aboutsummaryrefslogtreecommitdiffstatshomepage
path: root/Documentation/admin-guide
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/admin-guide')
-rw-r--r--Documentation/admin-guide/binderfs.rst6
-rw-r--r--Documentation/admin-guide/binfmt-misc.rst8
-rw-r--r--Documentation/admin-guide/blockdev/zram.rst2
-rw-r--r--Documentation/admin-guide/bootconfig.rst2
-rw-r--r--Documentation/admin-guide/cgroup-v1/cpusets.rst11
-rw-r--r--Documentation/admin-guide/cgroup-v1/hugetlb.rst103
-rw-r--r--Documentation/admin-guide/cgroup-v1/index.rst2
-rw-r--r--Documentation/admin-guide/cgroup-v2.rst39
-rw-r--r--Documentation/admin-guide/dynamic-debug-howto.rst3
-rw-r--r--Documentation/admin-guide/edid.rst60
-rw-r--r--Documentation/admin-guide/hw-vuln/tsx_async_abort.rst2
-rw-r--r--Documentation/admin-guide/index.rst1
-rw-r--r--Documentation/admin-guide/iostats.rst5
-rw-r--r--Documentation/admin-guide/kernel-parameters.txt158
-rw-r--r--Documentation/admin-guide/kernel-per-CPU-kthreads.rst2
-rw-r--r--Documentation/admin-guide/mm/transhuge.rst14
-rw-r--r--Documentation/admin-guide/mm/userfaultfd.rst51
-rw-r--r--Documentation/admin-guide/perf/imx-ddr.rst3
-rw-r--r--Documentation/admin-guide/pm/cpufreq_drivers.rst274
-rw-r--r--Documentation/admin-guide/pm/cpuidle.rst73
-rw-r--r--Documentation/admin-guide/pm/intel_pstate.rst4
-rw-r--r--Documentation/admin-guide/pm/suspend-flows.rst270
-rw-r--r--Documentation/admin-guide/pm/system-wide.rst1
-rw-r--r--Documentation/admin-guide/pm/working-state.rst1
-rw-r--r--Documentation/admin-guide/sysctl/kernel.rst1070
-rw-r--r--Documentation/admin-guide/sysctl/net.rst3
-rw-r--r--Documentation/admin-guide/sysctl/user.rst6
-rw-r--r--Documentation/admin-guide/sysctl/vm.rst3
-rw-r--r--Documentation/admin-guide/sysrq.rst20
29 files changed, 1575 insertions, 622 deletions
diff --git a/Documentation/admin-guide/binderfs.rst b/Documentation/admin-guide/binderfs.rst
index c009671f8434..8243af9b3510 100644
--- a/Documentation/admin-guide/binderfs.rst
+++ b/Documentation/admin-guide/binderfs.rst
@@ -33,6 +33,12 @@ max
a per-instance limit. If ``max=<count>`` is set then only ``<count>`` number
of binder devices can be allocated in this binderfs instance.
+stats
+ Using ``stats=global`` enables global binder statistics.
+ ``stats=global`` is only available for a binderfs instance mounted in the
+ initial user namespace. An attempt to use the option to mount a binderfs
+ instance in another user namespace will return a permission error.
+
Allocating binder Devices
-------------------------
diff --git a/Documentation/admin-guide/binfmt-misc.rst b/Documentation/admin-guide/binfmt-misc.rst
index 97b0d7927078..7a864131e5ea 100644
--- a/Documentation/admin-guide/binfmt-misc.rst
+++ b/Documentation/admin-guide/binfmt-misc.rst
@@ -1,5 +1,5 @@
-Kernel Support for miscellaneous (your favourite) Binary Formats v1.1
-=====================================================================
+Kernel Support for miscellaneous Binary Formats (binfmt_misc)
+=============================================================
This Kernel feature allows you to invoke almost (for restrictions see below)
every program by simply typing its name in the shell.
@@ -140,8 +140,8 @@ Hints
-----
If you want to pass special arguments to your interpreter, you can
-write a wrapper script for it. See Documentation/admin-guide/java.rst for an
-example.
+write a wrapper script for it.
+See :doc:`Documentation/admin-guide/java.rst <./java>` for an example.
Your interpreter should NOT look in the PATH for the filename; the kernel
passes it the full filename (or the file descriptor) to use. Using ``$PATH`` can
diff --git a/Documentation/admin-guide/blockdev/zram.rst b/Documentation/admin-guide/blockdev/zram.rst
index 27c77d853028..a6fd1f9b5faf 100644
--- a/Documentation/admin-guide/blockdev/zram.rst
+++ b/Documentation/admin-guide/blockdev/zram.rst
@@ -251,8 +251,6 @@ line of text and contains the following stats separated by whitespace:
================ =============================================================
orig_data_size uncompressed size of data stored in this disk.
- This excludes same-element-filled pages (same_pages) since
- no memory is allocated for them.
Unit: bytes
compr_data_size compressed size of data stored in this disk
mem_used_total the amount of memory allocated for this disk. This
diff --git a/Documentation/admin-guide/bootconfig.rst b/Documentation/admin-guide/bootconfig.rst
index cf2edcd09183..d6b3b77a4129 100644
--- a/Documentation/admin-guide/bootconfig.rst
+++ b/Documentation/admin-guide/bootconfig.rst
@@ -23,7 +23,7 @@ of dot-connected-words, and key and value are connected by ``=``. The value
has to be terminated by semi-colon (``;``) or newline (``\n``).
For array value, array entries are separated by comma (``,``). ::
-KEY[.WORD[...]] = VALUE[, VALUE2[...]][;]
+ KEY[.WORD[...]] = VALUE[, VALUE2[...]][;]
Unlike the kernel command line syntax, spaces are OK around the comma and ``=``.
diff --git a/Documentation/admin-guide/cgroup-v1/cpusets.rst b/Documentation/admin-guide/cgroup-v1/cpusets.rst
index 86a6ae995d54..7ade3abd342a 100644
--- a/Documentation/admin-guide/cgroup-v1/cpusets.rst
+++ b/Documentation/admin-guide/cgroup-v1/cpusets.rst
@@ -223,6 +223,17 @@ cpu_online_mask using a CPU hotplug notifier, and the mems file
automatically tracks the value of node_states[N_MEMORY]--i.e.,
nodes with memory--using the cpuset_track_online_nodes() hook.
+The cpuset.effective_cpus and cpuset.effective_mems files are
+normally read-only copies of cpuset.cpus and cpuset.mems files
+respectively. If the cpuset cgroup filesystem is mounted with the
+special "cpuset_v2_mode" option, the behavior of these files will become
+similar to the corresponding files in cpuset v2. In other words, hotplug
+events will not change cpuset.cpus and cpuset.mems. Those events will
+only affect cpuset.effective_cpus and cpuset.effective_mems which show
+the actual cpus and memory nodes that are currently used by this cpuset.
+See Documentation/admin-guide/cgroup-v2.rst for more information about
+cpuset v2 behavior.
+
1.4 What are exclusive cpusets ?
--------------------------------
diff --git a/Documentation/admin-guide/cgroup-v1/hugetlb.rst b/Documentation/admin-guide/cgroup-v1/hugetlb.rst
index a3902aa253a9..338f2c7d7a1c 100644
--- a/Documentation/admin-guide/cgroup-v1/hugetlb.rst
+++ b/Documentation/admin-guide/cgroup-v1/hugetlb.rst
@@ -2,13 +2,6 @@
HugeTLB Controller
==================
-The HugeTLB controller allows to limit the HugeTLB usage per control group and
-enforces the controller limit during page fault. Since HugeTLB doesn't
-support page reclaim, enforcing the limit at page fault time implies that,
-the application will get SIGBUS signal if it tries to access HugeTLB pages
-beyond its limit. This requires the application to know beforehand how much
-HugeTLB pages it would require for its use.
-
HugeTLB controller can be created by first mounting the cgroup filesystem.
# mount -t cgroup -o hugetlb none /sys/fs/cgroup
@@ -28,10 +21,14 @@ process (bash) into it.
Brief summary of control files::
- hugetlb.<hugepagesize>.limit_in_bytes # set/show limit of "hugepagesize" hugetlb usage
- hugetlb.<hugepagesize>.max_usage_in_bytes # show max "hugepagesize" hugetlb usage recorded
- hugetlb.<hugepagesize>.usage_in_bytes # show current usage for "hugepagesize" hugetlb
- hugetlb.<hugepagesize>.failcnt # show the number of allocation failure due to HugeTLB limit
+ hugetlb.<hugepagesize>.rsvd.limit_in_bytes # set/show limit of "hugepagesize" hugetlb reservations
+ hugetlb.<hugepagesize>.rsvd.max_usage_in_bytes # show max "hugepagesize" hugetlb reservations and no-reserve faults
+ hugetlb.<hugepagesize>.rsvd.usage_in_bytes # show current reservations and no-reserve faults for "hugepagesize" hugetlb
+ hugetlb.<hugepagesize>.rsvd.failcnt # show the number of allocation failure due to HugeTLB reservation limit
+ hugetlb.<hugepagesize>.limit_in_bytes # set/show limit of "hugepagesize" hugetlb faults
+ hugetlb.<hugepagesize>.max_usage_in_bytes # show max "hugepagesize" hugetlb usage recorded
+ hugetlb.<hugepagesize>.usage_in_bytes # show current usage for "hugepagesize" hugetlb
+ hugetlb.<hugepagesize>.failcnt # show the number of allocation failure due to HugeTLB usage limit
For a system supporting three hugepage sizes (64k, 32M and 1G), the control
files include::
@@ -40,11 +37,95 @@ files include::
hugetlb.1GB.max_usage_in_bytes
hugetlb.1GB.usage_in_bytes
hugetlb.1GB.failcnt
+ hugetlb.1GB.rsvd.limit_in_bytes
+ hugetlb.1GB.rsvd.max_usage_in_bytes
+ hugetlb.1GB.rsvd.usage_in_bytes
+ hugetlb.1GB.rsvd.failcnt
hugetlb.64KB.limit_in_bytes
hugetlb.64KB.max_usage_in_bytes
hugetlb.64KB.usage_in_bytes
hugetlb.64KB.failcnt
+ hugetlb.64KB.rsvd.limit_in_bytes
+ hugetlb.64KB.rsvd.max_usage_in_bytes
+ hugetlb.64KB.rsvd.usage_in_bytes
+ hugetlb.64KB.rsvd.failcnt
hugetlb.32MB.limit_in_bytes
hugetlb.32MB.max_usage_in_bytes
hugetlb.32MB.usage_in_bytes
hugetlb.32MB.failcnt
+ hugetlb.32MB.rsvd.limit_in_bytes
+ hugetlb.32MB.rsvd.max_usage_in_bytes
+ hugetlb.32MB.rsvd.usage_in_bytes
+ hugetlb.32MB.rsvd.failcnt
+
+
+1. Page fault accounting
+
+hugetlb.<hugepagesize>.limit_in_bytes
+hugetlb.<hugepagesize>.max_usage_in_bytes
+hugetlb.<hugepagesize>.usage_in_bytes
+hugetlb.<hugepagesize>.failcnt
+
+The HugeTLB controller allows users to limit the HugeTLB usage (page fault) per
+control group and enforces the limit during page fault. Since HugeTLB
+doesn't support page reclaim, enforcing the limit at page fault time implies
+that, the application will get SIGBUS signal if it tries to fault in HugeTLB
+pages beyond its limit. Therefore the application needs to know exactly how many
+HugeTLB pages it uses before hand, and the sysadmin needs to make sure that
+there are enough available on the machine for all the users to avoid processes
+getting SIGBUS.
+
+
+2. Reservation accounting
+
+hugetlb.<hugepagesize>.rsvd.limit_in_bytes
+hugetlb.<hugepagesize>.rsvd.max_usage_in_bytes
+hugetlb.<hugepagesize>.rsvd.usage_in_bytes
+hugetlb.<hugepagesize>.rsvd.failcnt
+
+The HugeTLB controller allows to limit the HugeTLB reservations per control
+group and enforces the controller limit at reservation time and at the fault of
+HugeTLB memory for which no reservation exists. Since reservation limits are
+enforced at reservation time (on mmap or shget), reservation limits never causes
+the application to get SIGBUS signal if the memory was reserved before hand. For
+MAP_NORESERVE allocations, the reservation limit behaves the same as the fault
+limit, enforcing memory usage at fault time and causing the application to
+receive a SIGBUS if it's crossing its limit.
+
+Reservation limits are superior to page fault limits described above, since
+reservation limits are enforced at reservation time (on mmap or shget), and
+never causes the application to get SIGBUS signal if the memory was reserved
+before hand. This allows for easier fallback to alternatives such as
+non-HugeTLB memory for example. In the case of page fault accounting, it's very
+hard to avoid processes getting SIGBUS since the sysadmin needs precisely know
+the HugeTLB usage of all the tasks in the system and make sure there is enough
+pages to satisfy all requests. Avoiding tasks getting SIGBUS on overcommited
+systems is practically impossible with page fault accounting.
+
+
+3. Caveats with shared memory
+
+For shared HugeTLB memory, both HugeTLB reservation and page faults are charged
+to the first task that causes the memory to be reserved or faulted, and all
+subsequent uses of this reserved or faulted memory is done without charging.
+
+Shared HugeTLB memory is only uncharged when it is unreserved or deallocated.
+This is usually when the HugeTLB file is deleted, and not when the task that
+caused the reservation or fault has exited.
+
+
+4. Caveats with HugeTLB cgroup offline.
+
+When a HugeTLB cgroup goes offline with some reservations or faults still
+charged to it, the behavior is as follows:
+
+- The fault charges are charged to the parent HugeTLB cgroup (reparented),
+- the reservation charges remain on the offline HugeTLB cgroup.
+
+This means that if a HugeTLB cgroup gets offlined while there is still HugeTLB
+reservations charged to it, that cgroup persists as a zombie until all HugeTLB
+reservations are uncharged. HugeTLB reservations behave in this manner to match
+the memory controller whose cgroups also persist as zombie until all charged
+memory is uncharged. Also, the tracking of HugeTLB reservations is a bit more
+complex compared to the tracking of HugeTLB faults, so it is significantly
+harder to reparent reservations at offline time.
diff --git a/Documentation/admin-guide/cgroup-v1/index.rst b/Documentation/admin-guide/cgroup-v1/index.rst
index 10bf48bae0b0..226f64473e8e 100644
--- a/Documentation/admin-guide/cgroup-v1/index.rst
+++ b/Documentation/admin-guide/cgroup-v1/index.rst
@@ -1,3 +1,5 @@
+.. _cgroup-v1:
+
========================
Control Groups version 1
========================
diff --git a/Documentation/admin-guide/cgroup-v2.rst b/Documentation/admin-guide/cgroup-v2.rst
index 3f801461f0f3..bcc80269bb6a 100644
--- a/Documentation/admin-guide/cgroup-v2.rst
+++ b/Documentation/admin-guide/cgroup-v2.rst
@@ -9,7 +9,7 @@ This is the authoritative documentation on the design, interface and
conventions of cgroup v2. It describes all userland-visible aspects
of cgroup including core and specific controller behaviors. All
future changes must be reflected in this document. Documentation for
-v1 is available under Documentation/admin-guide/cgroup-v1/.
+v1 is available under :ref:`Documentation/admin-guide/cgroup-v1/index.rst <cgroup-v1>`.
.. CONTENTS
@@ -188,6 +188,17 @@ cgroup v2 currently supports the following mount options.
modified through remount from the init namespace. The mount
option is ignored on non-init namespace mounts.
+ memory_recursiveprot
+
+ Recursively apply memory.min and memory.low protection to
+ entire subtrees, without requiring explicit downward
+ propagation into leaf cgroups. This allows protecting entire
+ subtrees from one another, while retaining free competition
+ within those subtrees. This should have been the default
+ behavior but is a mount-option to avoid regressing setups
+ relying on the original semantics (e.g. specifying bogusly
+ high 'bypass' protection values at higher tree levels).
+
Organizing Processes and Threads
--------------------------------
@@ -1023,7 +1034,7 @@ All time durations are in microseconds.
A read-only nested-key file which exists on non-root cgroups.
