aboutsummaryrefslogtreecommitdiffstatshomepage
path: root/Documentation/bpf/bpf_iterators.rst
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/bpf/bpf_iterators.rst')
-rw-r--r--Documentation/bpf/bpf_iterators.rst589
1 files changed, 589 insertions, 0 deletions
diff --git a/Documentation/bpf/bpf_iterators.rst b/Documentation/bpf/bpf_iterators.rst
new file mode 100644
index 000000000000..189e3ec1c6c8
--- /dev/null
+++ b/Documentation/bpf/bpf_iterators.rst
@@ -0,0 +1,589 @@
+=============
+BPF Iterators
+=============
+
+--------
+Overview
+--------
+
+BPF supports two separate entities collectively known as "BPF iterators": BPF
+iterator *program type* and *open-coded* BPF iterators. The former is
+a stand-alone BPF program type which, when attached and activated by user,
+will be called once for each entity (task_struct, cgroup, etc) that is being
+iterated. The latter is a set of BPF-side APIs implementing iterator
+functionality and available across multiple BPF program types. Open-coded
+iterators provide similar functionality to BPF iterator programs, but gives
+more flexibility and control to all other BPF program types. BPF iterator
+programs, on the other hand, can be used to implement anonymous or BPF
+FS-mounted special files, whose contents are generated by attached BPF iterator
+program, backed by seq_file functionality. Both are useful depending on
+specific needs.
+
+When adding a new BPF iterator program, it is expected that similar
+functionality will be added as open-coded iterator for maximum flexibility.
+It's also expected that iteration logic and code will be maximally shared and
+reused between two iterator API surfaces.
+
+------------------------
+Open-coded BPF Iterators
+------------------------
+
+Open-coded BPF iterators are implemented as tightly-coupled trios of kfuncs
+(constructor, next element fetch, destructor) and iterator-specific type
+describing on-the-stack iterator state, which is guaranteed by the BPF
+verifier to not be tampered with outside of the corresponding
+constructor/destructor/next APIs.
+
+Each kind of open-coded BPF iterator has its own associated
+struct bpf_iter_<type>, where <type> denotes a specific type of iterator.
+bpf_iter_<type> state needs to live on BPF program stack, so make sure it's
+small enough to fit on BPF stack. For performance reasons its best to avoid
+dynamic memory allocation for iterator state and size the state struct big
+enough to fit everything necessary. But if necessary, dynamic memory
+allocation is a way to bypass BPF stack limitations. Note, state struct size
+is part of iterator's user-visible API, so changing it will break backwards
+compatibility, so be deliberate about designing it.
+
+All kfuncs (constructor, next, destructor) have to be named consistently as
+bpf_iter_<type>_{new,next,destroy}(), respectively. <type> represents iterator
+type, and iterator state should be represented as a matching
+`struct bpf_iter_<type>` state type. Also, all iter kfuncs should have
+a pointer to this `struct bpf_iter_<type>` as the very first argument.
+
+Additionally:
+ - Constructor, i.e., `bpf_iter_<type>_new()`, can have arbitrary extra
+ number of arguments. Return type is not enforced either.
+ - Next method, i.e., `bpf_iter_<type>_next()`, has to return a pointer
+ type and should have exactly one argument: `struct bpf_iter_<type> *`
+ (const/volatile/restrict and typedefs are ignored).
+ - Destructor, i.e., `bpf_iter_<type>_destroy()`, should return void and
+ should have exactly one argument, similar to the next method.
+ - `struct bpf_iter_<type>` size is enforced to be positive and
+ a multiple of 8 bytes (to fit stack slots correctly).
+
+Such strictness and consistency allows to build generic helpers abstracting
+important, but boilerplate, details to be able to use open-coded iterators
+effectively and ergonomically (see libbpf's bpf_for_each() macro). This is
+enforced at kfunc registration point by the kernel.
+
+Constructor/next/destructor implementation contract is as follows:
+ - constructor, `bpf_iter_<type>_new()`, always initializes iterator state on
+ the stack. If any of the input arguments are invalid, constructor should
+ make sure to still initialize it such that subsequent next() calls will
+ return NULL. I.e., on error, *return error and construct empty iterator*.
+ Constructor kfunc is marked with KF_ITER_NEW flag.
