aboutsummaryrefslogtreecommitdiffstats
path: root/tun/tcp_offload_linux.go
blob: 39a7180c5a2a50f65901e630fb2e12f02e6dc7d6 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
/* SPDX-License-Identifier: MIT
 *
 * Copyright (C) 2017-2023 WireGuard LLC. All Rights Reserved.
 */

package tun

import (
	"bytes"
	"encoding/binary"
	"errors"
	"io"
	"unsafe"

	"golang.org/x/sys/unix"
	"golang.zx2c4.com/wireguard/conn"
)

const tcpFlagsOffset = 13

const (
	tcpFlagFIN uint8 = 0x01
	tcpFlagPSH uint8 = 0x08
	tcpFlagACK uint8 = 0x10
)

// virtioNetHdr is defined in the kernel in include/uapi/linux/virtio_net.h. The
// kernel symbol is virtio_net_hdr.
type virtioNetHdr struct {
	flags      uint8
	gsoType    uint8
	hdrLen     uint16
	gsoSize    uint16
	csumStart  uint16
	csumOffset uint16
}

func (v *virtioNetHdr) decode(b []byte) error {
	if len(b) < virtioNetHdrLen {
		return io.ErrShortBuffer
	}
	copy(unsafe.Slice((*byte)(unsafe.Pointer(v)), virtioNetHdrLen), b[:virtioNetHdrLen])
	return nil
}

func (v *virtioNetHdr) encode(b []byte) error {
	if len(b) < virtioNetHdrLen {
		return io.ErrShortBuffer
	}
	copy(b[:virtioNetHdrLen], unsafe.Slice((*byte)(unsafe.Pointer(v)), virtioNetHdrLen))
	return nil
}

const (
	// virtioNetHdrLen is the length in bytes of virtioNetHdr. This matches the
	// shape of the C ABI for its kernel counterpart -- sizeof(virtio_net_hdr).
	virtioNetHdrLen = int(unsafe.Sizeof(virtioNetHdr{}))
)

// flowKey represents the key for a flow.
type flowKey struct {
	srcAddr, dstAddr [16]byte
	srcPort, dstPort uint16
	rxAck            uint32 // varying ack values should not be coalesced. Treat them as separate flows.
}

// tcpGROTable holds flow and coalescing information for the purposes of GRO.
type tcpGROTable struct {
	itemsByFlow map[flowKey][]tcpGROItem
	itemsPool   [][]tcpGROItem
}

func newTCPGROTable() *tcpGROTable {
	t := &tcpGROTable{
		itemsByFlow: make(map[flowKey][]tcpGROItem, conn.IdealBatchSize),
		itemsPool:   make([][]tcpGROItem, conn.IdealBatchSize),
	}
	for i := range t.itemsPool {
		t.itemsPool[i] = make([]tcpGROItem, 0, conn.IdealBatchSize)
	}
	return t
}

func newFlowKey(pkt []byte, srcAddr, dstAddr, tcphOffset int) flowKey {
	key := flowKey{}
	addrSize := dstAddr - srcAddr
	copy(key.srcAddr[:], pkt[srcAddr:dstAddr])
	copy(key.dstAddr[:], pkt[dstAddr:dstAddr+addrSize])
	key.srcPort = binary.BigEndian.Uint16(pkt[tcphOffset:])
	key.dstPort = binary.BigEndian.Uint16(pkt[tcphOffset+2:])
	key.rxAck = binary.BigEndian.Uint32(pkt[tcphOffset+8:])
	return key
}

// lookupOrInsert looks up a flow for the provided packet and metadata,
// returning the packets found for the flow, or inserting a new one if none
// is found.
func (t *tcpGROTable) lookupOrInsert(pkt []byte, srcAddrOffset, dstAddrOffset, tcphOffset, tcphLen, bufsIndex int) ([]tcpGROItem, bool) {
	key := newFlowKey(pkt, srcAddrOffset, dstAddrOffset, tcphOffset)
	items, ok := t.itemsByFlow[key]
	if ok {
		return items, ok
	}
	// TODO: insert() performs another map lookup. This could be rearranged to avoid.
	t.insert(pkt, srcAddrOffset, dstAddrOffset, tcphOffset, tcphLen, bufsIndex)
	return nil, false
}