Shows pressure stall information for CPU. See
- Documentation/accounting/psi.rst for details.
+ :ref:`Documentation/accounting/psi.rst <psi>` for details.
cpu.uclamp.min
A read-write single value file which exists on non-root cgroups.
@@ -1103,7 +1114,7 @@ PAGE_SIZE multiple when read back.
proportionally to the overage, reducing reclaim pressure for
smaller overages.
- Effective min boundary is limited by memory.min values of
+ Effective min boundary is limited by memory.min values of
all ancestor cgroups. If there is memory.min overcommitment
(child cgroup or cgroups are requiring more protected memory
than parent will allow), then each child cgroup will get
@@ -1313,53 +1324,41 @@ PAGE_SIZE multiple when read back.
Number of major page faults incurred
workingset_refault
-
Number of refaults of previously evicted pages
workingset_activate
-
Number of refaulted pages that were immediately activated
workingset_nodereclaim
-
Number of times a shadow node has been reclaimed
pgrefill
-
Amount of scanned pages (in an active LRU list)
pgscan
-
Amount of scanned pages (in an inactive LRU list)
pgsteal
-
Amount of reclaimed pages
pgactivate
-
Amount of pages moved to the active LRU list
pgdeactivate
-
Amount of pages moved to the inactive LRU list
pglazyfree
-
Amount of pages postponed to be freed under memory pressure
pglazyfreed
-
Amount of reclaimed lazyfree pages
thp_fault_alloc
-
Number of transparent hugepages which were allocated to satisfy
a page fault, including COW faults. This counter is not present
when CONFIG_TRANSPARENT_HUGEPAGE is not set.
thp_collapse_alloc
-
Number of transparent hugepages which were allocated to allow
collapsing an existing range of pages. This counter is not
present when CONFIG_TRANSPARENT_HUGEPAGE is not set.
@@ -1403,7 +1402,7 @@ PAGE_SIZE multiple when read back.
A read-only nested-key file which exists on non-root cgroups.
Shows pressure stall information for memory. See
- Documentation/accounting/psi.rst for details.
+ :ref:`Documentation/accounting/psi.rst <psi>` for details.
Usage Guidelines
@@ -1478,7 +1477,7 @@ IO Interface Files
dios Number of discard IOs
====== =====================
- An example read output follows:
+ An example read output follows::
8:16 rbytes=1459200 wbytes=314773504 rios=192 wios=353 dbytes=0 dios=0
8:0 rbytes=90430464 wbytes=299008000 rios=8950 wios=1252 dbytes=50331648 dios=3021
@@ -1643,7 +1642,7 @@ IO Interface Files
A read-only nested-key file which exists on non-root cgroups.
Shows pressure stall information for IO. See
- Documentation/accounting/psi.rst for details.
+ :ref:`Documentation/accounting/psi.rst <psi>` for details.
Writeback
@@ -1853,7 +1852,7 @@ Cpuset Interface Files
from the requested CPUs.
The CPU numbers are comma-separated numbers or ranges.
- For example:
+ For example::
# cat cpuset.cpus
0-4,6,8-10
@@ -1892,7 +1891,7 @@ Cpuset Interface Files
from the requested memory nodes.
The memory node numbers are comma-separated numbers or ranges.
- For example:
+ For example::
# cat cpuset.mems
0-1,3
diff --git a/Documentation/admin-guide/dynamic-debug-howto.rst b/Documentation/admin-guide/dynamic-debug-howto.rst
index 252e5ef324e5..0dc2eb8e44e5 100644
--- a/Documentation/admin-guide/dynamic-debug-howto.rst
+++ b/Documentation/admin-guide/dynamic-debug-howto.rst
@@ -54,6 +54,9 @@ If you make a mistake with the syntax, the write will fail thus::
<debugfs>/dynamic_debug/control
-bash: echo: write error: Invalid argument
+Note, for systems without 'debugfs' enabled, the control file can be
+found in ``/proc/dynamic_debug/control``.
+
Viewing Dynamic Debug Behaviour
===============================
diff --git a/Documentation/admin-guide/edid.rst b/Documentation/admin-guide/edid.rst
new file mode 100644
index 000000000000..80deeb21a265
--- /dev/null
+++ b/Documentation/admin-guide/edid.rst
@@ -0,0 +1,60 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+====
+EDID
+====
+
+In the good old days when graphics parameters were configured explicitly
+in a file called xorg.conf, even broken hardware could be managed.
+
+Today, with the advent of Kernel Mode Setting, a graphics board is
+either correctly working because all components follow the standards -
+or the computer is unusable, because the screen remains dark after
+booting or it displays the wrong area. Cases when this happens are:
+
+- The graphics board does not recognize the monitor.
+- The graphics board is unable to detect any EDID data.
+- The graphics board incorrectly forwards EDID data to the driver.
+- The monitor sends no or bogus EDID data.
+- A KVM sends its own EDID data instead of querying the connected monitor.
+
+Adding the kernel parameter "nomodeset" helps in most cases, but causes
+restrictions later on.
+
+As a remedy for such situations, the kernel configuration item
+CONFIG_DRM_LOAD_EDID_FIRMWARE was introduced. It allows to provide an
+individually prepared or corrected EDID data set in the /lib/firmware
+directory from where it is loaded via the firmware interface. The code
+(see drivers/gpu/drm/drm_edid_load.c) contains built-in data sets for
+commonly used screen resolutions (800x600, 1024x768, 1280x1024, 1600x1200,
+1680x1050, 1920x1080) as binary blobs, but the kernel source tree does
+not contain code to create these data. In order to elucidate the origin
+of the built-in binary EDID blobs and to facilitate the creation of
+individual data for a specific misbehaving monitor, commented sources
+and a Makefile environment are given here.
+
+To create binary EDID and C source code files from the existing data
+material, simply type "make" in tools/edid/.
+
+If you want to create your own EDID file, copy the file 1024x768.S,
+replace the settings with your own data and add a new target to the
+Makefile. Please note that the EDID data structure expects the timing
+values in a different way as compared to the standard X11 format.
+
+X11:
+ HTimings:
+ hdisp hsyncstart hsyncend htotal
+ VTimings:
+ vdisp vsyncstart vsyncend vtotal
+
+EDID::
+
+ #define XPIX hdisp
+ #define XBLANK htotal-hdisp
+ #define XOFFSET hsyncstart-hdisp
+ #define XPULSE hsyncend-hsyncstart
+
+ #define YPIX vdisp
+ #define YBLANK vtotal-vdisp
+ #define YOFFSET vsyncstart-vdisp
+ #define YPULSE vsyncend-vsyncstart
diff --git a/Documentation/admin-guide/hw-vuln/tsx_async_abort.rst b/Documentation/admin-guide/hw-vuln/tsx_async_abort.rst
index af6865b822d2..68d96f0e9c95 100644
--- a/Documentation/admin-guide/hw-vuln/tsx_async_abort.rst
+++ b/Documentation/admin-guide/hw-vuln/tsx_async_abort.rst
@@ -136,8 +136,6 @@ enables the mitigation by default.
The mitigation can be controlled at boot time via a kernel command line option.
See :ref:`taa_mitigation_control_command_line`.
-.. _virt_mechanism:
-
Virtualization mitigation
^^^^^^^^^^^^^^^^^^^^^^^^^
diff --git a/Documentation/admin-guide/index.rst b/Documentation/admin-guide/index.rst
index f1d0ccffbe72..5a6269fb8593 100644
--- a/Documentation/admin-guide/index.rst
+++ b/Documentation/admin-guide/index.rst
@@ -75,6 +75,7 @@ configure specific aspects of kernel behavior to your liking.
cputopology
dell_rbu
device-mapper/index
+ edid
efi-stub
ext4
nfs/index
diff --git a/Documentation/admin-guide/iostats.rst b/Documentation/admin-guide/iostats.rst
index df5b8345c41d..9b14b0c2c9c4 100644
--- a/Documentation/admin-guide/iostats.rst
+++ b/Documentation/admin-guide/iostats.rst
@@ -100,7 +100,7 @@ Field 10 -- # of milliseconds spent doing I/Os (unsigned int)
Since 5.0 this field counts jiffies when at least one request was
started or completed. If request runs more than 2 jiffies then some
- I/O time will not be accounted unless there are other requests.
+ I/O time might be not accounted in case of concurrent requests.
Field 11 -- weighted # of milliseconds spent doing I/Os (unsigned int)
This field is incremented at each I/O start, I/O completion, I/O
@@ -143,6 +143,9 @@ are summed (possibly overflowing the unsigned long variable they are
summed to) and the result given to the user. There is no convenient
user interface for accessing the per-CPU counters themselves.
+Since 4.19 request times are measured with nanoseconds precision and
+truncated to milliseconds before showing in this interface.
+
Disks vs Partitions
-------------------
diff --git a/Documentation/admin-guide/kernel-parameters.txt b/Documentation/admin-guide/kernel-parameters.txt
index c07815d230bc..f2a93c8679e8 100644
--- a/Documentation/admin-guide/kernel-parameters.txt
+++ b/Documentation/admin-guide/kernel-parameters.txt
@@ -22,11 +22,13 @@
default: 0
acpi_backlight= [HW,ACPI]
- acpi_backlight=vendor
- acpi_backlight=video
- If set to vendor, prefer vendor specific driver
+ { vendor | video | native | none }
+ If set to vendor, prefer vendor-specific driver
(e.g. thinkpad_acpi, sony_acpi, etc.) instead
of the ACPI video.ko driver.
+ If set to video, use the ACPI video.ko driver.
+ If set to native, use the device's native backlight mode.
+ If set to none, disable the ACPI backlight interface.
acpi_force_32bit_fadt_addr
force FADT to use 32 bit addresses rather than the
@@ -450,6 +452,9 @@
bert_disable [ACPI]
Disable BERT OS support on buggy BIOSes.
+ bgrt_disable [ACPI][X86]
+ Disable BGRT to avoid flickering OEM logo.
+
bttv.card= [HW,V4L] bttv (bt848 + bt878 based grabber cards)
bttv.radio= Most important insmod options are available as
kernel args too.
@@ -522,6 +527,7 @@
Default value is set via a kernel config option.
Value can be changed at runtime via
/sys/fs/selinux/checkreqprot.
+ Setting checkreqprot to 1 is deprecated.
cio_ignore= [S390]
See Documentation/s390/common_io.rst for details.
@@ -679,7 +685,7 @@
coredump_filter=
[KNL] Change the default value for
/proc/<pid>/coredump_filter.
- See also Documentation/filesystems/proc.txt.
+ See also Documentation/filesystems/proc.rst.
coresight_cpu_debug.enable
[ARM,ARM64]
@@ -956,7 +962,7 @@
edid/1680x1050.bin, or edid/1920x1080.bin is given
and no file with the same name exists. Details and
instructions how to build your own EDID data are
- available in Documentation/driver-api/edid.rst. An EDID
+ available in Documentation/admin-guide/edid.rst. An EDID
data set will only be used for a particular connector,
if its name and a colon are prepended to the EDID
name. Each connector may use a unique EDID data
@@ -986,10 +992,6 @@
Documentation/admin-guide/dynamic-debug-howto.rst
for details.
- nompx [X86] Disables Intel Memory Protection Extensions.
- See Documentation/x86/intel_mpx.rst for more
- information about the feature.
-
nopku [X86] Disable Memory Protection Keys CPU feature found
in some Intel CPUs.
@@ -1099,6 +1101,12 @@
A valid base address must be provided, and the serial
port must already be setup and configured.
+ ec_imx21,<addr>
+ ec_imx6q,<addr>
+ Start an early, polled-mode, output-only console on the
+ Freescale i.MX UART at the specified address. The UART
+ must already be setup and configured.
+
ar3700_uart,<addr>
Start an early, polled-mode console on the
Armada 3700 serial port at the specified
@@ -1354,6 +1362,24 @@
can be changed at run time by the max_graph_depth file
in the tracefs tracing directory. default: 0 (no limit)
+ fw_devlink= [KNL] Create device links between consumer and supplier
+ devices by scanning the firmware to infer the
+ consumer/supplier relationships. This feature is
+ especially useful when drivers are loaded as modules as
+ it ensures proper ordering of tasks like device probing
+ (suppliers first, then consumers), supplier boot state
+ clean up (only after all consumers have probed),
+ suspend/resume & runtime PM (consumers first, then
+ suppliers).
+ Format: { off | permissive | on | rpm }
+ off -- Don't create device links from firmware info.
+ permissive -- Create device links from firmware info
+ but use it only for ordering boot state clean
+ up (sync_state() calls).
+ on -- Create device links from firmware info and use it
+ to enforce probe and suspend/resume ordering.
+ rpm -- Like "on", but also use to order runtime PM.
+
gamecon.map[2|3]=
[HW,JOY] Multisystem joystick and NES/SNES/PSX pad
support via parallel port (up to 5 devices per port)
@@ -1445,6 +1471,14 @@
hpet_mmap= [X86, HPET_MMAP] Allow userspace to mmap HPET
registers. Default set by CONFIG_HPET_MMAP_DEFAULT.
+ hugetlb_cma= [HW] The size of a cma area used for allocation
+ of gigantic hugepages.
+ Format: nn[KMGTPE]
+
+ Reserve a cma area of given size and allocate gigantic
+ hugepages using the cma allocator. If enabled, the
+ boot-time allocation of gigantic hugepages is skipped.
+
hugepages= [HW,X86-32,IA-64] HugeTLB pages to allocate at boot.
hugepagesz= [HW,IA-64,PPC,X86-64] The size of the HugeTLB pages.
On x86-64 and powerpc, this option can be specified
@@ -1779,7 +1813,7 @@
provided by tboot because it makes the system
vulnerable to DMA attacks.
nobounce [Default off]
- Disable bounce buffer for unstrusted devices such as
+ Disable bounce buffer for untrusted devices such as
the Thunderbolt devices. This will treat the untrusted
devices as the trusted ones, hence might expose security
risks of DMA attacks.
@@ -1883,7 +1917,7 @@
No delay
ip= [IP_PNP]
- See Documentation/filesystems/nfs/nfsroot.txt.
+ See Documentation/admin-guide/nfs/nfsroot.rst.
ipcmni_extend [KNL] Extend the maximum number of unique System V
IPC identifiers from 32,768 to 16,777,216.
@@ -2543,13 +2577,22 @@
For details see: Documentation/admin-guide/hw-vuln/mds.rst
mem=nn[KMG] [KNL,BOOT] Force usage of a specific amount of memory
- Amount of memory to be used when the kernel is not able
- to see the whole system memory or for test.
+ Amount of memory to be used in cases as follows:
+
+ 1 for test;
+ 2 when the kernel is not able to see the whole system memory;
+ 3 memory that lies after 'mem=' boundary is excluded from
+ the hypervisor, then assigned to KVM guests.
+
[X86] Work as limiting max address. Use together
with memmap= to avoid physical address space collisions.
Without memmap= PCI devices could be placed at addresses
belonging to unused RAM.
+ Note that this only takes effects during boot time since
+ in above case 3, memory may need be hot added after boot
+ if system memory of hypervisor is not sufficient.
+
mem=nopentium [BUGS=X86-32] Disable usage of 4MB pages for kernel
memory.
@@ -2795,7 +2838,7 @@
<name>,<region-number>[,<base>,<size>,<buswidth>,<altbuswidth>]
mtdparts= [MTD]
- See drivers/mtd/cmdlinepart.c.
+ See drivers/mtd/parsers/cmdlinepart.c
multitce=off [PPC] This parameter disables the use of the pSeries
firmware feature for updating multiple TCE entries
@@ -2853,13 +2896,13 @@
Default value is 0.
nfsaddrs= [NFS] Deprecated. Use ip= instead.
- See Documentation/filesystems/nfs/nfsroot.txt.
+ See Documentation/admin-guide/nfs/nfsroot.rst.
nfsroot= [NFS] nfs root filesystem for disk-less boxes.
- See Documentation/filesystems/nfs/nfsroot.txt.
+ See Documentation/admin-guide/nfs/nfsroot.rst.
nfsrootdebug [NFS] enable nfsroot debugging messages.
