForPseudo)
		transportCSum := ^checksum(out[hdr.csumStart:totalLen], transportCSumNoFold)
		binary.BigEndian.PutUint16(out[hdr.csumStart+hdr.csumOffset:], transportCSum)

		nextSegmentDataAt += int(hdr.gsoSize)
	}
	return i, nil
}

func gsoNoneChecksum(in []byte, cSumStart, cSumOffset uint16) error {
	cSumAt := cSumStart + cSumOffset
	// The initial value at the checksum offset should be summed with the
	// checksum we compute. This is typically the pseudo-header checksum.
	initial := binary.BigEndian.Uint16(in[cSumAt:])
	in[cSumAt], in[cSumAt+1] = 0, 0
	binary.BigEndian.PutUint16(in[cSumAt:], ^checksum(in[cSumStart:], uint64(initial)))
	return nil
}