aboutsummaryrefslogtreecommitdiffstatshomepage
path: root/Documentation/dev-tools
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/dev-tools')
-rw-r--r--Documentation/dev-tools/coccinelle.rst55
-rw-r--r--Documentation/dev-tools/gcov.rst4
-rw-r--r--Documentation/dev-tools/kasan.rst10
-rw-r--r--Documentation/dev-tools/kcsan.rst3
-rw-r--r--Documentation/dev-tools/kgdb.rst18
-rw-r--r--Documentation/dev-tools/kmemleak.rst2
-rw-r--r--Documentation/dev-tools/kunit/kunit-tool.rst17
-rw-r--r--Documentation/dev-tools/kunit/start.rst2
-rw-r--r--Documentation/dev-tools/sparse.rst6
9 files changed, 59 insertions, 58 deletions
diff --git a/Documentation/dev-tools/coccinelle.rst b/Documentation/dev-tools/coccinelle.rst
index 70274c3f5f5a..74c5e6aeeff5 100644
--- a/Documentation/dev-tools/coccinelle.rst
+++ b/Documentation/dev-tools/coccinelle.rst
@@ -85,7 +85,7 @@ Four basic modes are defined: ``patch``, ``report``, ``context``, and
file:line:column-column: message
- ``context`` highlights lines of interest and their context in a
- diff-like style.Lines of interest are indicated with ``-``.
+ diff-like style. Lines of interest are indicated with ``-``.
- ``org`` generates a report in the Org mode format of Emacs.
@@ -119,7 +119,7 @@ For each semantic patch, a commit message is proposed. It gives a
description of the problem being checked by the semantic patch, and
includes a reference to Coccinelle.
-As any static code analyzer, Coccinelle produces false
+As with any static code analyzer, Coccinelle produces false
positives. Thus, reports must be carefully checked, and patches
reviewed.
@@ -135,18 +135,18 @@ the parallelism, set the J= variable. For example, to run across 4 CPUs::
make coccicheck MODE=report J=4
-As of Coccinelle 1.0.2 Coccinelle uses Ocaml parmap for parallelization,
+As of Coccinelle 1.0.2 Coccinelle uses Ocaml parmap for parallelization;
if support for this is detected you will benefit from parmap parallelization.
When parmap is enabled coccicheck will enable dynamic load balancing by using
-``--chunksize 1`` argument, this ensures we keep feeding threads with work
+``--chunksize 1`` argument. This ensures we keep feeding threads with work
one by one, so that we avoid the situation where most work gets done by only
a few threads. With dynamic load balancing, if a thread finishes early we keep
feeding it more work.
When parmap is enabled, if an error occurs in Coccinelle, this error
-value is propagated back, the return value of the ``make coccicheck``
-captures this return value.
+value is propagated back, and the return value of the ``make coccicheck``
+command captures this return value.
Using Coccinelle with a single semantic patch
---------------------------------------------
@@ -175,15 +175,22 @@ For example, to check drivers/net/wireless/ one may write::
make coccicheck M=drivers/net/wireless/
To apply Coccinelle on a file basis, instead of a directory basis, the
-following command may be used::
+C variable is used by the makefile to select which files to work with.
+This variable can be used to run scripts for the entire kernel, a
+specific directory, or for a single file.
- make C=1 CHECK="scripts/coccicheck"
+For example, to check drivers/bluetooth/bfusb.c, the value 1 is
+passed to the C variable to check files that make considers
+need to be compiled.::
-To check only newly edited code, use the value 2 for the C flag, i.e.::
+ make C=1 CHECK=scripts/coccicheck drivers/bluetooth/bfusb.o
- make C=2 CHECK="scripts/coccicheck"
+The value 2 is passed to the C variable to check files regardless of
+whether they need to be compiled or not.::
-In these modes, which works on a file basis, there is no information
+ make C=2 CHECK=scripts/coccicheck drivers/bluetooth/bfusb.o
+
+In these modes, which work on a file basis, there is no information
about semantic patches displayed, and no commit message proposed.
This runs every semantic patch in scripts/coccinelle by default. The
@@ -198,12 +205,12 @@ Debugging Coccinelle SmPL patches
Using coccicheck is best as it provides in the spatch command line
include options matching the options used when we compile the kernel.
-You can learn what these options are by using V=1, you could then
+You can learn what these options are by using V=1; you could then
manually run Coccinelle with debug options added.