- See Documentation/filesystems/nfs/nfsroot.txt.
+ See Documentation/admin-guide/nfs/nfsroot.rst.
nfs.callback_nr_threads=
[NFSv4] set the total number of threads that the
@@ -3174,7 +3217,7 @@
[X86,PV_OPS] Disable paravirtualized VMware scheduler
clock and use the default one.
- no-steal-acc [X86,KVM,ARM64] Disable paravirtualized steal time
+ no-steal-acc [X86,PV_OPS,ARM64] Disable paravirtualized steal time
accounting. steal time is computed, but won't
influence scheduler behaviour
@@ -3285,12 +3328,6 @@
This can be set from sysctl after boot.
See Documentation/admin-guide/sysctl/vm.rst for details.
- of_devlink [OF, KNL] Create device links between consumer and
- supplier devices by scanning the devictree to infer the
- consumer/supplier relationships. A consumer device
- will not be probed until all the supplier devices have
- probed successfully.
-
ohci1394_dma=early [HW] enable debugging via the ohci1394 driver.
See Documentation/debugging-via-ohci1394.txt for more
info.
@@ -3698,6 +3735,9 @@
Override pmtimer IOPort with a hex value.
e.g. pmtmr=0x508
+ pm_debug_messages [SUSPEND,KNL]
+ Enable suspend/resume debug messages during boot up.
+
pnp.debug=1 [PNP]
Enable PNP debug messages (depends on the
CONFIG_PNP_DEBUG_MESSAGES option). Change at run-time
@@ -3799,6 +3839,11 @@
before loading.
See Documentation/admin-guide/blockdev/ramdisk.rst.
+ prot_virt= [S390] enable hosting protected virtual machines
+ isolated from the hypervisor (if hardware supports
+ that).
+ Format: <bool>
+
psi= [KNL] Enable or disable pressure stall information
tracking.
Format: <bool>
@@ -3984,6 +4029,15 @@
Set threshold of queued RCU callbacks below which
batch limiting is re-enabled.
+ rcutree.qovld= [KNL]
+ Set threshold of queued RCU callbacks beyond which
+ RCU's force-quiescent-state scan will aggressively
+ enlist help from cond_resched() and sched IPIs to
+ help CPUs more quickly reach quiescent states.
+ Set to less than zero to make this be set based
+ on rcutree.qhimark at boot time and to zero to
+ disable more aggressive help enlistment.
+
rcutree.rcu_idle_gp_delay= [KNL]
Set wakeup interval for idle CPUs that have
RCU callbacks (RCU_FAST_NO_HZ=y).
@@ -4199,6 +4253,12 @@
rcupdate.rcu_cpu_stall_suppress= [KNL]
Suppress RCU CPU stall warning messages.
+ rcupdate.rcu_cpu_stall_suppress_at_boot= [KNL]
+ Suppress RCU CPU stall warning messages and
+ rcutorture writer stall warnings that occur
+ during early boot, that is, during the time
+ before the init task is spawned.
+
rcupdate.rcu_cpu_stall_timeout= [KNL]
Set timeout for RCU CPU stall warning messages.
@@ -4392,6 +4452,22 @@
incurs a small amount of overhead in the scheduler
but is useful for debugging and performance tuning.
+ sched_thermal_decay_shift=
+ [KNL, SMP] Set a decay shift for scheduler thermal
+ pressure signal. Thermal pressure signal follows the
+ default decay period of other scheduler pelt
+ signals(usually 32 ms but configurable). Setting
+ sched_thermal_decay_shift will left shift the decay
+ period for the thermal pressure signal by the shift
+ value.
+ i.e. with the default pelt decay period of 32 ms
+ sched_thermal_decay_shift thermal pressure decay pr
+ 1 64 ms
+ 2 128 ms
+ and so on.
+ Format: integer between 0 and 10
+ Default is 0.
+
skew_tick= [KNL] Offset the periodic timer tick per cpu to mitigate
xtime_lock contention on larger systems, and/or RCU lock
contention on all systems with CONFIG_MAXSMP set.
@@ -4514,10 +4590,10 @@
Format: <integer>
A nonzero value instructs the soft-lockup detector
- to panic the machine when a soft-lockup occurs. This
- is also controlled by CONFIG_BOOTPARAM_SOFTLOCKUP_PANIC
- which is the respective build-time switch to that
- functionality.
+ to panic the machine when a soft-lockup occurs. It is
+ also controlled by the kernel.softlockup_panic sysctl
+ and CONFIG_BOOTPARAM_SOFTLOCKUP_PANIC, which is the
+ respective build-time switch to that functionality.
softlockup_all_cpu_backtrace=
[KNL] Should the soft-lockup detector generate
@@ -4659,6 +4735,28 @@
spia_pedr=
spia_peddr=
+ split_lock_detect=
+ [X86] Enable split lock detection
+
+ When enabled (and if hardware support is present), atomic
+ instructions that access data across cache line
+ boundaries will result in an alignment check exception.
+
+ off - not enabled
+
+ warn - the kernel will emit rate limited warnings
+ about applications triggering the #AC
+ exception. This mode is the default on CPUs
+ that supports split lock detection.
+
+ fatal - the kernel will send SIGBUS to applications
+ that trigger the #AC exception.
+
+ If an #AC exception is hit in the kernel or in
+ firmware (i.e. not while executing in user mode)
+ the kernel will oops in either "warn" or "fatal"
+ mode.
+
srcutree.counter_wrap_check [KNL]
Specifies how frequently to check for
grace-period sequence counter wrap for the
@@ -4871,6 +4969,10 @@
topology updates sent by the hypervisor to this
LPAR.
+ torture.disable_onoff_at_boot= [KNL]
+ Prevent the CPU-hotplug component of torturing
+ until after init has spawned.
+
tp720= [HW,PS2]
tpm_suspend_pcr=[HW,TPM]
diff --git a/Documentation/admin-guide/kernel-per-CPU-kthreads.rst b/Documentation/admin-guide/kernel-per-CPU-kthreads.rst
index baeeba8762ae..21818aca4708 100644
--- a/Documentation/admin-guide/kernel-per-CPU-kthreads.rst
+++ b/Documentation/admin-guide/kernel-per-CPU-kthreads.rst
@@ -234,7 +234,7 @@ To reduce its OS jitter, do any of the following:
Such a workqueue can be confined to a given subset of the
CPUs using the ``/sys/devices/virtual/workqueue/*/cpumask`` sysfs
files. The set of WQ_SYSFS workqueues can be displayed using
- "ls sys/devices/virtual/workqueue". That said, the workqueues
+ "ls /sys/devices/virtual/workqueue". That said, the workqueues
maintainer would like to caution people against indiscriminately
sprinkling WQ_SYSFS across all the workqueues. The reason for
caution is that it is easy to add WQ_SYSFS, but because sysfs is
diff --git a/Documentation/admin-guide/mm/transhuge.rst b/Documentation/admin-guide/mm/transhuge.rst
index bd5714547cee..2f31de8f7c74 100644
--- a/Documentation/admin-guide/mm/transhuge.rst
+++ b/Documentation/admin-guide/mm/transhuge.rst
@@ -310,6 +310,11 @@ thp_fault_fallback
is incremented if a page fault fails to allocate
a huge page and instead falls back to using small pages.
+thp_fault_fallback_charge
+ is incremented if a page fault fails to charge a huge page and
+ instead falls back to using small pages even though the
+ allocation was successful.
+
thp_collapse_alloc_failed
is incremented if khugepaged found a range
of pages that should be collapsed into one huge page but failed
@@ -319,6 +324,15 @@ thp_file_alloc
is incremented every time a file huge page is successfully
allocated.
+thp_file_fallback
+ is incremented if a file huge page is attempted to be allocated
+ but fails and instead falls back to using small pages.
+
+thp_file_fallback_charge
+ is incremented if a file huge page cannot be charged and instead
+ falls back to using small pages even though the allocation was
+ successful.
+
thp_file_mapped
is incremented every time a file huge page is mapped into
user address space.
diff --git a/Documentation/admin-guide/mm/userfaultfd.rst b/Documentation/admin-guide/mm/userfaultfd.rst
index 5048cf661a8a..c30176e67900 100644
--- a/Documentation/admin-guide/mm/userfaultfd.rst
+++ b/Documentation/admin-guide/mm/userfaultfd.rst
@@ -108,6 +108,57 @@ UFFDIO_COPY. They're atomic as in guaranteeing that nothing can see an
half copied page since it'll keep userfaulting until the copy has
finished.
+Notes:
+
+- If you requested UFFDIO_REGISTER_MODE_MISSING when registering then
+ you must provide some kind of page in your thread after reading from
+ the uffd. You must provide either UFFDIO_COPY or UFFDIO_ZEROPAGE.
+ The normal behavior of the OS automatically providing a zero page on
+ an annonymous mmaping is not in place.
+
+- None of the page-delivering ioctls default to the range that you
+ registered with. You must fill in all fields for the appropriate
+ ioctl struct including the range.
+
+- You get the address of the access that triggered the missing page
+ event out of a struct uffd_msg that you read in the thread from the
+ uffd. You can supply as many pages as you want with UFFDIO_COPY or
+ UFFDIO_ZEROPAGE. Keep in mind that unless you used DONTWAKE then
+ the first of any of those IOCTLs wakes up the faulting thread.
+
+- Be sure to test for all errors including (pollfd[0].revents &
+ POLLERR). This can happen, e.g. when ranges supplied were
+ incorrect.
+
+Write Protect Notifications
+---------------------------
+
+This is equivalent to (but faster than) using mprotect and a SIGSEGV
+signal handler.
+
+Firstly you need to register a range with UFFDIO_REGISTER_MODE_WP.
+Instead of using mprotect(2) you use ioctl(uffd, UFFDIO_WRITEPROTECT,
+struct *uffdio_writeprotect) while mode = UFFDIO_WRITEPROTECT_MODE_WP
+in the struct passed in. The range does not default to and does not
+have to be identical to the range you registered with. You can write
+protect as many ranges as you like (inside the registered range).
+Then, in the thread reading from uffd the struct will have
+msg.arg.pagefault.flags & UFFD_PAGEFAULT_FLAG_WP set. Now you send
+ioctl(uffd, UFFDIO_WRITEPROTECT, struct *uffdio_writeprotect) again
+while pagefault.mode does not have UFFDIO_WRITEPROTECT_MODE_WP set.
+This wakes up the thread which will continue to run with writes. This
+allows you to do the bookkeeping about the write in the uffd reading
+thread before the ioctl.
+
+If you registered with both UFFDIO_REGISTER_MODE_MISSING and
+UFFDIO_REGISTER_MODE_WP then you need to think about the sequence in
+which you supply a page and undo write protect. Note that there is a
+difference between writes into a WP area and into a !WP area. The
+former will have UFFD_PAGEFAULT_FLAG_WP set, the latter
+UFFD_PAGEFAULT_FLAG_WRITE. The latter did not fail on protection but
+you still need to supply a page when UFFDIO_REGISTER_MODE_MISSING was
+used.
+
QEMU/KVM
========
diff --git a/Documentation/admin-guide/perf/imx-ddr.rst b/Documentation/admin-guide/perf/imx-ddr.rst
index 3726a10a03ba..f05f56c73b7d 100644
--- a/Documentation/admin-guide/perf/imx-ddr.rst
+++ b/Documentation/admin-guide/perf/imx-ddr.rst
@@ -43,7 +43,8 @@ value 1 for supported.
AXI_ID and AXI_MASKING are mapped on DPCR1 register in performance counter.
When non-masked bits are matching corresponding AXI_ID bits then counter is
- incremented. Perf counter is incremented if
+ incremented. Perf counter is incremented if::
+
AxID && AXI_MASKING == AXI_ID && AXI_MASKING
This filter doesn't support filter different AXI ID for axid-read and axid-write
diff --git a/Documentation/admin-guide/pm/cpufreq_drivers.rst b/Documentation/admin-guide/pm/cpufreq_drivers.rst
new file mode 100644
index 000000000000..9a134ae65803
--- /dev/null
+++ b/Documentation/admin-guide/pm/cpufreq_drivers.rst
@@ -0,0 +1,274 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+=======================================================
+Legacy Documentation of CPU Performance Scaling Drivers
+=======================================================
+
+Included below are historic documents describing assorted
+:doc:`CPU performance scaling <cpufreq>` drivers. They are reproduced verbatim,
+with the original white space formatting and indentation preserved, except for
+the added leading space character in every line of text.
+
+
+AMD PowerNow! Drivers
+=====================
+
+::
+
+ PowerNow! and Cool'n'Quiet are AMD names for frequency
+ management capabilities in AMD processors. As the hardware
+ implementation changes in new generations of the processors,
+ there is a different cpu-freq driver for each generation.
+
+ Note that the driver's will not load on the "wrong" hardware,
+ so it is safe to try each driver in turn when in doubt as to
+ which is the correct driver.
+
+ Note that the functionality to change frequency (and voltage)
+ is not available in all processors. The drivers will refuse
+ to load on processors without this capability. The capability
+ is detected with the cpuid instruction.
+
+ The drivers use BIOS supplied tables to obtain frequency and
+ voltage information appropriate for a particular platform.
+ Frequency transitions will be unavailable if the BIOS does
+ not supply these tables.
+
+ 6th Generation: powernow-k6
+
+ 7th Generation: powernow-k7: Athlon, Duron, Geode.
+
+ 8th Generation: powernow-k8: Athlon, Athlon 64, Opteron, Sempron.
+ Documentation on this functionality in 8th generation processors
+ is available in the "BIOS and Kernel Developer's Guide", publication
+ 26094, in chapter 9, available for download from www.amd.com.
+
+ BIOS supplied data, for powernow-k7 and for powernow-k8, may be
+ from either the PSB table or from ACPI objects. The ACPI support
+ is only available if the kernel config sets CONFIG_ACPI_PROCESSOR.
+ The powernow-k8 driver will attempt to use ACPI if so configured,
+ and fall back to PST if that fails.
+ The powernow-k7 driver will try to use the PSB support first, and
+ fall back to ACPI if the PSB support fails. A module parameter,
+ acpi_force, is provided to force ACPI support to be used instead
+ of PSB support.
+
+
+``cpufreq-nforce2``
+===================
+
+::
+
+ The cpufreq-nforce2 driver changes the FSB on nVidia nForce2 platforms.
+
+ This works better than on other platforms, because the FSB of the CPU
+ can be controlled independently from the PCI/AGP clock.
+
+ The module has two options:
+
+ fid: multiplier * 10 (for example 8.5 = 85)
+ min_fsb: minimum FSB
+
+ If not set, fid is calculated from the current CPU speed and the FSB.
+ min_fsb defaults to FSB at boot time - 50 MHz.
+
+ IMPORTANT: The available range is limited downwards!
+ Also the minimum available FSB can differ, for systems
+ booting with 200 MHz, 150 should always work.
+
+
+``pcc-cpufreq``
+===============
+
+::
+
+ /*
+ * pcc-cpufreq.txt - PCC interface documentation
+ *
+ * Copyright (C) 2009 Red Hat, Matthew Garrett <mjg@redhat.com>
+ * Copyright (C) 2009 Hewlett-Packard Development Company, L.P.
+ * Nagananda Chumbalkar <nagananda.chumbalkar@hp.com>
+ */
+
+
+ Processor Clocking Control Driver
+ ---------------------------------
+
+ Contents:
+ ---------
+ 1. Introduction
+ 1.1 PCC interface
+ 1.1.1 Get Average Frequency
+ 1.1.2 Set Desired Frequency
+ 1.2 Platforms affected
+ 2. Driver and /sys details
+ 2.1 scaling_available_frequencies
+ 2.2 cpuinfo_transition_latency
+ 2.3 cpuinfo_cur_freq
+ 2.4 related_cpus
+ 3. Caveats
+
+ 1. Introduction:
+ ----------------
+ Processor Clocking Control (PCC) is an interface between the platform
+ firmware and OSPM. It is a mechanism for coordinating processor
+ performance (ie: frequency) between the platform firmware and the OS.
+
+ The PCC driver (pcc-cpufreq) allows OSPM to take advantage of the PCC
+ interface.