+
+ - next method, `bpf_iter_<type>_next()`, accepts pointer to iterator state
+ and produces an element. Next method should always return a pointer. The
+ contract between BPF verifier is that next method *guarantees* that it
+ will eventually return NULL when elements are exhausted. Once NULL is
+ returned, subsequent next calls *should keep returning NULL*. Next method
+ is marked with KF_ITER_NEXT (and should also have KF_RET_NULL as
+ NULL-returning kfunc, of course).
+
+ - destructor, `bpf_iter_<type>_destroy()`, is always called once. Even if
+ constructor failed or next returned nothing. Destructor frees up any
+ resources and marks stack space used by `struct bpf_iter_<type>` as usable
+ for something else. Destructor is marked with KF_ITER_DESTROY flag.
+
+Any open-coded BPF iterator implementation has to implement at least these
+three methods. It is enforced that for any given type of iterator only
+applicable constructor/destructor/next are callable. I.e., verifier ensures
+you can't pass number iterator state into, say, cgroup iterator's next method.
+
+From a 10,000-feet BPF verification point of view, next methods are the points
+of forking a verification state, which are conceptually similar to what
+verifier is doing when validating conditional jumps. Verifier is branching out
+`call bpf_iter_<type>_next` instruction and simulates two outcomes: NULL
+(iteration is done) and non-NULL (new element is returned). NULL is simulated
+first and is supposed to reach exit without looping. After that non-NULL case
+is validated and it either reaches exit (for trivial examples with no real
+loop), or reaches another `call bpf_iter_<type>_next` instruction with the
+state equivalent to already (partially) validated one. State equivalency at
+that point means we technically are going to be looping forever without
+"breaking out" out of established "state envelope" (i.e., subsequent
+iterations don't add any new knowledge or constraints to the verifier state,
+so running 1, 2, 10, or a million of them doesn't matter). But taking into
+account the contract stating that iterator next method *has to* return NULL
+eventually, we can conclude that loop body is safe and will eventually
+terminate. Given we validated logic outside of the loop (NULL case), and
+concluded that loop body is safe (though potentially looping many times),
+verifier can claim safety of the overall program logic.
+
+------------------------
+BPF Iterators Motivation
+------------------------
+
+There are a few existing ways to dump kernel data into user space. The most
+popular one is the ``/proc`` system. For example, ``cat /proc/net/tcp6`` dumps
+all tcp6 sockets in the system, and ``cat /proc/net/netlink`` dumps all netlink
+sockets in the system. However, their output format tends to be fixed, and if
+users want more information about these sockets, they have to patch the kernel,
+which often takes time to publish upstream and release. The same is true for popular
+tools like `ss <https://man7.org/linux/man-pages/man8/ss.8.html>`_ where any
+additional information needs a kernel patch.
+
+To solve this problem, the `drgn
+<https://www.kernel.org/doc/html/latest/bpf/drgn.html>`_ tool is often used to
+dig out the kernel data with no kernel change. However, the main drawback for
+drgn is performance, as it cannot do pointer tracing inside the kernel. In
+addition, drgn cannot validate a pointer value and may read invalid data if the
+pointer becomes invalid inside the kernel.
+
+The BPF iterator solves the above problem by providing flexibility on what data
+(e.g., tasks, bpf_maps, etc.) to collect by calling BPF programs for each kernel
+data object.
+
+----------------------
+How BPF Iterators Work
+----------------------
+
+A BPF iterator is a type of BPF program that allows users to iterate over
+specific types of kernel objects. Unlike traditional BPF tracing programs that
+allow users to define callbacks that are invoked at particular points of
+execution in the kernel, BPF iterators allow users to define callbacks that
+should be executed for every entry in a variety of kernel data structures.
+
+For example, users can define a BPF iterator that iterates over every task on
+the system and dumps the total amount of CPU runtime currently used by each of
+them. Another BPF task iterator may instead dump the cgroup information for each
+task. Such flexibility is the core value of BPF iterators.
+
+A BPF program is always loaded into the kernel at the behest of a user space
+process. A user space process loads a BPF program by opening and initializing
+the program skeleton as required and then invoking a syscall to have the BPF
+program verified and loaded by the kernel.
