aboutsummaryrefslogtreecommitdiffstatshomepage
path: root/include/uapi/linux/sched
diff options
context:
space:
mode:
authorPatrick Bellasi <patrick.bellasi@arm.com>2019-06-21 09:42:07 +0100
committerIngo Molnar <mingo@kernel.org>2019-06-24 19:23:46 +0200
commita509a7cd79747074a2c018a45bbbc52d1f4aed44 (patch)
tree278bf6dc22f256956b614c5b5960f25010afc93a /include/uapi/linux/sched
parentsched/core: Allow sched_setattr() to use the current policy (diff)
downloadwireguard-linux-a509a7cd79747074a2c018a45bbbc52d1f4aed44.tar.xz
wireguard-linux-a509a7cd79747074a2c018a45bbbc52d1f4aed44.zip
sched/uclamp: Extend sched_setattr() to support utilization clamping
The SCHED_DEADLINE scheduling class provides an advanced and formal model to define tasks requirements that can translate into proper decisions for both task placements and frequencies selections. Other classes have a more simplified model based on the POSIX concept of priorities. Such a simple priority based model however does not allow to exploit most advanced features of the Linux scheduler like, for example, driving frequencies selection via the schedutil cpufreq governor. However, also for non SCHED_DEADLINE tasks, it's still interesting to define tasks properties to support scheduler decisions. Utilization clamping exposes to user-space a new set of per-task attributes the scheduler can use as hints about the expected/required utilization for a task. This allows to implement a "proactive" per-task frequency control policy, a more advanced policy than the current one based just on "passive" measured task utilization. For example, it's possible to boost interactive tasks (e.g. to get better performance) or cap background tasks (e.g. to be more energy/thermal efficient). Introduce a new API to set utilization clamping values for a specified task by extending sched_setattr(), a syscall which already allows to define task specific properties for different scheduling classes. A new pair of attributes allows to specify a minimum and maximum utilization the scheduler can consider for a task. Do that by validating the required clamp values before and then applying the required changes using _the_ same pattern already in use for __setscheduler(). This ensures that the task is re-enqueued with the new clamp values. Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alessio Balsini <balsini@android.com> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Joel Fernandes <joelaf@google.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Morten Rasmussen <morten.rasmussen@arm.com> Cc: Paul Turner <pjt@google.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Quentin Perret <quentin.perret@arm.com> Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com> Cc: Steve Muckle <smuckle@google.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Todd Kjos <tkjos@google.com> Cc: Vincent Guittot <vincent.guittot@linaro.org> Cc: Viresh Kumar <viresh.kumar@linaro.org> Link: https://lkml.kernel.org/r/20190621084217.8167-7-patrick.bellasi@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
Diffstat (limited to 'include/uapi/linux/sched')
-rw-r--r--include/uapi/linux/sched/types.h66
1 files changed, 57 insertions, 9 deletions
diff --git a/include/uapi/linux/sched/types.h b/include/uapi/linux/sched/types.h
index 10fbb8031930..c852153ddb0d 100644
--- a/include/uapi/linux/sched/types.h
+++ b/include/uapi/linux/sched/types.h
@@ -9,6 +9,7 @@ struct sched_param {
};
#define SCHED_ATTR_SIZE_VER0 48 /* sizeof first published struct */
+#define SCHED_ATTR_SIZE_VER1 56 /* add: util_{min,max} */
/*
* Extended scheduling parameters data structure.
@@ -21,8 +22,33 @@ struct sched_param {
* the tasks may be useful for a wide variety of application fields, e.g.,
* multimedia, streaming, automation and control, and many others.
*
- * This variant (sched_attr) is meant at describing a so-called
- * sporadic time-constrained task. In such model a task is specified by:
+ * This variant (sched_attr) allows to define additional attributes to
+ * improve the scheduler knowledge about task requirements.
+ *
+ * Scheduling Class Attributes
+ * ===========================
+ *
+ * A subset of sched_attr attributes specifies the
+ * scheduling policy and relative POSIX attributes:
+ *
+ * @size size of the structure, for fwd/bwd compat.
+ *
+ * @sched_policy task's scheduling policy
+ * @sched_nice task's nice value (SCHED_NORMAL/BATCH)
+ * @sched_priority task's static priority (SCHED_FIFO/RR)
+ *
+ * Certain more advanced scheduling features can be controlled by a
+ * predefined set of flags via the attribute:
+ *
+ * @sched_flags for customizing the scheduler behaviour
+ *
+ * Sporadic Time-Constrained Task Attributes
+ * =========================================
+ *
+ * A subset of sched_attr attributes allows to describe a so-called
+ * sporadic time-constrained task.
+ *
+ * In such a model a task is specified by:
* - the activation period or minimum instance inter-arrival time;
* - the maximum (or average, depending on the actual scheduling
* discipline) computation time of all instances, a.k.a. runtime;
@@ -34,14 +60,8 @@ struct sched_param {
* than the runtime and must be completed by time instant t equal to
* the instance activation time + the deadline.
*
- * This is reflected by the actual fields of the sched_attr structure:
+ * This is reflected by the following fields of the sched_attr structure:
*
- * @size size of the structure, for fwd/bwd compat.
- *
- * @sched_policy task's scheduling policy
- * @sched_flags for customizing the scheduler behaviour
- * @sched_nice task's nice value (SCHED_NORMAL/BATCH)
- * @sched_priority task's static priority (SCHED_FIFO/RR)
* @sched_deadline representative of the task's deadline
* @sched_runtime representative of the task's runtime
* @sched_period representative of the task's period
@@ -53,6 +73,29 @@ struct sched_param {
* As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the
* only user of this new interface. More information about the algorithm
* available in the scheduling class file or in Documentation/.
+ *
+ * Task Utilization Attributes
+ * ===========================
+ *
+ * A subset of sched_attr attributes allows to specify the utilization
+ * expected for a task. These attributes allow to inform the scheduler about
+ * the utilization boundaries within which it should schedule the task. These
+ * boundaries are valuable hints to support scheduler decisions on both task
+ * placement and frequency selection.
+ *
+ * @sched_util_min represents the minimum utilization
+ * @sched_util_max represents the maximum utilization
+ *
+ * Utilization is a value in the range [0..SCHED_CAPACITY_SCALE]. It
+ * represents the percentage of CPU time used by a task when running at the
+ * maximum frequency on the highest capacity CPU of the system. For example, a
+ * 20% utilization task is a task running for 2ms every 10ms at maximum
+ * frequency.
+ *
+ * A task with a min utilization value bigger than 0 is more likely scheduled
+ * on a CPU with a capacity big enough to fit the specified value.
+ * A task with a max utilization value smaller than 1024 is more likely
+ * scheduled on a CPU with no more capacity than the specified value.
*/
struct sched_attr {
__u32 size;
@@ -70,6 +113,11 @@ struct sched_attr {
__u64 sched_runtime;
__u64 sched_deadline;
__u64 sched_period;
+
+ /* Utilization hints */
+ __u32 sched_util_min;
+ __u32 sched_util_max;
+
};
#endif /* _UAPI_LINUX_SCHED_TYPES_H */