+
+ OS utilizes the PCC interface to inform platform firmware what frequency the
+ OS wants for a logical processor. The platform firmware attempts to achieve
+ the requested frequency. If the request for the target frequency could not be
+ satisfied by platform firmware, then it usually means that power budget
+ conditions are in place, and "power capping" is taking place.
+
+ 1.1 PCC interface:
+ ------------------
+ The complete PCC specification is available here:
+ https://acpica.org/sites/acpica/files/Processor-Clocking-Control-v1p0.pdf
+
+ PCC relies on a shared memory region that provides a channel for communication
+ between the OS and platform firmware. PCC also implements a "doorbell" that
+ is used by the OS to inform the platform firmware that a command has been
+ sent.
+
+ The ACPI PCCH() method is used to discover the location of the PCC shared
+ memory region. The shared memory region header contains the "command" and
+ "status" interface. PCCH() also contains details on how to access the platform
+ doorbell.
+
+ The following commands are supported by the PCC interface:
+ * Get Average Frequency
+ * Set Desired Frequency
+
+ The ACPI PCCP() method is implemented for each logical processor and is
+ used to discover the offsets for the input and output buffers in the shared
+ memory region.
+
+ When PCC mode is enabled, the platform will not expose processor performance
+ or throttle states (_PSS, _TSS and related ACPI objects) to OSPM. Therefore,
+ the native P-state driver (such as acpi-cpufreq for Intel, powernow-k8 for
+ AMD) will not load.
+
+ However, OSPM remains in control of policy. The governor (eg: "ondemand")
+ computes the required performance for each processor based on server workload.
+ The PCC driver fills in the command interface, and the input buffer and
+ communicates the request to the platform firmware. The platform firmware is
+ responsible for delivering the requested performance.
+
+ Each PCC command is "global" in scope and can affect all the logical CPUs in
+ the system. Therefore, PCC is capable of performing "group" updates. With PCC
+ the OS is capable of getting/setting the frequency of all the logical CPUs in
+ the system with a single call to the BIOS.
+
+ 1.1.1 Get Average Frequency:
+ ----------------------------
+ This command is used by the OSPM to query the running frequency of the
+ processor since the last time this command was completed. The output buffer
+ indicates the average unhalted frequency of the logical processor expressed as
+ a percentage of the nominal (ie: maximum) CPU frequency. The output buffer
+ also signifies if the CPU frequency is limited by a power budget condition.
+
+ 1.1.2 Set Desired Frequency:
+ ----------------------------
+ This command is used by the OSPM to communicate to the platform firmware the
+ desired frequency for a logical processor. The output buffer is currently
+ ignored by OSPM. The next invocation of "Get Average Frequency" will inform
+ OSPM if the desired frequency was achieved or not.
+
+ 1.2 Platforms affected:
+ -----------------------
+ The PCC driver will load on any system where the platform firmware:
+ * supports the PCC interface, and the associated PCCH() and PCCP() methods
+ * assumes responsibility for managing the hardware clocking controls in order
+ to deliver the requested processor performance
+
+ Currently, certain HP ProLiant platforms implement the PCC interface. On those
+ platforms PCC is the "default" choice.
+
+ However, it is possible to disable this interface via a BIOS setting. In
+ such an instance, as is also the case on platforms where the PCC interface
+ is not implemented, the PCC driver will fail to load silently.
+
+ 2. Driver and /sys details:
+ ---------------------------
+ When the driver loads, it merely prints the lowest and the highest CPU
+ frequencies supported by the platform firmware.
+
+ The PCC driver loads with a message such as:
+ pcc-cpufreq: (v1.00.00) driver loaded with frequency limits: 1600 MHz, 2933
+ MHz
+
+ This means that the OPSM can request the CPU to run at any frequency in
+ between the limits (1600 MHz, and 2933 MHz) specified in the message.
+
+ Internally, there is no need for the driver to convert the "target" frequency
+ to a corresponding P-state.
+
+ The VERSION number for the driver will be of the format v.xy.ab.
+ eg: 1.00.02
+ ----- --
+ | |
+ | -- this will increase with bug fixes/enhancements to the driver
+ |-- this is the version of the PCC specification the driver adheres to
+
+
+ The following is a brief discussion on some of the fields exported via the
+ /sys filesystem and how their values are affected by the PCC driver:
+
+ 2.1 scaling_available_frequencies:
+ ----------------------------------
+ scaling_available_frequencies is not created in /sys. No intermediate
+ frequencies need to be listed because the BIOS will try to achieve any
+ frequency, within limits, requested by the governor. A frequency does not have
+ to be strictly associated with a P-state.
+
+ 2.2 cpuinfo_transition_latency:
+ -------------------------------
+ The cpuinfo_transition_latency field is 0. The PCC specification does
+ not include a field to expose this value currently.
+
+ 2.3 cpuinfo_cur_freq:
+ ---------------------
+ A) Often cpuinfo_cur_freq will show a value different than what is declared
+ in the scaling_available_frequencies or scaling_cur_freq, or scaling_max_freq.
+ This is due to "turbo boost" available on recent Intel processors. If certain
+ conditions are met the BIOS can achieve a slightly higher speed than requested
+ by OSPM. An example:
+
+ scaling_cur_freq : 2933000
+ cpuinfo_cur_freq : 3196000
+
+ B) There is a round-off error associated with the cpuinfo_cur_freq value.
+ Since the driver obtains the current frequency as a "percentage" (%) of the
+ nominal frequency from the BIOS, sometimes, the values displayed by
+ scaling_cur_freq and cpuinfo_cur_freq may not match. An example:
+
+ scaling_cur_freq : 1600000
+ cpuinfo_cur_freq : 1583000
+
+ In this example, the nominal frequency is 2933 MHz. The driver obtains the
+ current frequency, cpuinfo_cur_freq, as 54% of the nominal frequency:
+
+ 54% of 2933 MHz = 1583 MHz
+
+ Nominal frequency is the maximum frequency of the processor, and it usually
+ corresponds to the frequency of the P0 P-state.
+
+ 2.4 related_cpus:
+ -----------------
+ The related_cpus field is identical to affected_cpus.
+
+ affected_cpus : 4
+ related_cpus : 4
+
+ Currently, the PCC driver does not evaluate _PSD. The platforms that support
+ PCC do not implement SW_ALL. So OSPM doesn't need to perform any coordination
+ to ensure that the same frequency is requested of all dependent CPUs.
+
+ 3. Caveats:
+ -----------
+ The "cpufreq_stats" module in its present form cannot be loaded and
+ expected to work with the PCC driver. Since the "cpufreq_stats" module
+ provides information wrt each P-state, it is not applicable to the PCC driver.
diff --git a/Documentation/admin-guide/pm/cpuidle.rst b/Documentation/admin-guide/pm/cpuidle.rst
index 6a06dc473dd6..5605cc6f9560 100644
--- a/Documentation/admin-guide/pm/cpuidle.rst
+++ b/Documentation/admin-guide/pm/cpuidle.rst
@@ -583,20 +583,17 @@ Power Management Quality of Service for CPUs
The power management quality of service (PM QoS) framework in the Linux kernel
allows kernel code and user space processes to set constraints on various
energy-efficiency features of the kernel to prevent performance from dropping
-below a required level. The PM QoS constraints can be set globally, in
-predefined categories referred to as PM QoS classes, or against individual
-devices.
+below a required level.
CPU idle time management can be affected by PM QoS in two ways, through the
-global constraint in the ``PM_QOS_CPU_DMA_LATENCY`` class and through the
-resume latency constraints for individual CPUs. Kernel code (e.g. device
-drivers) can set both of them with the help of special internal interfaces
-provided by the PM QoS framework. User space can modify the former by opening
-the :file:`cpu_dma_latency` special device file under :file:`/dev/` and writing
-a binary value (interpreted as a signed 32-bit integer) to it. In turn, the
-resume latency constraint for a CPU can be modified by user space by writing a
-string (representing a signed 32-bit integer) to the
-:file:`power/pm_qos_resume_latency_us` file under
+global CPU latency limit and through the resume latency constraints for
+individual CPUs. Kernel code (e.g. device drivers) can set both of them with
+the help of special internal interfaces provided by the PM QoS framework. User
+space can modify the former by opening the :file:`cpu_dma_latency` special
+device file under :file:`/dev/` and writing a binary value (interpreted as a
+signed 32-bit integer) to it. In turn, the resume latency constraint for a CPU
+can be modified from user space by writing a string (representing a signed
+32-bit integer) to the :file:`power/pm_qos_resume_latency_us` file under
:file:`/sys/devices/system/cpu/cpu<N>/` in ``sysfs``, where the CPU number
``<N>`` is allocated at the system initialization time. Negative values
will be rejected in both cases and, also in both cases, the written integer
@@ -605,32 +602,34 @@ number will be interpreted as a requested PM QoS constraint in microseconds.
The requested value is not automatically applied as a new constraint, however,
as it may be less restrictive (greater in this particular case) than another
constraint previously requested by someone else. For this reason, the PM QoS
-framework maintains a list of requests that have been made so far in each
-global class and for each device, aggregates them and applies the effective
-(minimum in this particular case) value as the new constraint.
+framework maintains a list of requests that have been made so far for the
+global CPU latency limit and for each individual CPU, aggregates them and
+applies the effective (minimum in this particular case) value as the new
+constraint.
In fact, opening the :file:`cpu_dma_latency` special device file causes a new
-PM QoS request to be created and added to the priority list of requests in the
-``PM_QOS_CPU_DMA_LATENCY`` class and the file descriptor coming from the
-"open" operation represents that request. If that file descriptor is then
-used for writing, the number written to it will be associated with the PM QoS
-request represented by it as a new requested constraint value. Next, the
-priority list mechanism will be used to determine the new effective value of
-the entire list of requests and that effective value will be set as a new
-constraint. Thus setting a new requested constraint value will only change the
-real constraint if the effective "list" value is affected by it. In particular,
-for the ``PM_QOS_CPU_DMA_LATENCY`` class it only affects the real constraint if
-it is the minimum of the requested constraints in the list. The process holding
-a file descriptor obtained by opening the :file:`cpu_dma_latency` special device
-file controls the PM QoS request associated with that file descriptor, but it
-controls this particular PM QoS request only.
+PM QoS request to be created and added to a global priority list of CPU latency
+limit requests and the file descriptor coming from the "open" operation
+represents that request. If that file descriptor is then used for writing, the
+number written to it will be associated with the PM QoS request represented by
+it as a new requested limit value. Next, the priority list mechanism will be
+used to determine the new effective value of the entire list of requests and
+that effective value will be set as a new CPU latency limit. Thus requesting a
+new limit value will only change the real limit if the effective "list" value is
+affected by it, which is the case if it is the minimum of the requested values
+in the list.
+
+The process holding a file descriptor obtained by opening the
+:file:`cpu_dma_latency` special device file controls the PM QoS request
+associated with that file descriptor, but it controls this particular PM QoS
+request only.
Closing the :file:`cpu_dma_latency` special device file or, more precisely, the
file descriptor obtained while opening it, causes the PM QoS request associated
-with that file descriptor to be removed from the ``PM_QOS_CPU_DMA_LATENCY``
-class priority list and destroyed. If that happens, the priority list mechanism
-will be used, again, to determine the new effective value for the whole list
-and that value will become the new real constraint.
+with that file descriptor to be removed from the global priority list of CPU
+latency limit requests and destroyed. If that happens, the priority list
+mechanism will be used again, to determine the new effective value for the whole
+list and that value will become the new limit.
In turn, for each CPU there is one resume latency PM QoS request associated with
the :file:`power/pm_qos_resume_latency_us` file under
@@ -647,10 +646,10 @@ CPU in question every time the list of requests is updated this way or another
(there may be other requests coming from kernel code in that list).
CPU idle time governors are expected to regard the minimum of the global
-effective ``PM_QOS_CPU_DMA_LATENCY`` class constraint and the effective
-resume latency constraint for the given CPU as the upper limit for the exit
-latency of the idle states they can select for that CPU. They should never
-select any idle states with exit latency beyond that limit.
+(effective) CPU latency limit and the effective resume latency constraint for
+the given CPU as the upper limit for the exit latency of the idle states that
+they are allowed to select for that CPU. They should never select any idle
+states with exit latency beyond that limit.
Idle States Control Via Kernel Command Line
diff --git a/Documentation/admin-guide/pm/intel_pstate.rst b/Documentation/admin-guide/pm/intel_pstate.rst
index 67e414e34f37..ad392f3aee06 100644
--- a/Documentation/admin-guide/pm/intel_pstate.rst
+++ b/Documentation/admin-guide/pm/intel_pstate.rst
@@ -734,10 +734,10 @@ References
==========
.. [1] Kristen Accardi, *Balancing Power and Performance in the Linux Kernel*,
- http://events.linuxfoundation.org/sites/events/files/slides/LinuxConEurope_2015.pdf
+ https://events.static.linuxfound.org/sites/events/files/slides/LinuxConEurope_2015.pdf
.. [2] *Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume 3: System Programming Guide*,
- http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-system-programming-manual-325384.html
+ https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-system-programming-manual-325384.html
.. [3] *Advanced Configuration and Power Interface Specification*,
https://uefi.org/sites/default/files/resources/ACPI_6_3_final_Jan30.pdf
diff --git a/Documentation/admin-guide/pm/suspend-flows.rst b/Documentation/admin-guide/pm/suspend-flows.rst
new file mode 100644
index 000000000000..c479d7462647
--- /dev/null
+++ b/Documentation/admin-guide/pm/suspend-flows.rst
@@ -0,0 +1,270 @@
+.. SPDX-License-Identifier: GPL-2.0
+.. include:: <isonum.txt>
+
+=========================
+System Suspend Code Flows
+=========================
+
+:Copyright: |copy| 2020 Intel Corporation
+
+:Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
+
+At least one global system-wide transition needs to be carried out for the
+system to get from the working state into one of the supported
+:doc:`sleep states <sleep-states>`. Hibernation requires more than one
+transition to occur for this purpose, but the other sleep states, commonly
+referred to as *system-wide suspend* (or simply *system suspend*) states, need
+only one.
+
+For those sleep states, the transition from the working state of the system into
+the target sleep state is referred to as *system suspend* too (in the majority
+of cases, whether this means a transition or a sleep state of the system should
+be clear from the context) and the transition back from the sleep state into the
+working state is referred to as *system resume*.
+
+The kernel code flows associated with the suspend and resume transitions for
+different sleep states of the system are quite similar, but there are some
+significant differences between the :ref:`suspend-to-idle <s2idle>` code flows
+and the code flows related to the :ref:`suspend-to-RAM <s2ram>` and
+:ref:`standby <standby>` sleep states.
+
+The :ref:`suspend-to-RAM <s2ram>` and :ref:`standby <standby>` sleep states
+cannot be implemented without platform support and the difference between them
+boils down to the platform-specific actions carried out by the suspend and
+resume hooks that need to be provided by the platform driver to make them
+available. Apart from that, the suspend and resume code flows for these sleep
+states are mostly identical, so they both together will be referred to as
+*platform-dependent suspend* states in what follows.
+
+
+.. _s2idle_suspend:
+
+Suspend-to-idle Suspend Code Flow
+=================================
+
+The following steps are taken in order to transition the system from the working
+state to the :ref:`suspend-to-idle <s2idle>` sleep state:
+
+ 1. Invoking system-wide suspend notifiers.
+
+ Kernel subsystems can register callbacks to be invoked when the suspend
+ transition is about to occur and when the resume transition has finished.
+
+ That allows them to prepare for the change of the system state and to clean
+ up after getting back to the working state.
+
+ 2. Freezing tasks.
+
+ Tasks are frozen primarily in order to avoid unchecked hardware accesses
+ from user space through MMIO regions or I/O registers exposed directly to
+ it and to prevent user space from entering the kernel while the next step
+ of the transition is in progress (which might have been problematic for
+ various reasons).
+
+ All user space tasks are intercepted as though they were sent a signal and
+ put into uninterruptible sleep until the end of the subsequent system resume
+ transition.
+
+ The kernel threads that choose to be frozen during system suspend for
+ specific reasons are frozen subsequently, but they are not intercepted.