// insert an item in the table for the provided packet and packet metadata.
func (t *tcpGROTable) insert(pkt []byte, srcAddrOffset, dstAddrOffset, tcphOffset, tcphLen, bufsIndex int) {
	key := newFlowKey(pkt, srcAddrOffset, dstAddrOffset, tcphOffset)
	item := tcpGROItem{
		key:       key,
		bufsIndex: uint16(bufsIndex),
		gsoSize:   uint16(len(pkt[tcphOffset+tcphLen:])),
		iphLen:    uint8(tcphOffset),
		tcphLen:   uint8(tcphLen),
		sentSeq:   binary.BigEndian.Uint32(pkt[tcphOffset+4:]),
		pshSet:    pkt[tcphOffset+tcpFlagsOffset]&tcpFlagPSH != 0,
	}
	items, ok := t.itemsByFlow[key]
	if !ok {
		items = t.newItems()
	}
	items = append(items, item)
	t.itemsByFlow[key] = items
}

func (t *tcpGROTable) updateAt(item tcpGROItem, i int) {
	items, _ := t.itemsByFlow[item.key]
	items[i] = item
}

func (t *tcpGROTable) deleteAt(key flowKey, i int) {
	items, _ := t.itemsByFlow[key]
	items = append(items[:i], items[i+1:]...)
	t.itemsByFlow[key] = items
}

// tcpGROItem represents bookkeeping data for a TCP packet during the lifetime
// of a GRO evaluation across a vector of packets.
type tcpGROItem struct {
	key       flowKey
	sentSeq   uint32 // the sequence number
	bufsIndex uint16 // the index into the original bufs slice
	numMerged uint16 // the number of packets merged into this item
	gsoSize   uint16 // payload size
	iphLen    uint8  // ip header len
	tcphLen   uint8  // tcp header len
	pshSet    bool   // psh flag is set
}

func (t *tcpGROTable) newItems() []tcpGROItem {
	var items []tcpGROItem
	items, t.itemsPool = t.itemsPool[len(t.itemsPool)-1], t.itemsPool[:len(t.itemsPool)-1]
	return items
}

func (t *tcpGROTable) reset() {
	for k, items := range t.itemsByFlow {
		items = items[:0]
		t.itemsPool = append(t.itemsPool, items)
		delete(t.itemsByFlow, k)
	}
}

// canCoalesce represents the outcome of checking if two TCP packets are
// candidates for coalescing.
type canCoalesce int

const (
	coalescePrepend     canCoalesce = -1
	coalesceUnavailable canCoalesce = 0
	coalesceAppend      canCoalesce = 1
)

// tcpPacketsCanCoalesce evaluates if pkt can be coalesced with the packet
// described by item. This function makes considerations that match the kernel's
// GRO self tests, which can be found in tools/testing/selftests/net/gro.c.
func tcpPacketsCanCoalesce(pkt []byte, iphLen, tcphLen uint8, seq uint32, pshSet bool, gsoSize uint16, item tcpGROItem, bufs [][]byte, bufsOffset int) canCoalesce {
	pktTarget := bufs[item.bufsIndex][bufsOffset:]
	if tcphLen != item.tcphLen {
		// cannot coalesce with unequal tcp options len
		return coalesceUnavailable
	}
	if tcphLen > 20 {
		if !bytes.Equal(pkt[iphLen+20:iphLen+tcphLen], pktTarget[item.iphLen+20:iphLen+tcphLen]) {
			// cannot coalesce with unequal tcp options
			return coalesceUnavailable
		}
	}
	if pkt[0]>>4 == 6 {
		if pkt[0] != pktTarget[0] || pkt[1]>>4 != pktTarget[1]>>4 {
			// cannot coalesce with unequal Traffic class values
			return coalesceUnavailable
		}
		if pkt[7] != pktTarget[7] {
			// cannot coalesce with unequal Hop limit values
			return coalesceUnavailable
		}
	} else {
		if pkt[1] != pktTarget[1] {
			// cannot coalesce with unequal ToS values
			return coalesceUnavailable
		}
		if pkt[6]>>5 != pktTarget[6]>>5 {
			// cannot coalesce with unequal DF or reserved bits. MF is checked
			// further up the stack.
			return coalesceUnavailable
		}
		if pkt[8] != pktTarget[8] {
			// cannot coalesce with unequal TTL values
			return coalesceUnavailable
		}
	}
	// seq adjacency
	lhsLen := item.gsoSize
	lhsLen += item.numMerged * item.gsoSize
	if seq == item.sentSeq+uint32(lhsLen) { // pkt aligns following item from a seq num perspective
		if item.pshSet {
			// We cannot append to a segment that has the PSH flag set, PSH
			// can only be set on the final segment in a reassembled group.
			return coalesceUnavailable
		}
		if len(pktTarget[iphLen+tcphLen:])%int(item.gsoSize) != 0 {
			// A smaller than gsoSize packet has been appended previously.
			// Nothing can come after a smaller packet on the end.
			return coalesceUnavailable
		}
		if gsoSize > item.gsoSize {
			// We cannot have a larger packet following a smaller one.
			return coalesceUnavailable
		}
		return coalesceAppend
	} else if seq+uint32(gsoSize) == item.sentSeq { // pkt aligns in front of item from a seq num perspective
		if pshSet {
			// We cannot prepend with a segment that has the PSH flag set, PSH
			// can only be set on the final segment in a reassembled group.
			return coalesceUnavailable
		}
		if gsoSize < item.gsoSize {
			// We cannot have a larger packet following a smaller one.
			return coalesceUnavailable
		}
		if gsoSize > item.gsoSize && item.numMerged > 0 {
			// There's at least one previous merge, and we're larger than all
			// previous. This would put multiple smaller packets on the end.
			return coalesceUnavailable
		}
		return coalescePrepend
	}
	return coalesceUnavailable
}