+
+In traditional tracing programs, a program is activated by having user space
+obtain a ``bpf_link`` to the program with ``bpf_program__attach()``. Once
+activated, the program callback will be invoked whenever the tracepoint is
+triggered in the main kernel. For BPF iterator programs, a ``bpf_link`` to the
+program is obtained using ``bpf_link_create()``, and the program callback is
+invoked by issuing system calls from user space.
+
+Next, let us see how you can use the iterators to iterate on kernel objects and
+read data.
+
+------------------------
+How to Use BPF iterators
+------------------------
+
+BPF selftests are a great resource to illustrate how to use the iterators. In
+this section, we’ll walk through a BPF selftest which shows how to load and use
+a BPF iterator program. To begin, we’ll look at `bpf_iter.c
+<https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next.git/tree/tools/testing/selftests/bpf/prog_tests/bpf_iter.c>`_,
+which illustrates how to load and trigger BPF iterators on the user space side.
+Later, we’ll look at a BPF program that runs in kernel space.
+
+Loading a BPF iterator in the kernel from user space typically involves the
+following steps:
+
+* The BPF program is loaded into the kernel through ``libbpf``. Once the kernel
+ has verified and loaded the program, it returns a file descriptor (fd) to user
+ space.
+* Obtain a ``link_fd`` to the BPF program by calling the ``bpf_link_create()``
+ specified with the BPF program file descriptor received from the kernel.
+* Next, obtain a BPF iterator file descriptor (``bpf_iter_fd``) by calling the
+ ``bpf_iter_create()`` specified with the ``bpf_link`` received from Step 2.
+* Trigger the iteration by calling ``read(bpf_iter_fd)`` until no data is
+ available.
+* Close the iterator fd using ``close(bpf_iter_fd)``.
+* If needed to reread the data, get a new ``bpf_iter_fd`` and do the read again.
+
+The following are a few examples of selftest BPF iterator programs:
+
+* `bpf_iter_tcp4.c <https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next.git/tree/tools/testing/selftests/bpf/progs/bpf_iter_tcp4.c>`_
+* `bpf_iter_task_vmas.c <https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next.git/tree/tools/testing/selftests/bpf/progs/bpf_iter_task_vmas.c>`_
+* `bpf_iter_task_file.c <https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next.git/tree/tools/testing/selftests/bpf/progs/bpf_iter_task_file.c>`_
+
+Let us look at ``bpf_iter_task_file.c``, which runs in kernel space:
+
+Here is the definition of ``bpf_iter__task_file`` in `vmlinux.h
+<https://facebookmicrosites.github.io/bpf/blog/2020/02/19/bpf-portability-and-co-re.html#btf>`_.
+Any struct name in ``vmlinux.h`` in the format ``bpf_iter__<iter_name>``
+represents a BPF iterator. The suffix ``<iter_name>`` represents the type of
+iterator.
+
+::
+
+ struct bpf_iter__task_file {
+ union {
+ struct bpf_iter_meta *meta;
+ };
+ union {
+ struct task_struct *task;
+ };
+ u32 fd;
+ union {
+ struct file *file;
+ };
+ };
+
+In the above code, the field 'meta' contains the metadata, which is the same for
+all BPF iterator programs. The rest of the fields are specific to different
+iterators. For example, for task_file iterators, the kernel layer provides the
+'task', 'fd' and 'file' field values. The 'task' and 'file' are `reference
+counted
+<https://facebookmicrosites.github.io/bpf/blog/2018/08/31/object-lifetime.html#file-descriptors-and-reference-counters>`_,
+so they won't go away when the BPF program runs.
+
+Here is a snippet from the ``bpf_iter_task_file.c`` file:
+
+::
+
+ SEC("iter/task_file")
+ int dump_task_file(struct bpf_iter__task_file *ctx)
+ {
+ struct seq_file *seq = ctx->meta->seq;
+ struct task_struct *task = ctx->task;
+ struct file *file = ctx->file;
+ __u32 fd = ctx->fd;
+
+ if (task == NULL || file == NULL)
+ return 0;
+
+ if (ctx->meta->seq_num == 0) {
+ count = 0;
+ BPF_SEQ_PRINTF(seq, " tgid gid fd file\n");
+ }
+
+ if (tgid == task->tgid && task->tgid != task->pid)
+ count++;
+
+ if (last_tgid != task->tgid) {
+ last_tgid = task->tgid;
+ unique_tgid_count++;
+ }
+
+ BPF_SEQ_PRINTF(seq, "%8d %8d %8d %lx\n", task->tgid, task->pid, fd,
+ (long)file->f_op);
+ return 0;
+ }
+
+In the above example, the section name ``SEC(iter/task_file)``, indicates that
+the program is a BPF iterator program to iterate all files from all tasks. The
+context of the program is ``bpf_iter__task_file`` struct.