+ Instead, they are expected to periodically check whether or not they need
+ to be frozen and to put themselves into uninterruptible sleep if so. [Note,
+ however, that kernel threads can use locking and other concurrency controls
+ available in kernel space to synchronize themselves with system suspend and
+ resume, which can be much more precise than the freezing, so the latter is
+ not a recommended option for kernel threads.]
+
+ 3. Suspending devices and reconfiguring IRQs.
+
+ Devices are suspended in four phases called *prepare*, *suspend*,
+ *late suspend* and *noirq suspend* (see :ref:`driverapi_pm_devices` for more
+ information on what exactly happens in each phase).
+
+ Every device is visited in each phase, but typically it is not physically
+ accessed in more than two of them.
+
+ The runtime PM API is disabled for every device during the *late* suspend
+ phase and high-level ("action") interrupt handlers are prevented from being
+ invoked before the *noirq* suspend phase.
+
+ Interrupts are still handled after that, but they are only acknowledged to
+ interrupt controllers without performing any device-specific actions that
+ would be triggered in the working state of the system (those actions are
+ deferred till the subsequent system resume transition as described
+ `below <s2idle_resume_>`_).
+
+ IRQs associated with system wakeup devices are "armed" so that the resume
+ transition of the system is started when one of them signals an event.
+
+ 4. Freezing the scheduler tick and suspending timekeeping.
+
+ When all devices have been suspended, CPUs enter the idle loop and are put
+ into the deepest available idle state. While doing that, each of them
+ "freezes" its own scheduler tick so that the timer events associated with
+ the tick do not occur until the CPU is woken up by another interrupt source.
+
+ The last CPU to enter the idle state also stops the timekeeping which
+ (among other things) prevents high resolution timers from triggering going
+ forward until the first CPU that is woken up restarts the timekeeping.
+ That allows the CPUs to stay in the deep idle state relatively long in one
+ go.
+
+ From this point on, the CPUs can only be woken up by non-timer hardware
+ interrupts. If that happens, they go back to the idle state unless the
+ interrupt that woke up one of them comes from an IRQ that has been armed for
+ system wakeup, in which case the system resume transition is started.
+
+
+.. _s2idle_resume:
+
+Suspend-to-idle Resume Code Flow
+================================
+
+The following steps are taken in order to transition the system from the
+:ref:`suspend-to-idle <s2idle>` sleep state into the working state:
+
+ 1. Resuming timekeeping and unfreezing the scheduler tick.
+
+ When one of the CPUs is woken up (by a non-timer hardware interrupt), it
+ leaves the idle state entered in the last step of the preceding suspend
+ transition, restarts the timekeeping (unless it has been restarted already
+ by another CPU that woke up earlier) and the scheduler tick on that CPU is
+ unfrozen.
+
+ If the interrupt that has woken up the CPU was armed for system wakeup,
+ the system resume transition begins.
+
+ 2. Resuming devices and restoring the working-state configuration of IRQs.
+
+ Devices are resumed in four phases called *noirq resume*, *early resume*,
+ *resume* and *complete* (see :ref:`driverapi_pm_devices` for more
+ information on what exactly happens in each phase).
+
+ Every device is visited in each phase, but typically it is not physically
+ accessed in more than two of them.
+
+ The working-state configuration of IRQs is restored after the *noirq* resume
+ phase and the runtime PM API is re-enabled for every device whose driver
+ supports it during the *early* resume phase.
+
+ 3. Thawing tasks.
+
+ Tasks frozen in step 2 of the preceding `suspend <s2idle_suspend_>`_
+ transition are "thawed", which means that they are woken up from the
+ uninterruptible sleep that they went into at that time and user space tasks
+ are allowed to exit the kernel.
+
+ 4. Invoking system-wide resume notifiers.
+
+ This is analogous to step 1 of the `suspend <s2idle_suspend_>`_ transition
+ and the same set of callbacks is invoked at this point, but a different
+ "notification type" parameter value is passed to them.
+
+
+Platform-dependent Suspend Code Flow
+====================================
+
+The following steps are taken in order to transition the system from the working
+state to platform-dependent suspend state:
+
+ 1. Invoking system-wide suspend notifiers.
+
+ This step is the same as step 1 of the suspend-to-idle suspend transition
+ described `above <s2idle_suspend_>`_.
+
+ 2. Freezing tasks.
+
+ This step is the same as step 2 of the suspend-to-idle suspend transition
+ described `above <s2idle_suspend_>`_.
+
+ 3. Suspending devices and reconfiguring IRQs.
+
+ This step is analogous to step 3 of the suspend-to-idle suspend transition
+ described `above <s2idle_suspend_>`_, but the arming of IRQs for system
+ wakeup generally does not have any effect on the platform.
+
+ There are platforms that can go into a very deep low-power state internally
+ when all CPUs in them are in sufficiently deep idle states and all I/O
+ devices have been put into low-power states. On those platforms,
+ suspend-to-idle can reduce system power very effectively.
+
+ On the other platforms, however, low-level components (like interrupt
+ controllers) need to be turned off in a platform-specific way (implemented
+ in the hooks provided by the platform driver) to achieve comparable power
+ reduction.
+
+ That usually prevents in-band hardware interrupts from waking up the system,
+ which must be done in a special platform-dependent way. Then, the
+ configuration of system wakeup sources usually starts when system wakeup
+ devices are suspended and is finalized by the platform suspend hooks later
+ on.
+
+ 4. Disabling non-boot CPUs.
+
+ On some platforms the suspend hooks mentioned above must run in a one-CPU
+ configuration of the system (in particular, the hardware cannot be accessed
+ by any code running in parallel with the platform suspend hooks that may,
+ and often do, trap into the platform firmware in order to finalize the
+ suspend transition).
+
+ For this reason, the CPU offline/online (CPU hotplug) framework is used
+ to take all of the CPUs in the system, except for one (the boot CPU),
+ offline (typically, the CPUs that have been taken offline go into deep idle
+ states).
+
+ This means that all tasks are migrated away from those CPUs and all IRQs are
+ rerouted to the only CPU that remains online.
+
+ 5. Suspending core system components.
+
+ This prepares the core system components for (possibly) losing power going
+ forward and suspends the timekeeping.
+
+ 6. Platform-specific power removal.
+
+ This is expected to remove power from all of the system components except
+ for the memory controller and RAM (in order to preserve the contents of the
+ latter) and some devices designated for system wakeup.
+
+ In many cases control is passed to the platform firmware which is expected
+ to finalize the suspend transition as needed.
+
+
+Platform-dependent Resume Code Flow
+===================================
+
+The following steps are taken in order to transition the system from a
+platform-dependent suspend state into the working state:
+
+ 1. Platform-specific system wakeup.
+
+ The platform is woken up by a signal from one of the designated system
+ wakeup devices (which need not be an in-band hardware interrupt) and
+ control is passed back to the kernel (the working configuration of the
+ platform may need to be restored by the platform firmware before the
+ kernel gets control again).
+
+ 2. Resuming core system components.
+
+ The suspend-time configuration of the core system components is restored and
+ the timekeeping is resumed.
+
+ 3. Re-enabling non-boot CPUs.
+
+ The CPUs disabled in step 4 of the preceding suspend transition are taken
+ back online and their suspend-time configuration is restored.
+
+ 4. Resuming devices and restoring the working-state configuration of IRQs.
+
+ This step is the same as step 2 of the suspend-to-idle suspend transition
+ described `above <s2idle_resume_>`_.
+
+ 5. Thawing tasks.
+
+ This step is the same as step 3 of the suspend-to-idle suspend transition
+ described `above <s2idle_resume_>`_.
+
+ 6. Invoking system-wide resume notifiers.
+
+ This step is the same as step 4 of the suspend-to-idle suspend transition
+ described `above <s2idle_resume_>`_.
diff --git a/Documentation/admin-guide/pm/system-wide.rst b/Documentation/admin-guide/pm/system-wide.rst
index 2b1f987b34f0..1a1924d71006 100644
--- a/Documentation/admin-guide/pm/system-wide.rst
+++ b/Documentation/admin-guide/pm/system-wide.rst
@@ -8,3 +8,4 @@ System-Wide Power Management
:maxdepth: 2
sleep-states
+ suspend-flows
diff --git a/Documentation/admin-guide/pm/working-state.rst b/Documentation/admin-guide/pm/working-state.rst
index 88f717e59a42..0a38cdf39df1 100644
--- a/Documentation/admin-guide/pm/working-state.rst
+++ b/Documentation/admin-guide/pm/working-state.rst
@@ -11,4 +11,5 @@ Working-State Power Management
intel_idle
cpufreq
intel_pstate
+ cpufreq_drivers
intel_epb
diff --git a/Documentation/admin-guide/sysctl/kernel.rst b/Documentation/admin-guide/sysctl/kernel.rst
index def074807cee..39c95c0e13d3 100644
--- a/Documentation/admin-guide/sysctl/kernel.rst
+++ b/Documentation/admin-guide/sysctl/kernel.rst
@@ -2,262 +2,197 @@
Documentation for /proc/sys/kernel/
===================================
-kernel version 2.2.10
+.. See scripts/check-sysctl-docs to keep this up to date
+
Copyright (c) 1998, 1999, Rik van Riel <riel@nl.linux.org>
Copyright (c) 2009, Shen Feng<shen@cn.fujitsu.com>
-For general info and legal blurb, please look in index.rst.
+For general info and legal blurb, please look in :doc:`index`.
------------------------------------------------------------------------------
This file contains documentation for the sysctl files in
-/proc/sys/kernel/ and is valid for Linux kernel version 2.2.
+``/proc/sys/kernel/`` and is valid for Linux kernel version 2.2.
The files in this directory can be used to tune and monitor
miscellaneous and general things in the operation of the Linux
-kernel. Since some of the files _can_ be used to screw up your
+kernel. Since some of the files *can* be used to screw up your
system, it is advisable to read both documentation and source
before actually making adjustments.
Currently, these files might (depending on your configuration)
-show up in /proc/sys/kernel:
-
-- acct
-- acpi_video_flags
-- auto_msgmni
-- bootloader_type [ X86 only ]
-- bootloader_version [ X86 only ]
-- cap_last_cap
-- core_pattern
-- core_pipe_limit
-- core_uses_pid
-- ctrl-alt-del
-- dmesg_restrict
-- domainname
-- hostname
-- hotplug
-- hardlockup_all_cpu_backtrace
-- hardlockup_panic
-- hung_task_panic
-- hung_task_check_count
-- hung_task_timeout_secs
-- hung_task_check_interval_secs
-- hung_task_warnings
-- hyperv_record_panic_msg
-- kexec_load_disabled
-- kptr_restrict
-- l2cr [ PPC only ]
-- modprobe ==> Documentation/debugging-modules.txt
-- modules_disabled
-- msg_next_id [ sysv ipc ]
-- msgmax
-- msgmnb
-- msgmni
-- nmi_watchdog
-- osrelease
-- ostype
-- overflowgid
-- overflowuid
-- panic
-- panic_on_oops
-- panic_on_stackoverflow
-- panic_on_unrecovered_nmi
-- panic_on_warn
-- panic_print
-- panic_on_rcu_stall
-- perf_cpu_time_max_percent
-- perf_event_paranoid
-- perf_event_max_stack
-- perf_event_mlock_kb
-- perf_event_max_contexts_per_stack
-- pid_max
-- powersave-nap [ PPC only ]
-- printk
-- printk_delay
-- printk_ratelimit
-- printk_ratelimit_burst
-- pty ==> Documentation/filesystems/devpts.txt
-- randomize_va_space
-- real-root-dev ==> Documentation/admin-guide/initrd.rst
-- reboot-cmd [ SPARC only ]
-- rtsig-max
-- rtsig-nr
-- sched_energy_aware
-- seccomp/ ==> Documentation/userspace-api/seccomp_filter.rst
-- sem
-- sem_next_id [ sysv ipc ]
-- sg-big-buff [ generic SCSI device (sg) ]
-- shm_next_id [ sysv ipc ]
-- shm_rmid_forced
-- shmall
-- shmmax [ sysv ipc ]
-- shmmni
-- softlockup_all_cpu_backtrace
-- soft_watchdog
-- stack_erasing
-- stop-a [ SPARC only ]
-- sysrq ==> Documentation/admin-guide/sysrq.rst
-- sysctl_writes_strict
-- tainted ==> Documentation/admin-guide/tainted-kernels.rst
-- threads-max
-- unknown_nmi_panic
-- watchdog
-- watchdog_thresh
-- version
-
-
-acct:
-=====
+show up in ``/proc/sys/kernel``:
+
+.. contents:: :local:
+
+
+acct
+====
+
+::
-highwater lowwater frequency
+ highwater lowwater frequency
If BSD-style process accounting is enabled these values control
its behaviour. If free space on filesystem where the log lives
-goes below <lowwater>% accounting suspends. If free space gets
-above <highwater>% accounting resumes. <Frequency> determines
+goes below ``lowwater``% accounting suspends. If free space gets
+above ``highwater``% accounting resumes. ``frequency`` determines
how often do we check the amount of free space (value is in
seconds). Default:
-4 2 30
-That is, suspend accounting if there left <= 2% free; resume it
-if we got >=4%; consider information about amount of free space
-valid for 30 seconds.
+::
-acpi_video_flags:
-=================
+ 4 2 30
+
+That is, suspend accounting if free space drops below 2%; resume it
+if it increases to at least 4%; consider information about amount of
+free space valid for 30 seconds.
-flags
-See Doc*/kernel/power/video.txt, it allows mode of video boot to be
-set during run time.
+acpi_video_flags
+================
+See :doc:`/power/video`. This allows the video resume mode to be set,
+in a similar fashion to the ``acpi_sleep`` kernel parameter, by
+combining the following values:
+
+= =======
+1 s3_bios
+2 s3_mode
+4 s3_beep
+= =======
-auto_msgmni:
-============
+
+auto_msgmni
+===========
This variable has no effect and may be removed in future kernel
releases. Reading it always returns 0.
-Up to Linux 3.17, it enabled/disabled automatic recomputing of msgmni
-upon memory add/remove or upon ipc namespace creation/removal.
+Up to Linux 3.17, it enabled/disabled automatic recomputing of
+`msgmni`_
+upon memory add/remove or upon IPC namespace creation/removal.
Echoing "1" into this file enabled msgmni automatic recomputing.
-Echoing "0" turned it off. auto_msgmni default value was 1.
-
+Echoing "0" turned it off. The default value was 1.
-bootloader_type:
-================
-x86 bootloader identification
+bootloader_type (x86 only)
+==========================
This gives the bootloader type number as indicated by the bootloader,
shifted left by 4, and OR'd with the low four bits of the bootloader
version. The reason for this encoding is that this used to match the
-type_of_loader field in the kernel header; the encoding is kept for
+``type_of_loader`` field in the kernel header; the encoding is kept for
backwards compatibility. That is, if the full bootloader type number
is 0x15 and the full version number is 0x234, this file will contain
the value 340 = 0x154.
-See the type_of_loader and ext_loader_type fields in
-Documentation/x86/boot.rst for additional information.
+See the ``type_of_loader`` and ``ext_loader_type`` fields in
+:doc:`/x86/boot` for additional information.
-bootloader_version:
-===================
-
-x86 bootloader version
+bootloader_version (x86 only)
+=============================
The complete bootloader version number. In the example above, this
file will contain the value 564 = 0x234.
-See the type_of_loader and ext_loader_ver fields in
-Documentation/x86/boot.rst for additional information.
+See the ``type_of_loader`` and ``ext_loader_ver`` fields in
+:doc:`/x86/boot` for additional information.
-cap_last_cap:
-=============
+cap_last_cap
+============
Highest valid capability of the running kernel. Exports
-CAP_LAST_CAP from the kernel.
+``CAP_LAST_CAP`` from the kernel.
-core_pattern:
-=============
+core_pattern
+============
-core_pattern is used to specify a core dumpfile pattern name.
+``core_pattern`` is used to specify a core dumpfile pattern name.
* max length 127 characters; default value is "core"
-* core_pattern is used as a pattern template for the output filename;
- certain string patterns (beginning with '%') are substituted with
- their actual values.
