aboutsummaryrefslogtreecommitdiffstatshomepage
path: root/mm/memory_hotplug.c
diff options
context:
space:
mode:
authorSumanth Korikkar <sumanthk@linux.ibm.com>2024-01-08 14:27:43 +0100
committerAndrew Morton <akpm@linux-foundation.org>2024-02-21 16:00:01 -0800
commitc5f1e2d1890935a734c302b9b8579748222b8e1e (patch)
tree8f16517c17b656f58c7d33dd1193c87aa6f7eb73 /mm/memory_hotplug.c
parentmaple_tree: fix comment describing mas_node_count_gfp() (diff)
downloadwireguard-linux-c5f1e2d1890935a734c302b9b8579748222b8e1e.tar.xz
wireguard-linux-c5f1e2d1890935a734c302b9b8579748222b8e1e.zip
mm/memory_hotplug: introduce MEM_PREPARE_ONLINE/MEM_FINISH_OFFLINE notifiers
Patch series "implement "memmap on memory" feature on s390". This series provides "memmap on memory" support on s390 platform. "memmap on memory" allows struct pages array to be allocated from the hotplugged memory range instead of allocating it from main system memory. s390 currently preallocates struct pages array for all potentially possible memory, which ensures memory onlining always succeeds, but with the cost of significant memory consumption from the available system memory during boottime. In certain extreme configuration, this could lead to ipl failure. "memmap on memory" ensures struct pages array are populated from self contained hotplugged memory range instead of depleting the available system memory and this could eliminate ipl failure on s390 platform. On other platforms, system might go OOM when the physically hotplugged memory depletes the available memory before it is onlined. Hence, "memmap on memory" feature was introduced as described in commit a08a2ae34613 ("mm,memory_hotplug: allocate memmap from the added memory range"). Unlike other architectures, s390 memory blocks are not physically accessible until it is online. To make it physically accessible two new memory notifiers MEM_PREPARE_ONLINE / MEM_FINISH_OFFLINE are added and this notifier lets the hypervisor inform that the memory should be made physically accessible. This allows for "memmap on memory" initialization during memory hotplug onlining phase, which is performed before calling MEM_GOING_ONLINE notifier. Patch 1 introduces MEM_PREPARE_ONLINE/MEM_FINISH_OFFLINE memory notifiers to prepare the transition of memory to and from a physically accessible state. New mhp_flag MHP_OFFLINE_INACCESSIBLE is introduced to ensure altmap cannot be written when adding memory - before it is set online. This enhancement is crucial for implementing the "memmap on memory" feature for s390 in a subsequent patch. Patches 2 allocates vmemmap pages from self-contained memory range for s390. It allocates memory map (struct pages array) from the hotplugged memory range, rather than using system memory by passing altmap to vmemmap functions. Patch 3 removes unhandled memory notifier types on s390. Patch 4 implements MEM_PREPARE_ONLINE/MEM_FINISH_OFFLINE memory notifiers on s390. MEM_PREPARE_ONLINE memory notifier makes memory block physical accessible via sclp assign command. The notifier ensures self-contained memory maps are accessible and hence enabling the "memmap on memory" on s390. MEM_FINISH_OFFLINE memory notifier shifts the memory block to an inaccessible state via sclp unassign command. Patch 5 finally enables MHP_MEMMAP_ON_MEMORY on s390. This patch (of 5): Introduce MEM_PREPARE_ONLINE/MEM_FINISH_OFFLINE memory notifiers to prepare the transition of memory to and from a physically accessible state. This enhancement is crucial for implementing the "memmap on memory" feature for s390 in a subsequent patch. Platforms such as x86 can support physical memory hotplug via ACPI. When there is physical memory hotplug, ACPI event leads to the memory addition with the following callchain: acpi_memory_device_add() -> acpi_memory_enable_device() -> __add_memory() After this, the hotplugged memory is physically accessible, and altmap support prepared, before the "memmap on memory" initialization in memory_block_online() is called. On s390, memory hotplug works in a