+
+The user space program invokes the BPF iterator program running in the kernel
+by issuing a ``read()`` syscall. Once invoked, the BPF
+program can export data to user space using a variety of BPF helper functions.
+You can use either ``bpf_seq_printf()`` (and BPF_SEQ_PRINTF helper macro) or
+``bpf_seq_write()`` function based on whether you need formatted output or just
+binary data, respectively. For binary-encoded data, the user space applications
+can process the data from ``bpf_seq_write()`` as needed. For the formatted data,
+you can use ``cat <path>`` to print the results similar to ``cat
+/proc/net/netlink`` after pinning the BPF iterator to the bpffs mount. Later,
+use ``rm -f <path>`` to remove the pinned iterator.
+
+For example, you can use the following command to create a BPF iterator from the
+``bpf_iter_ipv6_route.o`` object file and pin it to the ``/sys/fs/bpf/my_route``
+path:
+
+::
+
+ $ bpftool iter pin ./bpf_iter_ipv6_route.o /sys/fs/bpf/my_route
+
+And then print out the results using the following command:
+
+::
+
+ $ cat /sys/fs/bpf/my_route
+
+
+-------------------------------------------------------
+Implement Kernel Support for BPF Iterator Program Types
+-------------------------------------------------------
+
+To implement a BPF iterator in the kernel, the developer must make a one-time
+change to the following key data structure defined in the `bpf.h
+<https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next.git/tree/include/linux/bpf.h>`_
+file.
+
+::
+
+ struct bpf_iter_reg {
+ const char *target;
+ bpf_iter_attach_target_t attach_target;
+ bpf_iter_detach_target_t detach_target;
+ bpf_iter_show_fdinfo_t show_fdinfo;
+ bpf_iter_fill_link_info_t fill_link_info;
+ bpf_iter_get_func_proto_t get_func_proto;
+ u32 ctx_arg_info_size;
+ u32 feature;
+ struct bpf_ctx_arg_aux ctx_arg_info[BPF_ITER_CTX_ARG_MAX];
+ const struct bpf_iter_seq_info *seq_info;
+ };
+
+After filling the data structure fields, call ``bpf_iter_reg_target()`` to
+register the iterator to the main BPF iterator subsystem.
+
+The following is the breakdown for each field in struct ``bpf_iter_reg``.
+
+.. list-table::
+ :widths: 25 50
+ :header-rows: 1
+
+ * - Fields
+ - Description
+ * - target
+ - Specifies the name of the BPF iterator. For example: ``bpf_map``,
+ ``bpf_map_elem``. The name should be different from other ``bpf_iter`` target names in the kernel.
+ * - attach_target and detach_target
+ - Allows for target specific ``link_create`` action since some targets
+ may need special processing. Called during the user space link_create stage.
+ * - show_fdinfo and fill_link_info
+ - Called to fill target specific information when user tries to get link
+ info associated with the iterator.
+ * - get_func_proto
+ - Permits a BPF iterator to access BPF helpers specific to the iterator.
+ * - ctx_arg_info_size and ctx_arg_info
+ - Specifies the verifier states for BPF program arguments associated with
+ the bpf iterator.
+ * - feature
+ - Specifies certain action requests in the kernel BPF iterator
+ infrastructure. Currently, only BPF_ITER_RESCHED is supported. This means
+ that the kernel function cond_resched() is called to avoid other kernel
+ subsystem (e.g., rcu) misbehaving.
+ * - seq_info
+ - Specifies the set of seq operations for the BPF iterator and helpers to
+ initialize/free the private data for the corresponding ``seq_file``.