-* backward compatibility with core_uses_pid:
+* ``core_pattern`` is used as a pattern template for the output
+ filename; certain string patterns (beginning with '%') are
+ substituted with their actual values.
+* backward compatibility with ``core_uses_pid``:
- If core_pattern does not include "%p" (default does not)
- and core_uses_pid is set, then .PID will be appended to
+ If ``core_pattern`` does not include "%p" (default does not)
+ and ``core_uses_pid`` is set, then .PID will be appended to
the filename.
-* corename format specifiers::
-
- %<NUL> '%' is dropped
- %% output one '%'
- %p pid
- %P global pid (init PID namespace)
- %i tid
- %I global tid (init PID namespace)
- %u uid (in initial user namespace)
- %g gid (in initial user namespace)
- %d dump mode, matches PR_SET_DUMPABLE and
- /proc/sys/fs/suid_dumpable
- %s signal number
- %t UNIX time of dump
- %h hostname
- %e executable filename (may be shortened)
- %E executable path
- %<OTHER> both are dropped
+* corename format specifiers
+
+ ======== ==========================================
+ %<NUL> '%' is dropped
+ %% output one '%'
+ %p pid
+ %P global pid (init PID namespace)
+ %i tid
+ %I global tid (init PID namespace)
+ %u uid (in initial user namespace)
+ %g gid (in initial user namespace)
+ %d dump mode, matches ``PR_SET_DUMPABLE`` and
+ ``/proc/sys/fs/suid_dumpable``
+ %s signal number
+ %t UNIX time of dump
+ %h hostname
+ %e executable filename (may be shortened)
+ %E executable path
+ %c maximum size of core file by resource limit RLIMIT_CORE
+ %<OTHER> both are dropped
+ ======== ==========================================
* If the first character of the pattern is a '|', the kernel will treat
the rest of the pattern as a command to run. The core dump will be
written to the standard input of that program instead of to a file.
-core_pipe_limit:
-================
+core_pipe_limit
+===============
-This sysctl is only applicable when core_pattern is configured to pipe
-core files to a user space helper (when the first character of
-core_pattern is a '|', see above). When collecting cores via a pipe
-to an application, it is occasionally useful for the collecting
-application to gather data about the crashing process from its
-/proc/pid directory. In order to do this safely, the kernel must wait
-for the collecting process to exit, so as not to remove the crashing
-processes proc files prematurely. This in turn creates the
-possibility that a misbehaving userspace collecting process can block
-the reaping of a crashed process simply by never exiting. This sysctl
-defends against that. It defines how many concurrent crashing
-processes may be piped to user space applications in parallel. If
-this value is exceeded, then those crashing processes above that value
-are noted via the kernel log and their cores are skipped. 0 is a
-special value, indicating that unlimited processes may be captured in
-parallel, but that no waiting will take place (i.e. the collecting
-process is not guaranteed access to /proc/<crashing pid>/). This
-value defaults to 0.
-
-
-core_uses_pid:
-==============
+This sysctl is only applicable when `core_pattern`_ is configured to
+pipe core files to a user space helper (when the first character of
+``core_pattern`` is a '|', see above).
+When collecting cores via a pipe to an application, it is occasionally
+useful for the collecting application to gather data about the
+crashing process from its ``/proc/pid`` directory.
+In order to do this safely, the kernel must wait for the collecting
+process to exit, so as not to remove the crashing processes proc files
+prematurely.
+This in turn creates the possibility that a misbehaving userspace
+collecting process can block the reaping of a crashed process simply
+by never exiting.
+This sysctl defends against that.
+It defines how many concurrent crashing processes may be piped to user
+space applications in parallel.
+If this value is exceeded, then those crashing processes above that
+value are noted via the kernel log and their cores are skipped.
+0 is a special value, indicating that unlimited processes may be
+captured in parallel, but that no waiting will take place (i.e. the
+collecting process is not guaranteed access to ``/proc/<crashing
+pid>/``).
+This value defaults to 0.
+
+
+core_uses_pid
+=============
The default coredump filename is "core". By setting
-core_uses_pid to 1, the coredump filename becomes core.PID.
-If core_pattern does not include "%p" (default does not)
-and core_uses_pid is set, then .PID will be appended to
+``core_uses_pid`` to 1, the coredump filename becomes core.PID.
+If `core_pattern`_ does not include "%p" (default does not)
+and ``core_uses_pid`` is set, then .PID will be appended to
the filename.
-ctrl-alt-del:
-=============
+ctrl-alt-del
+============
When the value in this file is 0, ctrl-alt-del is trapped and
-sent to the init(1) program to handle a graceful restart.
+sent to the ``init(1)`` program to handle a graceful restart.
When, however, the value is > 0, Linux's reaction to a Vulcan
Nerve Pinch (tm) will be an immediate reboot, without even
syncing its dirty buffers.
@@ -269,21 +204,22 @@ Note:
to decide what to do with it.
-dmesg_restrict:
-===============
+dmesg_restrict
+==============
This toggle indicates whether unprivileged users are prevented
-from using dmesg(8) to view messages from the kernel's log buffer.
-When dmesg_restrict is set to (0) there are no restrictions. When
-dmesg_restrict is set set to (1), users must have CAP_SYSLOG to use
-dmesg(8).
+from using ``dmesg(8)`` to view messages from the kernel's log
+buffer.
+When ``dmesg_restrict`` is set to 0 there are no restrictions.
+When ``dmesg_restrict`` is set set to 1, users must have
+``CAP_SYSLOG`` to use ``dmesg(8)``.
-The kernel config option CONFIG_SECURITY_DMESG_RESTRICT sets the
-default value of dmesg_restrict.
+The kernel config option ``CONFIG_SECURITY_DMESG_RESTRICT`` sets the
+default value of ``dmesg_restrict``.
-domainname & hostname:
-======================
+domainname & hostname
+=====================
These files can be used to set the NIS/YP domainname and the
hostname of your box in exactly the same way as the commands
@@ -302,167 +238,206 @@ hostname "darkstar" and DNS (Internet Domain Name Server)
domainname "frop.org", not to be confused with the NIS (Network
Information Service) or YP (Yellow Pages) domainname. These two
domain names are in general different. For a detailed discussion
-see the hostname(1) man page.
+see the ``hostname(1)`` man page.
-hardlockup_all_cpu_backtrace:
-=============================
+hardlockup_all_cpu_backtrace
+============================
This value controls the hard lockup detector behavior when a hard
lockup condition is detected as to whether or not to gather further
debug information. If enabled, arch-specific all-CPU stack dumping
will be initiated.
-0: do nothing. This is the default behavior.
+= ============================================
+0 Do nothing. This is the default behavior.
+1 On detection capture more debug information.
+= ============================================
-1: on detection capture more debug information.
-
-hardlockup_panic:
-=================
+hardlockup_panic
+================
This parameter can be used to control whether the kernel panics
when a hard lockup is detected.
- 0 - don't panic on hard lockup
- 1 - panic on hard lockup
+= ===========================
+0 Don't panic on hard lockup.
+1 Panic on hard lockup.
+= ===========================
-See Documentation/admin-guide/lockup-watchdogs.rst for more information. This can
-also be set using the nmi_watchdog kernel parameter.
+See :doc:`/admin-guide/lockup-watchdogs` for more information.
+This can also be set using the nmi_watchdog kernel parameter.
-hotplug:
-========
+hotplug
+=======
Path for the hotplug policy agent.
-Default value is "/sbin/hotplug".
+Default value is "``/sbin/hotplug``".
-hung_task_panic:
-================
+hung_task_panic
+===============
Controls the kernel's behavior when a hung task is detected.
-This file shows up if CONFIG_DETECT_HUNG_TASK is enabled.
-
-0: continue operation. This is the default behavior.
+This file shows up if ``CONFIG_DETECT_HUNG_TASK`` is enabled.
-1: panic immediately.
+= =================================================
+0 Continue operation. This is the default behavior.
+1 Panic immediately.
+= =================================================
-hung_task_check_count:
-======================
+hung_task_check_count
+=====================
The upper bound on the number of tasks that are checked.
-This file shows up if CONFIG_DETECT_HUNG_TASK is enabled.
+This file shows up if ``CONFIG_DETECT_HUNG_TASK`` is enabled.
-hung_task_timeout_secs:
-=======================
+hung_task_timeout_secs
+======================
When a task in D state did not get scheduled
for more than this value report a warning.
-This file shows up if CONFIG_DETECT_HUNG_TASK is enabled.
+This file shows up if ``CONFIG_DETECT_HUNG_TASK`` is enabled.
-0: means infinite timeout - no checking done.
+0 means infinite timeout, no checking is done.
-Possible values to set are in range {0..LONG_MAX/HZ}.
+Possible values to set are in range {0:``LONG_MAX``/``HZ``}.
-hung_task_check_interval_secs:
-==============================
+hung_task_check_interval_secs
+=============================
Hung task check interval. If hung task checking is enabled
-(see hung_task_timeout_secs), the check is done every
-hung_task_check_interval_secs seconds.
-This file shows up if CONFIG_DETECT_HUNG_TASK is enabled.
+(see `hung_task_timeout_secs`_), the check is done every
+``hung_task_check_interval_secs`` seconds.
+This file shows up if ``CONFIG_DETECT_HUNG_TASK`` is enabled.
-0 (default): means use hung_task_timeout_secs as checking interval.
-Possible values to set are in range {0..LONG_MAX/HZ}.
+0 (default) means use ``hung_task_timeout_secs`` as checking
+interval.
+Possible values to set are in range {0:``LONG_MAX``/``HZ``}.
-hung_task_warnings:
-===================
+
+hung_task_warnings
+==================
The maximum number of warnings to report. During a check interval
if a hung task is detected, this value is decreased by 1.
When this value reaches 0, no more warnings will be reported.
-This file shows up if CONFIG_DETECT_HUNG_TASK is enabled.
+This file shows up if ``CONFIG_DETECT_HUNG_TASK`` is enabled.
-1: report an infinite number of warnings.
-hyperv_record_panic_msg:
-========================
+hyperv_record_panic_msg
+=======================
Controls whether the panic kmsg data should be reported to Hyper-V.
-0: do not report panic kmsg data.
-
-1: report the panic kmsg data. This is the default behavior.
+= =========================================================
+0 Do not report panic kmsg data.
+1 Report the panic kmsg data. This is the default behavior.
+= =========================================================
-kexec_load_disabled:
-====================
+kexec_load_disabled
+===================
-A toggle indicating if the kexec_load syscall has been disabled. This
-value defaults to 0 (false: kexec_load enabled), but can be set to 1
-(true: kexec_load disabled). Once true, kexec can no longer be used, and
-the toggle cannot be set back to false. This allows a kexec image to be
-loaded before disabling the syscall, allowing a system to set up (and
-later use) an image without it being altered. Generally used together
-with the "modules_disabled" sysctl.
+A toggle indicating if the ``kexec_load`` syscall has been disabled.
+This value defaults to 0 (false: ``kexec_load`` enabled), but can be
+set to 1 (true: ``kexec_load`` disabled).
+Once true, kexec can no longer be used, and the toggle cannot be set
+back to false.
+This allows a kexec image to be loaded before disabling the syscall,
+allowing a system to set up (and later use) an image without it being
+altered.
+Generally used together with the `modules_disabled`_ sysctl.
-kptr_restrict:
-==============
+kptr_restrict
+=============
This toggle indicates whether restrictions are placed on
-exposing kernel addresses via /proc and other interfaces.
+exposing kernel addresses via ``/proc`` and other interfaces.
+
+When ``kptr_restrict`` is set to 0 (the default) the address is hashed
+before printing.
+(This is the equivalent to %p.)
+
+When ``kptr_restrict`` is set to 1, kernel pointers printed using the
+%pK format specifier will be replaced with 0s unless the user has
+``CAP_SYSLOG`` and effective user and group ids are equal to the real
+ids.
+This is because %pK checks are done at read() time rather than open()
+time, so if permissions are elevated between the open() and the read()
+(e.g via a setuid binary) then %pK will not leak kernel pointers to
+unprivileged users.
+Note, this is a temporary solution only.
+The correct long-term solution is to do the permission checks at
+open() time.
+Consider removing world read permissions from files that use %pK, and
+using `dmesg_restrict`_ to protect against uses of %pK in ``dmesg(8)``
+if leaking kernel pointer values to unprivileged users is a concern.
+
+When ``kptr_restrict`` is set to 2, kernel pointers printed using
+%pK will be replaced with 0s regardless of privileges.
+
+
+modprobe
+========
-When kptr_restrict is set to 0 (the default) the address is hashed before
-printing. (This is the equivalent to %p.)
+This gives the full path of the modprobe command which the kernel will
+use to load modules. This can be used to debug module loading
+requests::
-When kptr_restrict is set to (1), kernel pointers printed using the %pK
-format specifier will be replaced with 0's unless the user has CAP_SYSLOG
-and effective user and group ids are equal to the real ids. This is
-because %pK checks are done at read() time rather than open() time, so
-if permissions are elevated between the open() and the read() (e.g via
-a setuid binary) then %pK will not leak kernel pointers to unprivileged
-users. Note, this is a temporary solution only. The correct long-term
-solution is to do the permission checks at open() time. Consider removing
-world read permissions from files that use %pK, and using dmesg_restrict
-to protect against uses of %pK in dmesg(8) if leaking kernel pointer
-values to unprivileged users is a concern.
+ echo '#! /bin/sh' > /tmp/modprobe
+ echo 'echo "$@" >> /tmp/modprobe.log' >> /tmp/modprobe
+ echo 'exec /sbin/modprobe "$@"' >> /tmp/modprobe
+ chmod a+x /tmp/modprobe
+ echo /tmp/modprobe > /proc/sys/kernel/modprobe
-When kptr_restrict is set to (2), kernel pointers printed using
-%pK will be replaced with 0's regardless of privileges.
+This only applies when the *kernel* is requesting that the module be
+loaded; it won't have any effect if the module is being loaded
+explicitly using ``modprobe`` from userspace.
-l2cr: (PPC only)
+modules_disabled
================
-This flag controls the L2 cache of G3 processor boards. If
-0, the cache is disabled. Enabled if nonzero.
-
-
-modules_disabled:
-=================
-
A toggle value indicating if modules are allowed to be loaded
in an otherwise modular kernel. This toggle defaults to off
(0), but can be set true (1). Once true, modules can be
neither loaded nor unloaded, and the toggle cannot be set back
-to false. Generally used with the "kexec_load_disabled" toggle.
+to false. Generally used with the `kexec_load_disabled`_ toggle.
-msg_next_id, sem_next_id, and shm_next_id:
-==========================================
+.. _msgmni:
+
+msgmax, msgmnb, and msgmni
+==========================
+
+``msgmax`` is the maximum size of an IPC message, in bytes. 8192 by
+default (``MSGMAX``).
+
+``msgmnb`` is the maximum size of an IPC queue, in bytes. 16384 by
+default (``MSGMNB``).
+
+``msgmni`` is the maximum number of IPC queues. 32000 by default
+(``MSGMNI``).
+
+
+msg_next_id, sem_next_id, and shm_next_id (System V IPC)
+========================================================
These three toggles allows to specify desired id for next allocated IPC
object: message, semaphore or shared memory respectively.
By default they are equal to -1, which means generic allocation logic.
-Possible values to set are in range {0..INT_MAX}.
+Possible values to set are in range {0:``INT_MAX``}.
Notes:
1) kernel doesn't guarantee, that new object will have desired id. So,
@@ -471,16 +446,38 @@ Notes:
successful IPC object allocation. If an IPC object allocation syscall
fails, it is undefined if the value remains unmodified or is reset to -1.
+modprobe:
+=========
-nmi_watchdog:
-=============
+The path to the usermode helper for autoloading kernel modules, by
+default "/sbin/modprobe". This binary is executed when the kernel
+requests a module. For example, if userspace passes an unknown
+filesystem type to mount(), then the kernel will automatically request
+the corresponding filesystem module by executing this usermode helper.
+This usermode helper should insert the needed module into the kernel.
+
+This sysctl only affects module autoloading. It has no effect on the
+ability to explicitly insert modules.