func tcpChecksumValid(pkt []byte, iphLen uint8, isV6 bool) bool {
	srcAddrAt := ipv4SrcAddrOffset
	addrSize := 4
	if isV6 {
		srcAddrAt = ipv6SrcAddrOffset
		addrSize = 16
	}
	tcpTotalLen := uint16(len(pkt) - int(iphLen))
	tcpCSumNoFold := pseudoHeaderChecksumNoFold(unix.IPPROTO_TCP, pkt[srcAddrAt:srcAddrAt+addrSize], pkt[srcAddrAt+addrSize:srcAddrAt+addrSize*2], tcpTotalLen)
	return ^checksum(pkt[iphLen:], tcpCSumNoFold) == 0
}

// coalesceResult represents the result of attempting to coalesce two TCP
// packets.
type coalesceResult int

const (
	coalesceInsufficientCap coalesceResult = 0
	coalescePSHEnding       coalesceResult = 1
	coalesceItemInvalidCSum coalesceResult = 2
	coalescePktInvalidCSum  coalesceResult = 3
	coalesceSuccess         coalesceResult = 4
)

// coalesceTCPPackets attempts to coalesce pkt with the packet described by
// item, returning the outcome. This function may swap bufs elements in the
// event of a prepend as item's bufs index is already being tracked for writing
// to a Device.
func coalesceTCPPackets(mode canCoalesce, pkt []byte, pktBuffsIndex int, gsoSize uint16, seq uint32, pshSet bool, item *tcpGROItem, bufs [][]byte, bufsOffset int, isV6 bool) coalesceResult {
	var pktHead []byte // the packet that will end up at the front
	headersLen := item.iphLen + item.tcphLen
	coalescedLen := len(bufs[item.bufsIndex][bufsOffset:]) + len(pkt) - int(headersLen)

	// Copy data
	if mode == coalescePrepend {
		pktHead = pkt
		if cap(pkt)-bufsOffset < coalescedLen {
			// We don't want to allocate a new underlying array if capacity is
			// too small.
			return coalesceInsufficientCap
		}
		if pshSet {
			return coalescePSHEnding
		}
		if item.numMerged == 0 {
			if !tcpChecksumValid(bufs[item.bufsIndex][bufsOffset:], item.iphLen, isV6) {
				return coalesceItemInvalidCSum
			}
		}
		if !tcpChecksumValid(pkt, item.iphLen, isV6) {
			return coalescePktInvalidCSum
		}
		item.sentSeq = seq
		extendBy := coalescedLen - len(pktHead)
		bufs[pktBuffsIndex] = append(bufs[pktBuffsIndex], make([]byte, extendBy)...)
		copy(bufs[pktBuffsIndex][bufsOffset+len(pkt):], bufs[item.bufsIndex][bufsOffset+int(headersLen):])
		// Flip the slice headers in bufs as part of prepend. The index of item
		// is already being tracked for writing.
		bufs[item.bufsIndex], bufs[pktBuffsIndex] = bufs[pktBuffsIndex], bufs[item.bufsIndex]
	} else {
		pktHead = bufs[item.bufsIndex][bufsOffset:]
		if cap(pktHead)-bufsOffset < coalescedLen {
			// We don't want to allocate a new underlying array if capacity is
			// too small.
			return coalesceInsufficientCap
		}
		if item.numMerged == 0 {
			if !tcpChecksumValid(bufs[item.bufsIndex][bufsOffset:], item.iphLen, isV6) {
				return coalesceItemInvalidCSum
			}
		}
		if !tcpChecksumValid(pkt, item.iphLen, isV6) {
			return coalescePktInvalidCSum
		}
		if pshSet {
			// We are appending a segment with PSH set.
			item.pshSet = pshSet
			pktHead[item.iphLen+tcpFlagsOffset] |= tcpFlagPSH
		}
		extendBy := len(pkt) - int(headersLen)
		bufs[item.bufsIndex] = append(bufs[item.bufsIndex], make([]byte, extendBy)...)
		copy(bufs[item.bufsIndex][bufsOffset+len(pktHead):], pkt[headersLen:])
	}