+
+`Click here
+<https://lore.kernel.org/bpf/20210212183107.50963-2-songliubraving@fb.com/>`_
+to see an implementation of the ``task_vma`` BPF iterator in the kernel.
+
+---------------------------------
+Parameterizing BPF Task Iterators
+---------------------------------
+
+By default, BPF iterators walk through all the objects of the specified types
+(processes, cgroups, maps, etc.) across the entire system to read relevant
+kernel data. But often, there are cases where we only care about a much smaller
+subset of iterable kernel objects, such as only iterating tasks within a
+specific process. Therefore, BPF iterator programs support filtering out objects
+from iteration by allowing user space to configure the iterator program when it
+is attached.
+
+--------------------------
+BPF Task Iterator Program
+--------------------------
+
+The following code is a BPF iterator program to print files and task information
+through the ``seq_file`` of the iterator. It is a standard BPF iterator program
+that visits every file of an iterator. We will use this BPF program in our
+example later.
+
+::
+
+ #include <vmlinux.h>
+ #include <bpf/bpf_helpers.h>
+
+ char _license[] SEC("license") = "GPL";
+
+ SEC("iter/task_file")
+ int dump_task_file(struct bpf_iter__task_file *ctx)
+ {
+ struct seq_file *seq = ctx->meta->seq;
+ struct task_struct *task = ctx->task;
+ struct file *file = ctx->file;
+ __u32 fd = ctx->fd;
+ if (task == NULL || file == NULL)
+ return 0;
+ if (ctx->meta->seq_num == 0) {
+ BPF_SEQ_PRINTF(seq, " tgid pid fd file\n");
+ }
+ BPF_SEQ_PRINTF(seq, "%8d %8d %8d %lx\n", task->tgid, task->pid, fd,
+ (long)file->f_op);
+ return 0;
+ }
+
+----------------------------------------
+Creating a File Iterator with Parameters
+----------------------------------------
+
+Now, let us look at how to create an iterator that includes only files of a
+process.
+
+First, fill the ``bpf_iter_attach_opts`` struct as shown below:
+
+::
+
+ LIBBPF_OPTS(bpf_iter_attach_opts, opts);
+ union bpf_iter_link_info linfo;
+ memset(&linfo, 0, sizeof(linfo));
+ linfo.task.pid = getpid();
+ opts.link_info = &linfo;
+ opts.link_info_len = sizeof(linfo);
+
+``linfo.task.pid``, if it is non-zero, directs the kernel to create an iterator
+that only includes opened files for the process with the specified ``pid``. In
+this example, we will only be iterating files for our process. If
+``linfo.task.pid`` is zero, the iterator will visit every opened file of every
+process. Similarly, ``linfo.task.tid`` directs the kernel to create an iterator
+that visits opened files of a specific thread, not a process. In this example,
+``linfo.task.tid`` is different from ``linfo.task.pid`` only if the thread has a
+separate file descriptor table. In most circumstances, all process threads share
+a single file descriptor table.
+
+Now, in the userspace program, pass the pointer of struct to the
+``bpf_program__attach_iter()``.
+
+::
+
+ link = bpf_program__attach_iter(prog, &opts);
+ iter_fd = bpf_iter_create(bpf_link__fd(link));
+
+If both *tid* and *pid* are zero, an iterator created from this struct
+``bpf_iter_attach_opts`` will include every opened file of every task in the
+system (in the namespace, actually.) It is the same as passing a NULL as the
+second argument to ``bpf_program__attach_iter()``.