+
+If this sysctl is set to the empty string, then module autoloading is
+completely disabled. The kernel will not try to execute a usermode
+helper at all, nor will it call the kernel_module_request LSM hook.
+
+If CONFIG_STATIC_USERMODEHELPER=y is set in the kernel configuration,
+then the configured static usermode helper overrides this sysctl,
+except that the empty string is still accepted to completely disable
+module autoloading as described above.
+
+nmi_watchdog
+============
This parameter can be used to control the NMI watchdog
(i.e. the hard lockup detector) on x86 systems.
-0 - disable the hard lockup detector
-
-1 - enable the hard lockup detector
+= =================================
+0 Disable the hard lockup detector.
+1 Enable the hard lockup detector.
+= =================================
The hard lockup detector monitors each CPU for its ability to respond to
timer interrupts. The mechanism utilizes CPU performance counter registers
@@ -492,11 +489,11 @@ in a KVM virtual machine. This default can be overridden by adding::
nmi_watchdog=1
-to the guest kernel command line (see Documentation/admin-guide/kernel-parameters.rst).
+to the guest kernel command line (see :doc:`/admin-guide/kernel-parameters`).
-numa_balancing:
-===============
+numa_balancing
+==============
Enables/disables automatic page fault based NUMA memory
balancing. Memory is moved automatically to nodes
@@ -514,9 +511,10 @@ ideally is offset by improved memory locality but there is no universal
guarantee. If the target workload is already bound to NUMA nodes then this
feature should be disabled. Otherwise, if the system overhead from the
feature is too high then the rate the kernel samples for NUMA hinting
-faults may be controlled by the numa_balancing_scan_period_min_ms,
+faults may be controlled by the `numa_balancing_scan_period_min_ms,
numa_balancing_scan_delay_ms, numa_balancing_scan_period_max_ms,
-numa_balancing_scan_size_mb, and numa_balancing_settle_count sysctls.
+numa_balancing_scan_size_mb`_, and numa_balancing_settle_count sysctls.
+
numa_balancing_scan_period_min_ms, numa_balancing_scan_delay_ms, numa_balancing_scan_period_max_ms, numa_balancing_scan_size_mb
===============================================================================================================================
@@ -542,23 +540,23 @@ workload pattern changes and minimises performance impact due to remote
memory accesses. These sysctls control the thresholds for scan delays and
the number of pages scanned.
-numa_balancing_scan_period_min_ms is the minimum time in milliseconds to
+``numa_balancing_scan_period_min_ms`` is the minimum time in milliseconds to
scan a tasks virtual memory. It effectively controls the maximum scanning
rate for each task.
-numa_balancing_scan_delay_ms is the starting "scan delay" used for a task
+``numa_balancing_scan_delay_ms`` is the starting "scan delay" used for a task
when it initially forks.
-numa_balancing_scan_period_max_ms is the maximum time in milliseconds to
+``numa_balancing_scan_period_max_ms`` is the maximum time in milliseconds to
scan a tasks virtual memory. It effectively controls the minimum scanning
rate for each task.
-numa_balancing_scan_size_mb is how many megabytes worth of pages are
+``numa_balancing_scan_size_mb`` is how many megabytes worth of pages are
scanned for a given scan.
-osrelease, ostype & version:
-============================
+osrelease, ostype & version
+===========================
::
@@ -569,15 +567,16 @@ osrelease, ostype & version:
# cat version
#5 Wed Feb 25 21:49:24 MET 1998
-The files osrelease and ostype should be clear enough. Version
+The files ``osrelease`` and ``ostype`` should be clear enough.
+``version``
needs a little more clarification however. The '#5' means that
this is the fifth kernel built from this source base and the
date behind it indicates the time the kernel was built.
The only way to tune these values is to rebuild the kernel :-)
-overflowgid & overflowuid:
-==========================
+overflowgid & overflowuid
+=========================
if your architecture did not always support 32-bit UIDs (i.e. arm,
i386, m68k, sh, and sparc32), a fixed UID and GID will be returned to
@@ -588,108 +587,119 @@ These sysctls allow you to change the value of the fixed UID and GID.
The default is 65534.
+panic
+=====
+
+The value in this file determines the behaviour of the kernel on a
panic:
-======
-The value in this file represents the number of seconds the kernel
-waits before rebooting on a panic. When you use the software watchdog,
-the recommended setting is 60.
+* if zero, the kernel will loop forever;
+* if negative, the kernel will reboot immediately;
+* if positive, the kernel will reboot after the corresponding number
+ of seconds.
+When you use the software watchdog, the recommended setting is 60.
-panic_on_io_nmi:
-================
+
+panic_on_io_nmi
+===============
Controls the kernel's behavior when a CPU receives an NMI caused by
an IO error.
-0: try to continue operation (default)
-
-1: panic immediately. The IO error triggered an NMI. This indicates a
- serious system condition which could result in IO data corruption.
- Rather than continuing, panicking might be a better choice. Some
- servers issue this sort of NMI when the dump button is pushed,
- and you can use this option to take a crash dump.
+= ==================================================================
+0 Try to continue operation (default).
+1 Panic immediately. The IO error triggered an NMI. This indicates a
+ serious system condition which could result in IO data corruption.
+ Rather than continuing, panicking might be a better choice. Some
+ servers issue this sort of NMI when the dump button is pushed,
+ and you can use this option to take a crash dump.
+= ==================================================================
-panic_on_oops:
-==============
+panic_on_oops
+=============
Controls the kernel's behaviour when an oops or BUG is encountered.
-0: try to continue operation
-
-1: panic immediately. If the `panic` sysctl is also non-zero then the
- machine will be rebooted.
+= ===================================================================
+0 Try to continue operation.
+1 Panic immediately. If the `panic` sysctl is also non-zero then the
+ machine will be rebooted.
+= ===================================================================
-panic_on_stackoverflow:
-=======================
+panic_on_stackoverflow
+======================
Controls the kernel's behavior when detecting the overflows of
kernel, IRQ and exception stacks except a user stack.
-This file shows up if CONFIG_DEBUG_STACKOVERFLOW is enabled.
-
-0: try to continue operation.
+This file shows up if ``CONFIG_DEBUG_STACKOVERFLOW`` is enabled.
-1: panic immediately.
+= ==========================
+0 Try to continue operation.
+1 Panic immediately.
+= ==========================
-panic_on_unrecovered_nmi:
-=========================
+panic_on_unrecovered_nmi
+========================
The default Linux behaviour on an NMI of either memory or unknown is
to continue operation. For many environments such as scientific
computing it is preferable that the box is taken out and the error
dealt with than an uncorrected parity/ECC error get propagated.
-A small number of systems do generate NMI's for bizarre random reasons
+A small number of systems do generate NMIs for bizarre random reasons
such as power management so the default is off. That sysctl works like
the existing panic controls already in that directory.
-panic_on_warn:
-==============
+panic_on_warn
+=============
Calls panic() in the WARN() path when set to 1. This is useful to avoid
a kernel rebuild when attempting to kdump at the location of a WARN().
-0: only WARN(), default behaviour.
+= ================================================
+0 Only WARN(), default behaviour.
+1 Call panic() after printing out WARN() location.
+= ================================================
-1: call panic() after printing out WARN() location.
-
-panic_print:
-============
+panic_print
+===========
Bitmask for printing system info when panic happens. User can chose
combination of the following bits:
-===== ========================================
+===== ============================================
bit 0 print all tasks info
bit 1 print system memory info
bit 2 print timer info
-bit 3 print locks info if CONFIG_LOCKDEP is on
+bit 3 print locks info if ``CONFIG_LOCKDEP`` is on
bit 4 print ftrace buffer
-===== ========================================
+===== ============================================
So for example to print tasks and memory info on panic, user can::
echo 3 > /proc/sys/kernel/panic_print
-panic_on_rcu_stall:
-===================
+panic_on_rcu_stall
+==================
When set to 1, calls panic() after RCU stall detection messages. This
is useful to define the root cause of RCU stalls using a vmcore.
-0: do not panic() when RCU stall takes place, default behavior.
+= ============================================================
+0 Do not panic() when RCU stall takes place, default behavior.
+1 panic() after printing RCU stall messages.
+= ============================================================
-1: panic() after printing RCU stall messages.
-
-perf_cpu_time_max_percent:
-==========================
+perf_cpu_time_max_percent
+=========================
Hints to the kernel how much CPU time it should be allowed to
use to handle perf sampling events. If the perf subsystem
@@ -702,171 +712,179 @@ unexpectedly take too long to execute, the NMIs can become
stacked up next to each other so much that nothing else is
allowed to execute.
-0:
- disable the mechanism. Do not monitor or correct perf's
- sampling rate no matter how CPU time it takes.
+===== ========================================================
+0 Disable the mechanism. Do not monitor or correct perf's
+ sampling rate no matter how CPU time it takes.
-1-100:
- attempt to throttle perf's sample rate to this
- percentage of CPU. Note: the kernel calculates an
- "expected" length of each sample event. 100 here means
- 100% of that expected length. Even if this is set to
- 100, you may still see sample throttling if this
- length is exceeded. Set to 0 if you truly do not care
- how much CPU is consumed.
+1-100 Attempt to throttle perf's sample rate to this
+ percentage of CPU. Note: the kernel calculates an
+ "expected" length of each sample event. 100 here means
+ 100% of that expected length. Even if this is set to
+ 100, you may still see sample throttling if this
+ length is exceeded. Set to 0 if you truly do not care
+ how much CPU is consumed.
+===== ========================================================
-perf_event_paranoid:
-====================
+perf_event_paranoid
+===================
Controls use of the performance events system by unprivileged
users (without CAP_SYS_ADMIN). The default value is 2.
=== ==================================================================
- -1 Allow use of (almost) all events by all users
+ -1 Allow use of (almost) all events by all users.
- Ignore mlock limit after perf_event_mlock_kb without CAP_IPC_LOCK
+ Ignore mlock limit after perf_event_mlock_kb without
+ ``CAP_IPC_LOCK``.
->=0 Disallow ftrace function tracepoint by users without CAP_SYS_ADMIN
+>=0 Disallow ftrace function tracepoint by users without
+ ``CAP_SYS_ADMIN``.
- Disallow raw tracepoint access by users without CAP_SYS_ADMIN
+ Disallow raw tracepoint access by users without ``CAP_SYS_ADMIN``.
->=1 Disallow CPU event access by users without CAP_SYS_ADMIN
+>=1 Disallow CPU event access by users without ``CAP_SYS_ADMIN``.
->=2 Disallow kernel profiling by users without CAP_SYS_ADMIN
+>=2 Disallow kernel profiling by users without ``CAP_SYS_ADMIN``.
=== ==================================================================
-perf_event_max_stack:
-=====================
+perf_event_max_stack
+====================
-Controls maximum number of stack frames to copy for (attr.sample_type &
-PERF_SAMPLE_CALLCHAIN) configured events, for instance, when using
-'perf record -g' or 'perf trace --call-graph fp'.
+Controls maximum number of stack frames to copy for (``attr.sample_type &
+PERF_SAMPLE_CALLCHAIN``) configured events, for instance, when using
+'``perf record -g``' or '``perf trace --call-graph fp``'.
This can only be done when no events are in use that have callchains
-enabled, otherwise writing to this file will return -EBUSY.
+enabled, otherwise writing to this file will return ``-EBUSY``.
The default value is 127.
-perf_event_mlock_kb:
-====================
+perf_event_mlock_kb
+===================
Control size of per-cpu ring buffer not counted agains mlock limit.
The default value is 512 + 1 page
-perf_event_max_contexts_per_stack:
-==================================
+perf_event_max_contexts_per_stack
+=================================
Controls maximum number of stack frame context entries for
-(attr.sample_type & PERF_SAMPLE_CALLCHAIN) configured events, for
-instance, when using 'perf record -g' or 'perf trace --call-graph fp'.
+(``attr.sample_type & PERF_SAMPLE_CALLCHAIN``) configured events, for
+instance, when using '``perf record -g``' or '``perf trace --call-graph fp``'.
This can only be done when no events are in use that have callchains
-enabled, otherwise writing to this file will return -EBUSY.
+enabled, otherwise writing to this file will return ``-EBUSY``.
The default value is 8.
-pid_max:
-========
+pid_max
+=======
PID allocation wrap value. When the kernel's next PID value
reaches this value, it wraps back to a minimum PID value.
-PIDs of value pid_max or larger are not allocated.
+PIDs of value ``pid_max`` or larger are not allocated.
-ns_last_pid:
-============
+ns_last_pid
+===========
The last pid allocated in the current (the one task using this sysctl
lives in) pid namespace. When selecting a pid for a next task on fork
kernel tries to allocate a number starting from this one.
-powersave-nap: (PPC only)
-=========================
+powersave-nap (PPC only)
+========================
If set, Linux-PPC will use the 'nap' mode of powersaving,
otherwise the 'doze' mode will be used.
+
==============================================================
-printk:
-=======
+printk
+======
-The four values in printk denote: console_loglevel,
-default_message_loglevel, minimum_console_loglevel and
-default_console_loglevel respectively.
+The four values in printk denote: ``console_loglevel``,
+``default_message_loglevel``, ``minimum_console_loglevel`` and
+``default_console_loglevel`` respectively.
These values influence printk() behavior when printing or
-logging error messages. See 'man 2 syslog' for more info on
+logging error messages. See '``man 2 syslog``' for more info on
the different loglevels.
-- console_loglevel:
- messages with a higher priority than
- this will be printed to the console
-- default_message_loglevel:
- messages without an explicit priority
- will be printed with this priority
-- minimum_console_loglevel:
- minimum (highest) value to which
- console_loglevel can be set
-- default_console_loglevel:
- default value for console_loglevel
+======================== =====================================
+console_loglevel messages with a higher priority than
+ this will be printed to the console
+default_message_loglevel messages without an explicit priority
+ will be printed with this priority
+minimum_console_loglevel minimum (highest) value to which
+ console_loglevel can be set
+default_console_loglevel default value for console_loglevel
+======================== =====================================
-printk_delay:
-=============
+printk_delay
+============
-Delay each printk message in printk_delay milliseconds
+Delay each printk message in ``printk_delay`` milliseconds
Value from 0 - 10000 is allowed.
-printk_ratelimit:
-=================
+printk_ratelimit
+================
-Some warning messages are rate limited. printk_ratelimit specifies
+Some warning messages are rate limited. ``printk_ratelimit`` specifies
the minimum length of time between these messages (in seconds).
The default value is 5 seconds.
A value of 0 will disable rate limiting.
-printk_ratelimit_burst:
-=======================
+printk_ratelimit_burst
+======================
-While long term we enforce one message per printk_ratelimit
+While long term we enforce one message per `printk_ratelimit`_
seconds, we do allow a burst of messages to pass through.
-printk_ratelimit_burst specifies the number of messages we can
+``printk_ratelimit_burst`` specifies the number of messages we can
send before ratelimiting kicks in.
The default value is 10 messages.
-printk_devkmsg:
-===============
-
-Control the logging to /dev/kmsg from userspace:
-
-ratelimit:
- default, ratelimited
+printk_devkmsg
+==============
-on: unlimited logging to /dev/kmsg from userspace
+Control the logging to ``/dev/kmsg`` from userspace:
-off: logging to /dev/kmsg disabled
+========= =============================================
+ratelimit default, ratelimited
+on unlimited logging to /dev/kmsg from userspace
+off logging to /dev/kmsg disabled
+========= =============================================
-The kernel command line parameter printk.devkmsg= overrides this and is
+The kernel command line parameter ``printk.devkmsg=`` overrides this and is
a one-time setting until next reboot: once set, it cannot be changed by
this sysctl interface anymore.
+==============================================================
-randomize_va_space:
-===================
+
+pty
+===
+
+See Documentation/filesystems/devpts.txt.
+
+
+randomize_va_space
+==================
This option can be used to select the type of process address
space randomization that is used in the system, for architectures
@@ -881,10 +899,10 @@ that support this feature.
This, among other things, implies that shared libraries will be
loaded to random addresses. Also for PIE-linked binaries, the
location of code start is randomized. This is the default if the
- CONFIG_COMPAT_BRK option is enabled.