Alternatively you can debug running Coccinelle against SmPL patches
-by asking for stderr to be redirected to stderr, by default stderr
-is redirected to /dev/null, if you'd like to capture stderr you
+by asking for stderr to be redirected to stderr. By default stderr
+is redirected to /dev/null; if you'd like to capture stderr you
can specify the ``DEBUG_FILE="file.txt"`` option to coccicheck. For
instance::
@@ -211,8 +218,8 @@ instance::
make coccicheck COCCI=scripts/coccinelle/free/kfree.cocci MODE=report DEBUG_FILE=cocci.err
cat cocci.err
-You can use SPFLAGS to add debugging flags, for instance you may want to
-add both --profile --show-trying to SPFLAGS when debugging. For instance
+You can use SPFLAGS to add debugging flags; for instance you may want to
+add both --profile --show-trying to SPFLAGS when debugging. For example
you may want to use::
rm -f err.log
@@ -229,7 +236,7 @@ DEBUG_FILE support is only supported when using coccinelle >= 1.0.2.
--------------------
Coccinelle supports reading .cocciconfig for default Coccinelle options that
-should be used every time spatch is spawned, the order of precedence for
+should be used every time spatch is spawned. The order of precedence for
variables for .cocciconfig is as follows:
- Your current user's home directory is processed first
@@ -237,7 +244,7 @@ variables for .cocciconfig is as follows:
- The directory provided with the --dir option is processed last, if used
Since coccicheck runs through make, it naturally runs from the kernel
-proper dir, as such the second rule above would be implied for picking up a
+proper dir; as such the second rule above would be implied for picking up a
.cocciconfig when using ``make coccicheck``.
``make coccicheck`` also supports using M= targets. If you do not supply
@@ -260,13 +267,13 @@ If not using the kernel's coccicheck target, keep the above precedence
order logic of .cocciconfig reading. If using the kernel's coccicheck target,
override any of the kernel's .coccicheck's settings using SPFLAGS.
-We help Coccinelle when used against Linux with a set of sensible defaults
+We help Coccinelle when used against Linux with a set of sensible default
options for Linux with our own Linux .cocciconfig. This hints to coccinelle
-git can be used for ``git grep`` queries over coccigrep. A timeout of 200
+that git can be used for ``git grep`` queries over coccigrep. A timeout of 200
seconds should suffice for now.
The options picked up by coccinelle when reading a .cocciconfig do not appear
-as arguments to spatch processes running on your system, to confirm what
+as arguments to spatch processes running on your system. To confirm what
options will be used by Coccinelle run::
spatch --print-options-only
@@ -290,7 +297,7 @@ given to it when options are in conflict. ::
Coccinelle supports idutils as well but requires coccinelle >= 1.0.6.
When no ID file is specified coccinelle assumes your ID database file
-is in the file .id-utils.index on the top level of the kernel, coccinelle
+is in the file .id-utils.index on the top level of the kernel. Coccinelle
carries a script scripts/idutils_index.sh which creates the database with::
mkid -i C --output .id-utils.index
@@ -317,7 +324,7 @@ SmPL patch specific options
---------------------------
SmPL patches can have their own requirements for options passed
-to Coccinelle. SmPL patch specific options can be provided by
+to Coccinelle. SmPL patch-specific options can be provided by
providing them at the top of the SmPL patch, for instance::
// Options: --no-includes --include-headers
@@ -327,7 +334,7 @@ SmPL patch Coccinelle requirements
As Coccinelle features get added some more advanced SmPL patches
may require newer versions of Coccinelle. If an SmPL patch requires
-at least a version of Coccinelle, this can be specified as follows,
+a minimum version of Coccinelle, this can be specified as follows,
as an example if requiring at least Coccinelle >= 1.0.5::
// Requires: 1.0.5
diff --git a/Documentation/dev-tools/gcov.rst b/Documentation/dev-tools/gcov.rst
index 7bd013596217..9e989baae154 100644
--- a/Documentation/dev-tools/gcov.rst
+++ b/Documentation/dev-tools/gcov.rst
@@ -22,7 +22,7 @@ Possible uses:
* minimizing kernel configurations (do I need this option if the
associated code is never run?)
-.. _gcov: http://gcc.gnu.org/onlinedocs/gcc/Gcov.html
+.. _gcov: https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
.. _lcov: http://ltp.sourceforge.net/coverage/lcov.php
@@ -171,7 +171,7 @@ Note on compilers
GCC and LLVM gcov tools are not necessarily compatible. Use gcov_ to work with
GCC-generated .gcno and .gcda files, and use llvm-cov_ for Clang.
-.. _gcov: http://gcc.gnu.org/onlinedocs/gcc/Gcov.html
+.. _gcov: https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
.. _llvm-cov: https://llvm.org/docs/CommandGuide/llvm-cov.html
Build differences between GCC and Clang gcov are handled by Kconfig. It
diff --git a/Documentation/dev-tools/kasan.rst b/Documentation/dev-tools/kasan.rst
index c652d740735d..38fd5681fade 100644
--- a/Documentation/dev-tools/kasan.rst
+++ b/Documentation/dev-tools/kasan.rst
@@ -13,11 +13,8 @@ KASAN uses compile-time instrumentation to insert validity checks before every
memory access, and therefore requires a compiler version that supports that.
