aboutsummaryrefslogtreecommitdiffstatshomepage
path: root/Documentation/arch/x86/amd_hsmp.rst
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/arch/x86/amd_hsmp.rst')
-rw-r--r--Documentation/arch/x86/amd_hsmp.rst192
1 files changed, 192 insertions, 0 deletions
diff --git a/Documentation/arch/x86/amd_hsmp.rst b/Documentation/arch/x86/amd_hsmp.rst
new file mode 100644
index 000000000000..a094f55c10b0
--- /dev/null
+++ b/Documentation/arch/x86/amd_hsmp.rst
@@ -0,0 +1,192 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+============================================
+AMD HSMP interface
+============================================
+
+Newer Fam19h(model 0x00-0x1f, 0x30-0x3f, 0x90-0x9f, 0xa0-0xaf),
+Fam1Ah(model 0x00-0x1f) EPYC server line of processors from AMD support
+system management functionality via HSMP (Host System Management Port).
+
+The Host System Management Port (HSMP) is an interface to provide
+OS-level software with access to system management functions via a
+set of mailbox registers.
+
+More details on the interface can be found in chapter
+"7 Host System Management Port (HSMP)" of the family/model PPR
+Eg: https://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/programmer-references/55898_B1_pub_0_50.zip
+
+
+HSMP interface is supported on EPYC line of server CPUs and MI300A (APU).
+
+
+HSMP device
+============================================
+
+amd_hsmp driver under drivers/platforms/x86/amd/hsmp/ has separate driver files
+for ACPI object based probing, platform device based probing and for the common
+code for these two drivers.
+
+Kconfig option CONFIG_AMD_HSMP_PLAT compiles plat.c and creates amd_hsmp.ko.
+Kconfig option CONFIG_AMD_HSMP_ACPI compiles acpi.c and creates hsmp_acpi.ko.
+Selecting any of these two configs automatically selects CONFIG_AMD_HSMP. This
+compiles common code hsmp.c and creates hsmp_common.ko module.
+
+Both the ACPI and plat drivers create the miscdevice /dev/hsmp to let
+user space programs run hsmp mailbox commands.
+
+The ACPI object format supported by the driver is defined below.
+
+$ ls -al /dev/hsmp
+crw-r--r-- 1 root root 10, 123 Jan 21 21:41 /dev/hsmp
+
+Characteristics of the dev node:
+ * Write mode is used for running set/configure commands
+ * Read mode is used for running get/status monitor commands
+
+Access restrictions:
+ * Only root user is allowed to open the file in write mode.
+ * The file can be opened in read mode by all the users.
+
+In-kernel integration:
+ * Other subsystems in the kernel can use the exported transport
+ function hsmp_send_message().
+ * Locking across callers is taken care by the driver.
+
+
+HSMP sysfs interface
+====================
+
+1. Metrics table binary sysfs
+
+AMD MI300A MCM provides GET_METRICS_TABLE message to retrieve
+most of the system management information from SMU in one go.
+
+The metrics table is made available as hexadecimal sysfs binary file
+under per socket sysfs directory created at
+/sys/devices/platform/amd_hsmp/socket%d/metrics_bin
+
+Note: lseek() is not supported as entire metrics table is read.
+
+Metrics table definitions will be documented as part of Public PPR.
+The same is defined in the amd_hsmp.h header.
+
+2. HSMP telemetry sysfs files
+
+Following sysfs files are available at /sys/devices/platform/AMDI0097:0X/.
+
+* c0_residency_input: Percentage of cores in C0 state.
+* prochot_status: Reports 1 if the processor is at thermal threshold value,
+ 0 otherwise.
+* smu_fw_version: SMU firmware version.
+* protocol_version: HSMP interface version.
+* ddr_max_bw: Theoretical maximum DDR bandwidth in GB/s.
+* ddr_utilised_bw_input: Current utilized DDR bandwidth in GB/s.
+* ddr_utilised_bw_perc_input(%): Percentage of current utilized DDR bandwidth.
+* mclk_input: Memory clock in MHz.
+* fclk_input: Fabric clock in MHz.
+* clk_fmax: Maximum frequency of socket in MHz.
+* clk_fmin: Minimum frequency of socket in MHz.
+* cclk_freq_limit_input: Core clock frequency limit per socket in MHz.
+* pwr_current_active_freq_limit: Current active frequency limit of socket
+ in MHz.
+* pwr_current_active_freq_limit_source: Source of current active frequency
+ limit.
+
+ACPI device object format
+=========================
+The ACPI object format expected from the amd_hsmp driver
+for socket with ID00 is given below::
+
+ Device(HSMP)
+ {
+ Name(_HID, "AMDI0097")
+ Name(_UID, "ID00")
+ Name(HSE0, 0x00000001)
+ Name(RBF0, ResourceTemplate()
+ {
+ Memory32Fixed(ReadWrite, 0xxxxxxx, 0x00100000)
+ })
+ Method(_CRS, 0, NotSerialized)
+ {
+ Return(RBF0)
+ }
+ Method(_STA, 0, NotSerialized)
+ {
+ If(LEqual(HSE0, One))
+ {
+ Return(0x0F)
+ }
+ Else
+ {
+ Return(Zero)
+ }
+ }
+ Name(_DSD, Package(2)
+ {
+ Buffer(0x10)
+ {
+ 0x9D, 0x61, 0x4D, 0xB7, 0x07, 0x57, 0xBD, 0x48,
+ 0xA6, 0x9F, 0x4E, 0xA2, 0x87, 0x1F, 0xC2, 0xF6
+ },
+ Package(3)
+ {
+ Package(2) {"MsgIdOffset", 0x00010934},
+ Package(2) {"MsgRspOffset", 0x00010980},
+ Package(2) {"MsgArgOffset", 0x000109E0}
+ }
+ })
+ }
+
+HSMP HWMON interface
+====================
+HSMP power sensors are registered with the hwmon interface. A separate hwmon
+directory is created for each socket and the following files are generated
+within the hwmon directory.
+- power1_input (read only)
+- power1_cap_max (read only)
+- power1_cap (read, write)
+
+An example
+==========
+
+To access hsmp device from a C program.
+First, you need to include the headers::
+
+ #include <linux/amd_hsmp.h>
+
+Which defines the supported messages/message IDs.
+
+Next thing, open the device file, as follows::
+
+ int file;
+
+ file = open("/dev/hsmp", O_RDWR);
+ if (file < 0) {
+ /* ERROR HANDLING; you can check errno to see what went wrong */
+ exit(1);
+ }
+
+The following IOCTL is defined:
+
+``ioctl(file, HSMP_IOCTL_CMD, struct hsmp_message *msg)``
+ The argument is a pointer to a::
+
+ struct hsmp_message {
+ __u32 msg_id; /* Message ID */
+ __u16 num_args; /* Number of input argument words in message */
+ __u16 response_sz; /* Number of expected output/response words */
+ __u32 args[HSMP_MAX_MSG_LEN]; /* argument/response buffer */
+ __u16 sock_ind; /* socket number */
+ };
+
+The ioctl would return a non-zero on failure; you can read errno to see
+what happened. The transaction returns 0 on success.
+
+More details on the interface and message definitions can be found in chapter
+"7 Host System Management Port (HSMP)" of the respective family/model PPR
+eg: https://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/programmer-references/55898_B1_pub_0_50.zip
+
+User space C-APIs are made available by linking against the esmi library,
+which is provided by the E-SMS project https://www.amd.com/en/developer/e-sms.html.
+See: https://github.com/amd/esmi_ib_library