	if gsoSize > item.gsoSize {
		item.gsoSize = gsoSize
	}
	hdr := virtioNetHdr{
		flags:      unix.VIRTIO_NET_HDR_F_NEEDS_CSUM, // this turns into CHECKSUM_PARTIAL in the skb
		hdrLen:     uint16(headersLen),
		gsoSize:    uint16(item.gsoSize),
		csumStart:  uint16(item.iphLen),
		csumOffset: 16,
	}

	// Recalculate the total len (IPv4) or payload len (IPv6). Recalculate the
	// (IPv4) header checksum.
	if isV6 {
		hdr.gsoType = unix.VIRTIO_NET_HDR_GSO_TCPV6
		binary.BigEndian.PutUint16(pktHead[4:], uint16(coalescedLen)-uint16(item.iphLen)) // set new payload len
	} else {
		hdr.gsoType = unix.VIRTIO_NET_HDR_GSO_TCPV4
		pktHead[10], pktHead[11] = 0, 0                               // clear checksum field
		binary.BigEndian.PutUint16(pktHead[2:], uint16(coalescedLen)) // set new total length
		iphCSum := ^checksum(pktHead[:item.iphLen], 0)                // compute checksum
		binary.BigEndian.PutUint16(pktHead[10:], iphCSum)             // set checksum field
	}
	hdr.encode(bufs[item.bufsIndex][bufsOffset-virtioNetHdrLen:])

	// Calculate the pseudo header checksum and place it at the TCP checksum
	// offset. Downstream checksum offloading will combine this with computation
	// of the tcp header and payload checksum.
	addrLen := 4
	addrOffset := ipv4SrcAddrOffset
	if isV6 {
		addrLen = 16
		addrOffset = ipv6SrcAddrOffset
	}
	srcAddrAt := bufsOffset + addrOffset
	srcAddr := bufs[item.bufsIndex][srcAddrAt : srcAddrAt+addrLen]
	dstAddr := bufs[item.bufsIndex][srcAddrAt+addrLen : srcAddrAt+addrLen*2]
	psum := pseudoHeaderChecksumNoFold(unix.IPPROTO_TCP, srcAddr, dstAddr, uint16(coalescedLen-int(item.iphLen)))
	binary.BigEndian.PutUint16(pktHead[hdr.csumStart+hdr.csumOffset:], checksum([]byte{}, psum))

	item.numMerged++
	return coalesceSuccess
}

const (
	ipv4FlagMoreFragments uint8 = 0x20
)

const (
	ipv4SrcAddrOffset = 12
	ipv6SrcAddrOffset = 8
	maxUint16         = 1<<16 - 1
)