Generic KASAN is supported in both GCC and Clang. With GCC it requires version
-4.9.2 or later for basic support and version 5.0 or later for detection of
-out-of-bounds accesses for stack and global variables and for inline
-instrumentation mode (see the Usage section). With Clang it requires version
-7.0.0 or later and it doesn't support detection of out-of-bounds accesses for
-global variables yet.
+8.3.0 or later. With Clang it requires version 7.0.0 or later, but detection of
+out-of-bounds accesses for global variables is only supported since Clang 11.
Tag-based KASAN is only supported in Clang and requires version 7.0.0 or later.
@@ -193,6 +190,9 @@ function calls GCC directly inserts the code to check the shadow memory.
This option significantly enlarges kernel but it gives x1.1-x2 performance
boost over outline instrumented kernel.
+Generic KASAN prints up to 2 call_rcu() call stacks in reports, the last one
+and the second to last.
+
Software tag-based KASAN
~~~~~~~~~~~~~~~~~~~~~~~~
diff --git a/Documentation/dev-tools/kcsan.rst b/Documentation/dev-tools/kcsan.rst
index b38379f06194..be7a0b0e1f28 100644
--- a/Documentation/dev-tools/kcsan.rst
+++ b/Documentation/dev-tools/kcsan.rst
@@ -8,7 +8,8 @@ approach to detect races. KCSAN's primary purpose is to detect `data races`_.
Usage
-----
-KCSAN requires Clang version 11 or later.
+KCSAN is supported by both GCC and Clang. With GCC we require version 11 or
+later, and with Clang also require version 11 or later.
To enable KCSAN configure the kernel with::
diff --git a/Documentation/dev-tools/kgdb.rst b/Documentation/dev-tools/kgdb.rst
index 61293f40bc6e..c908ef4d3f04 100644
--- a/Documentation/dev-tools/kgdb.rst
+++ b/Documentation/dev-tools/kgdb.rst
@@ -316,7 +316,7 @@ driver as a loadable kernel module kgdbwait will not do anything.
Kernel parameter: ``kgdbcon``
-----------------------------
-The ``kgdbcon`` feature allows you to see :c:func:`printk` messages inside gdb
+The ``kgdbcon`` feature allows you to see printk() messages inside gdb
while gdb is connected to the kernel. Kdb does not make use of the kgdbcon
feature.
@@ -432,7 +432,7 @@ This is a quick example of how to use kdb.
``ps`` Displays only the active processes
``ps A`` Shows all the processes
``summary`` Shows kernel version info and memory usage
- ``bt`` Get a backtrace of the current process using :c:func:`dump_stack`
+ ``bt`` Get a backtrace of the current process using dump_stack()
``dmesg`` View the kernel syslog buffer
``go`` Continue the system
=========== =================================================================
@@ -724,7 +724,7 @@ The kernel debugger is organized into a number of components:
The arch-specific portion implements:
- contains an arch-specific trap catcher which invokes
- :c:func:`kgdb_handle_exception` to start kgdb about doing its work
+ kgdb_handle_exception() to start kgdb about doing its work
- translation to and from gdb specific packet format to :c:type:`pt_regs`
@@ -769,7 +769,7 @@ The kernel debugger is organized into a number of components:
config. Later run ``modprobe kdb_hello`` and the next time you
enter the kdb shell, you can run the ``hello`` command.
- - The implementation for :c:func:`kdb_printf` which emits messages directly
+ - The implementation for kdb_printf() which emits messages directly
to I/O drivers, bypassing the kernel log.
- SW / HW breakpoint management for the kdb shell
@@ -872,10 +872,10 @@ The kgdboc driver contains logic to configure communications with an
attached keyboard. The keyboard infrastructure is only compiled into the
kernel when ``CONFIG_KDB_KEYBOARD=y`` is set in the kernel configuration.
-The core polled keyboard driver driver for PS/2 type keyboards is in
+The core polled keyboard driver for PS/2 type keyboards is in
``drivers/char/kdb_keyboard.c``. This driver is hooked into the debug core
when kgdboc populates the callback in the array called
-:c:type:`kdb_poll_funcs[]`. The :c:func:`kdb_get_kbd_char` is the top-level
+:c:type:`kdb_poll_funcs[]`. The kdb_get_kbd_char() is the top-level
function which polls hardware for single character input.
kgdboc and kms
@@ -887,10 +887,10 @@ that you have a video driver which has a frame buffer console and atomic
kernel mode setting support.