+ ``CONFIG_COMPAT_BRK`` option is enabled.
2 Additionally enable heap randomization. This is the default if
- CONFIG_COMPAT_BRK is disabled.
+ ``CONFIG_COMPAT_BRK`` is disabled.
There are a few legacy applications out there (such as some ancient
versions of libc.so.5 from 1996) that assume that brk area starts
@@ -894,31 +912,27 @@ that support this feature.
systems it is safe to choose full randomization.
Systems with ancient and/or broken binaries should be configured
- with CONFIG_COMPAT_BRK enabled, which excludes the heap from process
+ with ``CONFIG_COMPAT_BRK`` enabled, which excludes the heap from process
address space randomization.
== ===========================================================================
-reboot-cmd: (Sparc only)
-========================
-
-??? This seems to be a way to give an argument to the Sparc
-ROM/Flash boot loader. Maybe to tell it what to do after
-rebooting. ???
+real-root-dev
+=============
+See :doc:`/admin-guide/initrd`.
-rtsig-max & rtsig-nr:
-=====================
-The file rtsig-max can be used to tune the maximum number
-of POSIX realtime (queued) signals that can be outstanding
-in the system.
+reboot-cmd (SPARC only)
+=======================
-rtsig-nr shows the number of RT signals currently queued.
+??? This seems to be a way to give an argument to the Sparc
+ROM/Flash boot loader. Maybe to tell it what to do after
+rebooting. ???
-sched_energy_aware:
-===================
+sched_energy_aware
+==================
Enables/disables Energy Aware Scheduling (EAS). EAS starts
automatically on platforms where it can run (that is,
@@ -928,75 +942,88 @@ requirements for EAS but you do not want to use it, change
this value to 0.
-sched_schedstats:
-=================
+sched_schedstats
+================
Enables/disables scheduler statistics. Enabling this feature
incurs a small amount of overhead in the scheduler but is
useful for debugging and performance tuning.
-sg-big-buff:
-============
+seccomp
+=======
+
+See :doc:`/userspace-api/seccomp_filter`.
+
+
+sg-big-buff
+===========
This file shows the size of the generic SCSI (sg) buffer.
You can't tune it just yet, but you could change it on
-compile time by editing include/scsi/sg.h and changing
-the value of SG_BIG_BUFF.
+compile time by editing ``include/scsi/sg.h`` and changing
+the value of ``SG_BIG_BUFF``.
There shouldn't be any reason to change this value. If
you can come up with one, you probably know what you
are doing anyway :)
-shmall:
-=======
+shmall
+======
This parameter sets the total amount of shared memory pages that
-can be used system wide. Hence, SHMALL should always be at least
-ceil(shmmax/PAGE_SIZE).
+can be used system wide. Hence, ``shmall`` should always be at least
+``ceil(shmmax/PAGE_SIZE)``.
-If you are not sure what the default PAGE_SIZE is on your Linux
-system, you can run the following command:
+If you are not sure what the default ``PAGE_SIZE`` is on your Linux
+system, you can run the following command::
# getconf PAGE_SIZE
-shmmax:
-=======
+shmmax
+======
This value can be used to query and set the run time limit
on the maximum shared memory segment size that can be created.
Shared memory segments up to 1Gb are now supported in the
-kernel. This value defaults to SHMMAX.
+kernel. This value defaults to ``SHMMAX``.
-shm_rmid_forced:
-================
+shmmni
+======
+
+This value determines the maximum number of shared memory segments.
+4096 by default (``SHMMNI``).
+
+
+shm_rmid_forced
+===============
Linux lets you set resource limits, including how much memory one
-process can consume, via setrlimit(2). Unfortunately, shared memory
+process can consume, via ``setrlimit(2)``. Unfortunately, shared memory
segments are allowed to exist without association with any process, and
thus might not be counted against any resource limits. If enabled,
shared memory segments are automatically destroyed when their attach
count becomes zero after a detach or a process termination. It will
also destroy segments that were created, but never attached to, on exit
-from the process. The only use left for IPC_RMID is to immediately
+from the process. The only use left for ``IPC_RMID`` is to immediately
destroy an unattached segment. Of course, this breaks the way things are
defined, so some applications might stop working. Note that this
feature will do you no good unless you also configure your resource
-limits (in particular, RLIMIT_AS and RLIMIT_NPROC). Most systems don't
+limits (in particular, ``RLIMIT_AS`` and ``RLIMIT_NPROC``). Most systems don't
need this.
Note that if you change this from 0 to 1, already created segments
without users and with a dead originative process will be destroyed.
-sysctl_writes_strict:
-=====================
+sysctl_writes_strict
+====================
Control how file position affects the behavior of updating sysctl values
-via the /proc/sys interface:
+via the ``/proc/sys`` interface:
== ======================================================================
-1 Legacy per-write sysctl value handling, with no printk warnings.
@@ -1013,8 +1040,8 @@ via the /proc/sys interface:
== ======================================================================
-softlockup_all_cpu_backtrace:
-=============================
+softlockup_all_cpu_backtrace
+============================
This value controls the soft lockup detector thread's behavior
when a soft lockup condition is detected as to whether or not
@@ -1024,43 +1051,80 @@ be issued an NMI and instructed to capture stack trace.
This feature is only applicable for architectures which support
NMI.
-0: do nothing. This is the default behavior.
+= ============================================
+0 Do nothing. This is the default behavior.
+1 On detection capture more debug information.
+= ============================================
-1: on detection capture more debug information.
+softlockup_panic
+=================
-soft_watchdog:
-==============
+This parameter can be used to control whether the kernel panics
+when a soft lockup is detected.
-This parameter can be used to control the soft lockup detector.
+= ============================================
+0 Don't panic on soft lockup.
+1 Panic on soft lockup.
+= ============================================
- 0 - disable the soft lockup detector
+This can also be set using the softlockup_panic kernel parameter.
- 1 - enable the soft lockup detector
+
+soft_watchdog
+=============
+
+This parameter can be used to control the soft lockup detector.
+
+= =================================
+0 Disable the soft lockup detector.
+1 Enable the soft lockup detector.
+= =================================
The soft lockup detector monitors CPUs for threads that are hogging the CPUs
without rescheduling voluntarily, and thus prevent the 'watchdog/N' threads
from running. The mechanism depends on the CPUs ability to respond to timer
interrupts which are needed for the 'watchdog/N' threads to be woken up by
-the watchdog timer function, otherwise the NMI watchdog - if enabled - can
+the watchdog timer function, otherwise the NMI watchdog — if enabled — can
detect a hard lockup condition.
-stack_erasing:
-==============
+stack_erasing
+=============
This parameter can be used to control kernel stack erasing at the end
-of syscalls for kernels built with CONFIG_GCC_PLUGIN_STACKLEAK.
+of syscalls for kernels built with ``CONFIG_GCC_PLUGIN_STACKLEAK``.
That erasing reduces the information which kernel stack leak bugs
can reveal and blocks some uninitialized stack variable attacks.
The tradeoff is the performance impact: on a single CPU system kernel
compilation sees a 1% slowdown, other systems and workloads may vary.
- 0: kernel stack erasing is disabled, STACKLEAK_METRICS are not updated.
+= ====================================================================
+0 Kernel stack erasing is disabled, STACKLEAK_METRICS are not updated.
+1 Kernel stack erasing is enabled (default), it is performed before
+ returning to the userspace at the end of syscalls.
+= ====================================================================
- 1: kernel stack erasing is enabled (default), it is performed before
- returning to the userspace at the end of syscalls.
+
+stop-a (SPARC only)
+===================
+
+Controls Stop-A:
+
+= ====================================
+0 Stop-A has no effect.
+1 Stop-A breaks to the PROM (default).
+= ====================================
+
+Stop-A is always enabled on a panic, so that the user can return to
+the boot PROM.
+
+
+sysrq
+=====
+
+See :doc:`/admin-guide/sysrq`.
tainted
@@ -1090,30 +1154,30 @@ ORed together. The letters are seen in "Tainted" line of Oops reports.
131072 `(T)` The kernel was built with the struct randomization plugin
====== ===== ==============================================================
-See Documentation/admin-guide/tainted-kernels.rst for more information.
+See :doc:`/admin-guide/tainted-kernels` for more information.
-threads-max:
-============
+threads-max
+===========
This value controls the maximum number of threads that can be created
-using fork().
+using ``fork()``.
During initialization the kernel sets this value such that even if the
maximum number of threads is created, the thread structures occupy only
a part (1/8th) of the available RAM pages.
-The minimum value that can be written to threads-max is 1.
+The minimum value that can be written to ``threads-max`` is 1.
-The maximum value that can be written to threads-max is given by the
-constant FUTEX_TID_MASK (0x3fffffff).
+The maximum value that can be written to ``threads-max`` is given by the
+constant ``FUTEX_TID_MASK`` (0x3fffffff).
-If a value outside of this range is written to threads-max an error
-EINVAL occurs.
+If a value outside of this range is written to ``threads-max`` an
+``EINVAL`` error occurs.
-unknown_nmi_panic:
-==================
+unknown_nmi_panic
+=================
The value in this file affects behavior of handling NMI. When the
value is non-zero, unknown NMI is trapped and then panic occurs. At
@@ -1123,37 +1187,39 @@ NMI switch that most IA32 servers have fires unknown NMI up, for
example. If a system hangs up, try pressing the NMI switch.
-watchdog:
-=========
+watchdog
+========
This parameter can be used to disable or enable the soft lockup detector
-_and_ the NMI watchdog (i.e. the hard lockup detector) at the same time.
-
- 0 - disable both lockup detectors
+*and* the NMI watchdog (i.e. the hard lockup detector) at the same time.
- 1 - enable both lockup detectors
+= ==============================
+0 Disable both lockup detectors.
+1 Enable both lockup detectors.
+= ==============================
The soft lockup detector and the NMI watchdog can also be disabled or
-enabled individually, using the soft_watchdog and nmi_watchdog parameters.
-If the watchdog parameter is read, for example by executing::
+enabled individually, using the ``soft_watchdog`` and ``nmi_watchdog``
+parameters.
+If the ``watchdog`` parameter is read, for example by executing::
cat /proc/sys/kernel/watchdog
-the output of this command (0 or 1) shows the logical OR of soft_watchdog
-and nmi_watchdog.
+the output of this command (0 or 1) shows the logical OR of
+``soft_watchdog`` and ``nmi_watchdog``.
-watchdog_cpumask:
-=================
+watchdog_cpumask
+================
This value can be used to control on which cpus the watchdog may run.
-The default cpumask is all possible cores, but if NO_HZ_FULL is
+The default cpumask is all possible cores, but if ``NO_HZ_FULL`` is
enabled in the kernel config, and cores are specified with the
-nohz_full= boot argument, those cores are excluded by default.
+``nohz_full=`` boot argument, those cores are excluded by default.
Offline cores can be included in this mask, and if the core is later
brought online, the watchdog will be started based on the mask value.
-Typically this value would only be touched in the nohz_full case
+Typically this value would only be touched in the ``nohz_full`` case
to re-enable cores that by default were not running the watchdog,
if a kernel lockup was suspected on those cores.
@@ -1164,12 +1230,12 @@ might say::
echo 0,2-4 > /proc/sys/kernel/watchdog_cpumask
-watchdog_thresh:
-================
+watchdog_thresh
+===============
This value can be used to control the frequency of hrtimer and NMI
events and the soft and hard lockup thresholds. The default threshold
is 10 seconds.
-The softlockup threshold is (2 * watchdog_thresh). Setting this
+The softlockup threshold is (``2 * watchdog_thresh``). Setting this
tunable to zero will disable lockup detection altogether.
diff --git a/Documentation/admin-guide/sysctl/net.rst b/Documentation/admin-guide/sysctl/net.rst
index 287b98708a40..e043c9213388 100644
--- a/Documentation/admin-guide/sysctl/net.rst
+++ b/Documentation/admin-guide/sysctl/net.rst
@@ -67,7 +67,8 @@ two flavors of JITs, the newer eBPF JIT currently supported on:
- sparc64
- mips64
- s390x
- - riscv
+ - riscv64
+ - riscv32
And the older cBPF JIT supported on the following archs:
diff --git a/Documentation/admin-guide/sysctl/user.rst b/Documentation/admin-guide/sysctl/user.rst
index 650eaa03f15e..c45824589339 100644
--- a/Documentation/admin-guide/sysctl/user.rst
+++ b/Documentation/admin-guide/sysctl/user.rst
@@ -65,6 +65,12 @@ max_pid_namespaces
The maximum number of pid namespaces that any user in the current
user namespace may create.
+max_time_namespaces
+===================
+
+ The maximum number of time namespaces that any user in the current
+ user namespace may create.
+
max_user_namespaces
===================
diff --git a/Documentation/admin-guide/sysctl/vm.rst b/Documentation/admin-guide/sysctl/vm.rst
index 64aeee1009ca..0329a4d3fa9e 100644
--- a/Documentation/admin-guide/sysctl/vm.rst
+++ b/Documentation/admin-guide/sysctl/vm.rst
@@ -128,6 +128,9 @@ allowed to examine the unevictable lru (mlocked pages) for pages to compact.
This should be used on systems where stalls for minor page faults are an
acceptable trade for large contiguous free memory. Set to 0 to prevent
compaction from moving pages that are unevictable. Default value is 1.
+On CONFIG_PREEMPT_RT the default value is 0 in order to avoid a page fault, due
+to compaction, which would block the task from becomming active until the fault
+is resolved.
dirty_background_bytes
diff --git a/Documentation/admin-guide/sysrq.rst b/Documentation/admin-guide/sysrq.rst
index 72b2cfb066f4..a46209f4636c 100644
--- a/Documentation/admin-guide/sysrq.rst
+++ b/Documentation/admin-guide/sysrq.rst
@@ -48,9 +48,10 @@ always allowed (by a user with admin privileges).
How do I use the magic SysRq key?
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-On x86 - You press the key combo :kbd:`ALT-SysRq-<command key>`.
+On x86
+ You press the key combo :kbd:`ALT-SysRq-<command key>`.
-.. note::
+ .. note::
Some
keyboards may not have a key labeled 'SysRq'. The 'SysRq' key is
also known as the 'Print Screen' key. Also some keyboards cannot
@@ -58,14 +59,15 @@ On x86 - You press the key combo :kbd:`ALT-SysRq-<command key>`.
have better luck with press :kbd:`Alt`, press :kbd:`SysRq`,
release :kbd:`SysRq`, press :kbd:`<command key>`, release everything.
-On SPARC - You press :kbd:`ALT-STOP-<command key>`, I believe.
+On SPARC
+ You press :kbd:`ALT-STOP-<command key>`, I believe.
On the serial console (PC style standard serial ports only)
You send a ``BREAK``, then within 5 seconds a command key. Sending
``BREAK`` twice is interpreted as a normal BREAK.
On PowerPC
- Press :kbd:`ALT - Print Screen` (or :kbd:`F13`) - :kbd:`<command key>`,
+ Press :kbd:`ALT - Print Screen` (or :kbd:`F13`) - :kbd:`<command key>`.
:kbd:`Print Screen` (or :kbd:`F13`) - :kbd:`<command key>` may suffice.
On other
@@ -73,7 +75,7 @@ On other
let me know so I can add them to this section.
On all
- write a character to /proc/sysrq-trigger. e.g.::
+ Write a character to /proc/sysrq-trigger. e.g.::
echo t > /proc/sysrq-trigger
@@ -282,7 +284,7 @@ Just ask them on the linux-kernel mailing list:
Credits
~~~~~~~
-Written by Mydraal <vulpyne@vulpyne.net>
-Updated by Adam Sulmicki <adam@cfar.umd.edu>
-Updated by Jeremy M. Dolan <jmd@turbogeek.org> 2001/01/28 10:15:59
-Added to by Crutcher Dunnavant <crutcher+kernel@datastacks.com>
+- Written by Mydraal <vulpyne@vulpyne.net>
+- Updated by Adam Sulmicki <adam@cfar.umd.edu>
+- Updated by Jeremy M. Dolan <jmd@turbogeek.org> 2001/01/28 10:15:59
+- Added to by Crutcher Dunnavant <crutcher+kernel@datastacks.com>