different way. The available hotplug memory has to be defined upfront in the hypervisor, but it is made physically accessible only when the user sets it online via sysfs, currently in the MEM_GOING_ONLINE notifier. This is too late and "memmap on memory" initialization is performed before calling MEM_GOING_ONLINE notifier. During the memory hotplug addition phase, altmap support is prepared and during the memory onlining phase s390 requires memory to be physically accessible and then subsequently initiate the "memmap on memory" initialization process. The memory provider will handle new MEM_PREPARE_ONLINE / MEM_FINISH_OFFLINE notifications and make the memory accessible. The mhp_flag MHP_OFFLINE_INACCESSIBLE is introduced and is relevant when used along with MHP_MEMMAP_ON_MEMORY, because the altmap cannot be written (e.g., poisoned) when adding memory -- before it is set online. This allows for adding memory with an altmap that is not currently made available by a hypervisor. When onlining that memory, the hypervisor can be instructed to make that memory accessible via the new notifiers and the onlining phase will not require any memory allocations, which is helpful in low-memory situations. All architectures ignore unknown memory notifiers. Therefore, the introduction of these new notifiers does not result in any functional modifications across architectures. Link: https://lkml.kernel.org/r/20240108132747.3238763-1-sumanthk@linux.ibm.com Link: https://lkml.kernel.org/r/20240108132747.3238763-2-sumanthk@linux.ibm.com Signed-off-by: Sumanth Korikkar <sumanthk@linux.ibm.com> Suggested-by: Gerald Schaefer <gerald.schaefer@linux.ibm.com> Suggested-by: David Hildenbrand <david@redhat.com> Acked-by: David Hildenbrand <david@redhat.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Vasily Gorbik <gor@linux.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Diffstat (limited to 'mm/memory_hotplug.c')
-rw-r--r--mm/memory_hotplug.c17
1 files changed, 14 insertions, 3 deletions
diff --git a/mm/memory_hotplug.c b/mm/memory_hotplug.c
index 21890994c1d3..707027f69150 100644
--- a/mm/memory_hotplug.c
+++ b/mm/memory_hotplug.c
@@ -1087,7 +1087,7 @@ void adjust_present_page_count(struct page *page, struct memory_group *group,
}
int mhp_init_memmap_on_memory(unsigned long pfn, unsigned long nr_pages,
- struct zone *zone)
+ struct zone *zone, bool mhp_off_inaccessible)
{
unsigned long end_pfn = pfn + nr_pages;
int ret, i;
@@ -1096,6 +1096,15 @@ int mhp_init_memmap_on_memory(unsigned long pfn, unsigned long nr_pages,
if (ret)
return ret;
+ /*
+ * Memory block is accessible at this stage and hence poison the struct
+ * pages now. If the memory block is accessible during memory hotplug
+ * addition phase, then page poisining is already performed in
+ * sparse_add_section().
+ */
+ if (mhp_off_inaccessible)
+ page_init_poison(pfn_to_page(pfn), sizeof(struct page) * nr_pages);
+
move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_UNMOVABLE);
for (i = 0; i < nr_pages; i++)
@@ -1415,7 +1424,7 @@ static void __ref remove_memory_blocks_and_altmaps(u64 start, u64 size)
}
static int create_altmaps_and_memory_blocks(int nid, struct memory_group *group,
- u64 start, u64 size)
+ u64 start, u64 size, mhp_t mhp_flags)
{
unsigned long memblock_size = memory_block_size_bytes();
u64 cur_start;
@@ -1431,6 +1440,8 @@ static int create_altmaps_and_memory_blocks(int nid, struct memory_group *group,
};
mhp_altmap.free = memory_block_memmap_on_memory_pages();
+ if (mhp_flags & MHP_OFFLINE_INACCESSIBLE)
+ mhp_altmap.inaccessible = true;
params.altmap = kmemdup(&mhp_altmap, sizeof(struct vmem_altmap),
GFP_KERNEL);
if (!params.altmap) {
@@ -1516,7 +1527,7 @@ int __ref add_memory_resource(int nid, struct resource *res, mhp_t mhp_flags)
*/
if ((mhp_flags & MHP_MEMMAP_ON_MEMORY) &&
mhp_supports_memmap_on_memory(memory_block_size_bytes())) {
- ret = create_altmaps_and_memory_blocks(nid, group, start, size);
+ ret = create_altmaps_and_memory_blocks(nid, group, start, size, mhp_flags);
if (ret)
goto error;
} else {