Every time the kernel debugger is entered it calls
-:c:func:`kgdboc_pre_exp_handler` which in turn calls :c:func:`con_debug_enter`
+kgdboc_pre_exp_handler() which in turn calls con_debug_enter()
in the virtual console layer. On resuming kernel execution, the kernel
-debugger calls :c:func:`kgdboc_post_exp_handler` which in turn calls
-:c:func:`con_debug_leave`.
+debugger calls kgdboc_post_exp_handler() which in turn calls
+con_debug_leave().
Any video driver that wants to be compatible with the kernel debugger
and the atomic kms callbacks must implement the ``mode_set_base_atomic``,
diff --git a/Documentation/dev-tools/kmemleak.rst b/Documentation/dev-tools/kmemleak.rst
index fce262883984..a41a2d238af2 100644
--- a/Documentation/dev-tools/kmemleak.rst
+++ b/Documentation/dev-tools/kmemleak.rst
@@ -8,8 +8,6 @@ with the difference that the orphan objects are not freed but only
reported via /sys/kernel/debug/kmemleak. A similar method is used by the
Valgrind tool (``memcheck --leak-check``) to detect the memory leaks in
user-space applications.
-Kmemleak is supported on x86, arm, arm64, powerpc, sparc, sh, microblaze, mips,
-s390, nds32, arc and xtensa.
Usage
-----
diff --git a/Documentation/dev-tools/kunit/kunit-tool.rst b/Documentation/dev-tools/kunit/kunit-tool.rst
index 949af2da81e5..29ae2fee8123 100644
--- a/Documentation/dev-tools/kunit/kunit-tool.rst
+++ b/Documentation/dev-tools/kunit/kunit-tool.rst
@@ -19,13 +19,13 @@ compiles the kernel as a standalone Linux executable that can be run like any
other program directly inside of a host operating system. To be clear, it does
not require any virtualization support: it is just a regular program.
-What is a kunitconfig?
-======================
+What is a .kunitconfig?
+=======================
It's just a defconfig that kunit_tool looks for in the base directory.
kunit_tool uses it to generate a .config as you might expect. In addition, it
verifies that the generated .config contains the CONFIG options in the
-kunitconfig; the reason it does this is so that it is easy to be sure that a
+.kunitconfig; the reason it does this is so that it is easy to be sure that a
CONFIG that enables a test actually ends up in the .config.
How do I use kunit_tool?
@@ -46,16 +46,9 @@ However, you most likely want to use it with the following options:
- ``--timeout`` sets a maximum amount of time to allow tests to run.
- ``--jobs`` sets the number of threads to use to build the kernel.
-If you just want to use the defconfig that ships with the kernel, you can
-append the ``--defconfig`` flag as well:
-
-.. code-block:: bash
-
- ./tools/testing/kunit/kunit.py run --timeout=30 --jobs=`nproc --all` --defconfig
-
.. note::
- This command is particularly helpful for getting started because it
- just works. No kunitconfig needs to be present.
+ This command will work even without a .kunitconfig file: if no
+ .kunitconfig is present, a default one will be used instead.
For a list of all the flags supported by kunit_tool, you can run:
diff --git a/Documentation/dev-tools/kunit/start.rst b/Documentation/dev-tools/kunit/start.rst
index bb112cf70624..d23385e3e159 100644
--- a/Documentation/dev-tools/kunit/start.rst
+++ b/Documentation/dev-tools/kunit/start.rst
@@ -18,7 +18,7 @@ The wrapper can be run with:
.. code-block:: bash
- ./tools/testing/kunit/kunit.py run --defconfig
+ ./tools/testing/kunit/kunit.py run
For more information on this wrapper (also called kunit_tool) check out the
:doc:`kunit-tool` page.
diff --git a/Documentation/dev-tools/sparse.rst b/Documentation/dev-tools/sparse.rst
index 6f4870528226..02102be7ff49 100644
--- a/Documentation/dev-tools/sparse.rst
+++ b/Documentation/dev-tools/sparse.rst
@@ -9,6 +9,8 @@ Sparse is a semantic checker for C programs; it can be used to find a
number of potential problems with kernel code. See
https://lwn.net/Articles/689907/ for an overview of sparse; this document
contains some kernel-specific sparse information.
+More information on sparse, mainly about its internals, can be found in
+its official pages at https://sparse.docs.kernel.org.
Using sparse for typechecking
@@ -73,8 +75,8 @@ sparse would otherwise report a context imbalance.
Getting sparse
--------------
-You can get latest released versions from the Sparse homepage at
-https://sparse.wiki.kernel.org/index.php/Main_Page
+You can get tarballs of the latest released versions from:
+https://www.kernel.org/pub/software/devel/sparse/dist/
Alternatively, you can get snapshots of the latest development version
of sparse using git to clone::