+
+The whole program looks like the following code:
+
+::
+
+ #include <stdio.h>
+ #include <unistd.h>
+ #include <bpf/bpf.h>
+ #include <bpf/libbpf.h>
+ #include "bpf_iter_task_ex.skel.h"
+
+ static int do_read_opts(struct bpf_program *prog, struct bpf_iter_attach_opts *opts)
+ {
+ struct bpf_link *link;
+ char buf[16] = {};
+ int iter_fd = -1, len;
+ int ret = 0;
+
+ link = bpf_program__attach_iter(prog, opts);
+ if (!link) {
+ fprintf(stderr, "bpf_program__attach_iter() fails\n");
+ return -1;
+ }
+ iter_fd = bpf_iter_create(bpf_link__fd(link));
+ if (iter_fd < 0) {
+ fprintf(stderr, "bpf_iter_create() fails\n");
+ ret = -1;
+ goto free_link;
+ }
+ /* not check contents, but ensure read() ends without error */
+ while ((len = read(iter_fd, buf, sizeof(buf) - 1)) > 0) {
+ buf[len] = 0;
+ printf("%s", buf);
+ }
+ printf("\n");
+ free_link:
+ if (iter_fd >= 0)
+ close(iter_fd);
+ bpf_link__destroy(link);
+ return 0;
+ }
+
+ static void test_task_file(void)
+ {
+ LIBBPF_OPTS(bpf_iter_attach_opts, opts);
+ struct bpf_iter_task_ex *skel;
+ union bpf_iter_link_info linfo;
+ skel = bpf_iter_task_ex__open_and_load();
+ if (skel == NULL)
+ return;
+ memset(&linfo, 0, sizeof(linfo));
+ linfo.task.pid = getpid();
+ opts.link_info = &linfo;
+ opts.link_info_len = sizeof(linfo);
+ printf("PID %d\n", getpid());
+ do_read_opts(skel->progs.dump_task_file, &opts);
+ bpf_iter_task_ex__destroy(skel);
+ }
+
+ int main(int argc, const char * const * argv)
+ {
+ test_task_file();
+ return 0;
+ }
+
+The following lines are the output of the program.
+::
+
+ PID 1859
+
+ tgid pid fd file
+ 1859 1859 0 ffffffff82270aa0
+ 1859 1859 1 ffffffff82270aa0
+ 1859 1859 2 ffffffff82270aa0
+ 1859 1859 3 ffffffff82272980
+ 1859 1859 4 ffffffff8225e120
+ 1859 1859 5 ffffffff82255120
+ 1859 1859 6 ffffffff82254f00
+ 1859 1859 7 ffffffff82254d80
+ 1859 1859 8 ffffffff8225abe0
+
+------------------
+Without Parameters
+------------------
+
+Let us look at how a BPF iterator without parameters skips files of other
+processes in the system. In this case, the BPF program has to check the pid or
+the tid of tasks, or it will receive every opened file in the system (in the
+current *pid* namespace, actually). So, we usually add a global variable in the
+BPF program to pass a *pid* to the BPF program.
+
+The BPF program would look like the following block.
+
+ ::
+
+ ......
+ int target_pid = 0;
+
+ SEC("iter/task_file")
+ int dump_task_file(struct bpf_iter__task_file *ctx)
+ {
+ ......
+ if (task->tgid != target_pid) /* Check task->pid instead to check thread IDs */
+ return 0;
+ BPF_SEQ_PRINTF(seq, "%8d %8d %8d %lx\n", task->tgid, task->pid, fd,
+ (long)file->f_op);
+ return 0;
+ }
+
+The user space program would look like the following block:
+
+ ::
+
+ ......
+ static void test_task_file(void)
+ {
+ ......
+ skel = bpf_iter_task_ex__open_and_load();
+ if (skel == NULL)
+ return;
+ skel->bss->target_pid = getpid(); /* process ID. For thread id, use gettid() */
+ memset(&linfo, 0, sizeof(linfo));
+ linfo.task.pid = getpid();
+ opts.link_info = &linfo;
+ opts.link_info_len = sizeof(linfo);
+ ......
+ }
+
+``target_pid`` is a global variable in the BPF program. The user space program
+should initialize the variable with a process ID to skip opened files of other
+processes in the BPF program. When you parametrize a BPF iterator, the iterator
+calls the BPF program fewer times which can save significant resources.
+
+---------------------------
+Parametrizing VMA Iterators
+---------------------------
+
+By default, a BPF VMA iterator includes every VMA in every process. However,
+you can still specify a process or a thread to include only its VMAs. Unlike
+files, a thread can not have a separate address space (since Linux 2.6.0-test6).
+Here, using *tid* makes no difference from using *pid*.
+
+----------------------------
+Parametrizing Task Iterators
+----------------------------
+
+A BPF task iterator with *pid* includes all tasks (threads) of a process. The
+BPF program receives these tasks one after another. You can specify a BPF task
+iterator with *tid* parameter to include only the tasks that match the given
+*tid*.