// tcpGRO evaluates the TCP packet at pktI in bufs for coalescing with
// existing packets tracked in table. It will return false when pktI is not
// coalesced, otherwise true. This indicates to the caller if bufs[pktI]
// should be written to the Device.
func tcpGRO(bufs [][]byte, offset int, pktI int, table *tcpGROTable, isV6 bool) (pktCoalesced bool) {
	pkt := bufs[pktI][offset:]
	if len(pkt) > maxUint16 {
		// A valid IPv4 or IPv6 packet will never exceed this.
		return false
	}
	iphLen := int((pkt[0] & 0x0F) * 4)
	if isV6 {
		iphLen = 40
		ipv6HPayloadLen := int(binary.BigEndian.Uint16(pkt[4:]))
		if ipv6HPayloadLen != len(pkt)-iphLen {
			return false
		}
	} else {
		totalLen := int(binary.BigEndian.Uint16(pkt[2:]))
		if totalLen != len(pkt) {
			return false
		}
	}
	if len(pkt) < iphLen {
		return false
	}
	tcphLen := int((pkt[iphLen+12] >> 4) * 4)
	if tcphLen < 20 || tcphLen > 60 {
		return false
	}
	if len(pkt) < iphLen+tcphLen {
		return false
	}
	if !isV6 {
		if pkt[6]&ipv4FlagMoreFragments != 0 || pkt[6]<<3 != 0 || pkt[7] != 0 {
			// no GRO support for fragmented segments for now
			return false
		}
	}
	tcpFlags := pkt[iphLen+tcpFlagsOffset]
	var pshSet bool
	// not a candidate if any non-ACK flags (except PSH+ACK) are set
	if tcpFlags != tcpFlagACK {
		if pkt[iphLen+tcpFlagsOffset] != tcpFlagACK|tcpFlagPSH {
			return false
		}
		pshSet = true
	}
	gsoSize := uint16(len(pkt) - tcphLen - iphLen)
	// not a candidate if payload len is 0
	if gsoSize < 1 {
		return false
	}
	seq := binary.BigEndian.Uint32(pkt[iphLen+4:])
	srcAddrOffset := ipv4SrcAddrOffset
	addrLen := 4
	if isV6 {
		srcAddrOffset = ipv6SrcAddrOffset
		addrLen = 16
	}
	items, existing := table.lookupOrInsert(pkt, srcAddrOffset, srcAddrOffset+addrLen, iphLen, tcphLen, pktI)
	if !existing {
		return false
	}
	for i := len(items) - 1; i >= 0; i-- {
		// In the best case of packets arriving in order iterating in reverse is
		// more efficient if there are multiple items for a given flow. This
		// also enables a natural table.deleteAt() in the
		// coalesceItemInvalidCSum case without the need for index tracking.
		// This algorithm makes a best effort to coalesce in the event of
		// unordered packets, where pkt may land anywhere in items from a
		// sequence number perspective, however once an item is inserted into
		// the table it is never compared across other items later.
		item := items[i]
		can := tcpPacketsCanCoalesce(pkt, uint8(iphLen), uint8(tcphLen), seq, pshSet, gsoSize, item, bufs, offset)
		if can != coalesceUnavailable {
			result := coalesceTCPPackets(can, pkt, pktI, gsoSize, seq, pshSet, &item, bufs, offset, isV6)
			switch result {
			case coalesceSuccess:
				table.updateAt(item, i)
				return true
			case coalesceItemInvalidCSum:
				// delete the item with an invalid csum
				table.deleteAt(item.key, i)
			case coalescePktInvalidCSum:
				// no point in inserting an item that we can't coalesce
				return false
			default:
			}
		}
	}
	// failed to coalesce with any other packets; store the item in the flow
	table.insert(pkt, srcAddrOffset, srcAddrOffset+addrLen, iphLen, tcphLen, pktI)
	return false
}

func isTCP4NoIPOptions(b []byte) bool {
	if len(b) < 40 {
		return false
	}
	if b[0]>>4 != 4 {
		return false
	}
	if b[0]&0x0F != 5 {
		return false
	}
	if b[9] != unix.IPPROTO_TCP {
		return false
	}
	return true
}

func isTCP6NoEH(b []byte) bool {
	if len(b) < 60 {
		return false
	}
	if b[0]>>4 != 6 {
		return false
	}
	if b[6] != unix.IPPROTO_TCP {
		return false
	}
	return true
}

// handleGRO evaluates bufs for GRO, and writes the indices of the resulting
// packets into toWrite. toWrite, tcp4Table, and tcp6Table should initially be
// empty (but non-nil), and are passed in to save allocs as the caller may reset
// and recycle them across vectors of packets.
func handleGRO(bufs [][]byte, offset int, tcp4Table, tcp6Table *tcpGROTable, toWrite *[]int) error {
	for i := range bufs {
		if offset < virtioNetHdrLen || offset > len(bufs[i])-1 {
			return errors.New("invalid offset")
		}
		var coalesced bool
		switch {
		case isTCP4NoIPOptions(bufs[i][offset:]): // ipv4 packets w/IP options do not coalesce
			coalesced = tcpGRO(bufs, offset, i, tcp4Table, false)
		case isTCP6NoEH(bufs[i][offset:]): // ipv6 packets w/extension headers do not coalesce
			coalesced = tcpGRO(bufs, offset, i, tcp6Table, true)
		}
		if !coalesced {
			hdr := virtioNetHdr{}
			err := hdr.encode(bufs[i][offset-virtioNetHdrLen:])
			if err != nil {
				return err
			}
			*toWrite = append(*toWrite, i)
		}
	}
	return nil
}

// tcpTSO splits packets from in into outBuffs, writing the size of each
// element into sizes. It returns the number of buffers populated, and/or an
// error.
func tcpTSO(in []byte, hdr virtioNetHdr, outBuffs [][]byte, sizes []int, outOffset int) (int, error) {
	iphLen := int(hdr.csumStart)
	srcAddrOffset := ipv6SrcAddrOffset
	addrLen := 16
	if hdr.gsoType == unix.VIRTIO_NET_HDR_GSO_TCPV4 {
		in[10], in[11] = 0, 0 // clear ipv4 header checksum
		srcAddrOffset = ipv4SrcAddrOffset
		addrLen = 4
	}
	tcpCSumAt := int(hdr.csumStart + hdr.csumOffset)
	in[tcpCSumAt], in[tcpCSumAt+1] = 0, 0 // clear tcp checksum
	firstTCPSeqNum := binary.BigEndian.Uint32(in[hdr.csumStart+4:])
	nextSegmentDataAt := int(hdr.hdrLen)
	i := 0
	for ; nextSegmentDataAt < len(in); i++ {
		if i == len(outBuffs) {
			return i - 1, ErrTooManySegments
		}
		nextSegmentEnd := nextSegmentDataAt + int(hdr.gsoSize)
		if nextSegmentEnd > len(in) {
			nextSegmentEnd = len(in)
		}
		segmentDataLen := nextSegmentEnd - nextSegmentDataAt
		totalLen := int(hdr.hdrLen) + segmentDataLen
		sizes[i] = totalLen
		out := outBuffs[i][outOffset:]

		copy(out, in[:iphLen])
		if hdr.gsoType == unix.VIRTIO_NET_HDR_GSO_TCPV4 {
			// For IPv4 we are responsible for incrementing the ID field,
			// updating the total len field, and recalculating the header
			// checksum.
			if i > 0 {
				id := binary.BigEndian.Uint16(out[4:])
				id += uint16(i)
				binary.BigEndian.PutUint16(out[4:], id)
			}
			binary.BigEndian.PutUint16(out[2:], uint16(totalLen))
			ipv4CSum := ^checksum(out[:iphLen], 0)
			binary.BigEndian.PutUint16(out[10:], ipv4CSum)
		} else {
			// For IPv6 we are responsible for updating the payload length field.
			binary.BigEndian.PutUint16(out[4:], uint16(totalLen-iphLen))
		}

		// TCP header
		copy(out[hdr.csumStart:hdr.hdrLen], in[hdr.csumStart:hdr.hdrLen])
		tcpSeq := firstTCPSeqNum + uint32(hdr.gsoSize*uint16(i))
		binary.BigEndian.PutUint32(out[hdr.csumStart+4:], tcpSeq)
		if nextSegmentEnd != len(in) {
			// FIN and PSH should only be set on last segment
			clearFlags := tcpFlagFIN | tcpFlagPSH
			out[hdr.csumStart+tcpFlagsOffset] &^= clearFlags
		}

		// payload
		copy(out[hdr.hdrLen:], in[nextSegmentDataAt:nextSegmentEnd])

		// TCP checksum
		tcpHLen := int(hdr.hdrLen - hdr.csumStart)
		tcpLenForPseudo := uint16(tcpHLen + segmentDataLen)
		tcpCSumNoFold := pseudoHeaderChecksumNoFold(unix.IPPROTO_TCP, in[srcAddrOffset:srcAddrOffset+addrLen], in[srcAddrOffset+addrLen:srcAddrOffset+addrLen*2], tcpLenForPseudo)
		tcpCSum := ^checksum(out[hdr.csumStart:totalLen], tcpCSumNoFold)
		binary.BigEndian.PutUint16(out[hdr.csumStart+hdr.csumOffset:], tcpCSum)

		nextSegmentDataAt += int(hdr.gsoSize)
	}
	return i, nil
}

func gsoNoneChecksum(in []byte, cSumStart, cSumOffset uint16) error {
	cSumAt := cSumStart + cSumOffset
	// The initial value at the checksum offset should be summed with the
	// checksum we compute. This is typically the pseudo-header checksum.
	initial := binary.BigEndian.Uint16(in[cSumAt:])
	in[cSumAt], in[cSumAt+1] = 0, 0
	binary.BigEndian.PutUint16(in[cSumAt:], ^checksum(in[cSumStart:], uint64(initial)))
	return nil
}