diff options
Diffstat (limited to 'Documentation/filesystems/erofs.rst')
-rw-r--r-- | Documentation/filesystems/erofs.rst | 327 |
1 files changed, 228 insertions, 99 deletions
diff --git a/Documentation/filesystems/erofs.rst b/Documentation/filesystems/erofs.rst index bf145171c2bf..7ddb235aee9d 100644 --- a/Documentation/filesystems/erofs.rst +++ b/Documentation/filesystems/erofs.rst @@ -1,63 +1,100 @@ .. SPDX-License-Identifier: GPL-2.0 ====================================== -Enhanced Read-Only File System - EROFS +EROFS - Enhanced Read-Only File System ====================================== Overview ======== -EROFS file-system stands for Enhanced Read-Only File System. Different -from other read-only file systems, it aims to be designed for flexibility, -scalability, but be kept simple and high performance. +EROFS filesystem stands for Enhanced Read-Only File System. It aims to form a +generic read-only filesystem solution for various read-only use cases instead +of just focusing on storage space saving without considering any side effects +of runtime performance. -It is designed as a better filesystem solution for the following scenarios: +It is designed to meet the needs of flexibility, feature extendability and user +payload friendly, etc. Apart from those, it is still kept as a simple +random-access friendly high-performance filesystem to get rid of unneeded I/O +amplification and memory-resident overhead compared to similar approaches. + +It is implemented to be a better choice for the following scenarios: - read-only storage media or - part of a fully trusted read-only solution, which means it needs to be immutable and bit-for-bit identical to the official golden image for - their releases due to security and other considerations and + their releases due to security or other considerations and - - hope to save some extra storage space with guaranteed end-to-end performance - by using reduced metadata and transparent file compression, especially - for those embedded devices with limited memory (ex, smartphone); + - hope to minimize extra storage space with guaranteed end-to-end performance + by using compact layout, transparent file compression and direct access, + especially for those embedded devices with limited memory and high-density + hosts with numerous containers. -Here is the main features of EROFS: +Here are the main features of EROFS: - Little endian on-disk design; - - Currently 4KB block size (nobh) and therefore maximum 16TB address space; + - Block-based distribution and file-based distribution over fscache are + supported; + + - Support multiple devices to refer to external blobs, which can be used + for container images; - - Metadata & data could be mixed by design; + - 32-bit block addresses for each device, therefore 16TiB address space at + most with 4KiB block size for now; - - 2 inode versions for different requirements: + - Two inode layouts for different requirements: - ===================== ============ ===================================== + ===================== ============ ====================================== compact (v1) extended (v2) - ===================== ============ ===================================== + ===================== ============ ====================================== Inode metadata size 32 bytes 64 bytes - Max file size 4 GB 16 EB (also limited by max. vol size) + Max file size 4 GiB 16 EiB (also limited by max. vol size) Max uids/gids 65536 4294967296 - File change time no yes (64 + 32-bit timestamp) + Per-inode timestamp no yes (64 + 32-bit timestamp) Max hardlinks 65536 4294967296 - Metadata reserved 4 bytes 14 bytes - ===================== ============ ===================================== + Metadata reserved 8 bytes 18 bytes + ===================== ============ ====================================== + + - Support extended attributes as an option; + + - Support a bloom filter that speeds up negative extended attribute lookups; + + - Support POSIX.1e ACLs by using extended attributes; + + - Support transparent data compression as an option: + LZ4, MicroLZMA and DEFLATE algorithms can be used on a per-file basis; In + addition, inplace decompression is also supported to avoid bounce compressed + buffers and unnecessary page cache thrashing. + + - Support chunk-based data deduplication and rolling-hash compressed data + deduplication; + + - Support tailpacking inline compared to byte-addressed unaligned metadata + or smaller block size alternatives; + + - Support merging tail-end data into a special inode as fragments. - - Support extended attributes (xattrs) as an option; + - Support large folios to make use of THPs (Transparent Hugepages); - - Support xattr inline and tail-end data inline for all files; + - Support direct I/O on uncompressed files to avoid double caching for loop + devices; - - Support POSIX.1e ACLs by using xattrs; + - Support FSDAX on uncompressed images for secure containers and ramdisks in + order to get rid of unnecessary page cache. - - Support transparent file compression as an option: - LZ4 algorithm with 4 KB fixed-sized output compression for high performance. + - Support file-based on-demand loading with the Fscache infrastructure. The following git tree provides the file system user-space tools under -development (ex, formatting tool mkfs.erofs): +development, such as a formatting tool (mkfs.erofs), an on-disk consistency & +compatibility checking tool (fsck.erofs), and a debugging tool (dump.erofs): - git://git.kernel.org/pub/scm/linux/kernel/git/xiang/erofs-utils.git +For more information, please also refer to the documentation site: + +- https://erofs.docs.kernel.org + Bugs and patches are welcome, please kindly help us and send to the following linux-erofs mailing list: @@ -84,8 +121,24 @@ cache_strategy=%s Select a strategy for cached decompression from now on: It still does in-place I/O decompression for the rest compressed physical clusters. ========== ============================================= +dax={always,never} Use direct access (no page cache). See + Documentation/filesystems/dax.rst. +dax A legacy option which is an alias for ``dax=always``. +device=%s Specify a path to an extra device to be used together. +fsid=%s Specify a filesystem image ID for Fscache back-end. +domain_id=%s Specify a domain ID in fscache mode so that different images + with the same blobs under a given domain ID can share storage. +fsoffset=%llu Specify block-aligned filesystem offset for the primary device. =================== ========================================================= +Sysfs Entries +============= + +Information about mounted erofs file systems can be found in /sys/fs/erofs. +Each mounted filesystem will have a directory in /sys/fs/erofs based on its +device name (i.e., /sys/fs/erofs/sda). +(see also Documentation/ABI/testing/sysfs-fs-erofs) + On-disk details =============== @@ -113,31 +166,31 @@ may not. All metadatas can be now observed in two different spaces (views): :: - |-> aligned with 8B - |-> followed closely - + meta_blkaddr blocks |-> another slot - _____________________________________________________________________ - | ... | inode | xattrs | extents | data inline | ... | inode ... - |________|_______|(optional)|(optional)|__(optional)_|_____|__________ - |-> aligned with the inode slot size - . . - . . - . . - . . - . . - . . - .____________________________________________________|-> aligned with 4B - | xattr_ibody_header | shared xattrs | inline xattrs | - |____________________|_______________|_______________| - |-> 12 bytes <-|->x * 4 bytes<-| . - . . . - . . . - . . . - ._______________________________.______________________. - | id | id | id | id | ... | id | ent | ... | ent| ... | - |____|____|____|____|______|____|_____|_____|____|_____| - |-> aligned with 4B - |-> aligned with 4B + |-> aligned with 8B + |-> followed closely + + meta_blkaddr blocks |-> another slot + _____________________________________________________________________ + | ... | inode | xattrs | extents | data inline | ... | inode ... + |________|_______|(optional)|(optional)|__(optional)_|_____|__________ + |-> aligned with the inode slot size + . . + . . + . . + . . + . . + . . + .____________________________________________________|-> aligned with 4B + | xattr_ibody_header | shared xattrs | inline xattrs | + |____________________|_______________|_______________| + |-> 12 bytes <-|->x * 4 bytes<-| . + . . . + . . . + . . . + ._______________________________.______________________. + | id | id | id | id | ... | id | ent | ... | ent| ... | + |____|____|____|____|______|____|_____|_____|____|_____| + |-> aligned with 4B + |-> aligned with 4B Inode could be 32 or 64 bytes, which can be distinguished from a common field which all inode versions have -- i_format:: @@ -151,15 +204,16 @@ may not. All metadatas can be now observed in two different spaces (views): | | |__________________| 64 bytes - Xattrs, extents, data inline are followed by the corresponding inode with + Xattrs, extents, data inline are placed after the corresponding inode with proper alignment, and they could be optional for different data mappings. - _currently_ total 4 valid data mappings are supported: + _currently_ total 5 data layouts are supported: == ==================================================================== 0 flat file data without data inline (no extent); 1 fixed-sized output data compression (with non-compacted indexes); 2 flat file data with tail packing data inline (no extent); - 3 fixed-sized output data compression (with compacted indexes, v5.3+). + 3 fixed-sized output data compression (with compacted indexes, v5.3+); + 4 chunk-based file (v5.15+). == ==================================================================== The size of the optional xattrs is indicated by i_xattr_count in inode @@ -175,13 +229,13 @@ may not. All metadatas can be now observed in two different spaces (views): Each share xattr can also be directly found by the following formula: xattr offset = xattr_blkaddr * block_size + 4 * xattr_id - :: +:: - |-> aligned by 4 bytes - + xattr_blkaddr blocks |-> aligned with 4 bytes - _________________________________________________________________________ - | ... | xattr_entry | xattr data | ... | xattr_entry | xattr data ... - |________|_____________|_____________|_____|______________|_______________ + |-> aligned by 4 bytes + + xattr_blkaddr blocks |-> aligned with 4 bytes + _________________________________________________________________________ + | ... | xattr_entry | xattr data | ... | xattr_entry | xattr data ... + |________|_____________|_____________|_____|______________|_______________ Directories ----------- @@ -193,48 +247,123 @@ algorithm (could refer to the related source code). :: - ___________________________ - / | - / ______________|________________ - / / | nameoff1 | nameoffN-1 - ____________.______________._______________v________________v__________ - | dirent | dirent | ... | dirent | filename | filename | ... | filename | - |___.0___|____1___|_____|___N-1__|____0_____|____1_____|_____|___N-1____| - \ ^ - \ | * could have - \ | trailing '\0' - \________________________| nameoff0 - - Directory block + ___________________________ + / | + / ______________|________________ + / / | nameoff1 | nameoffN-1 + ____________.______________._______________v________________v__________ + | dirent | dirent | ... | dirent | filename | filename | ... | filename | + |___.0___|____1___|_____|___N-1__|____0_____|____1_____|_____|___N-1____| + \ ^ + \ | * could have + \ | trailing '\0' + \________________________| nameoff0 + Directory block Note that apart from the offset of the first filename, nameoff0 also indicates the total number of directory entries in this block since it is no need to introduce another on-disk field at all. -Compression ------------ -Currently, EROFS supports 4KB fixed-sized output transparent file compression, -as illustrated below:: - - |---- Variant-Length Extent ----|-------- VLE --------|----- VLE ----- - clusterofs clusterofs clusterofs - | | | logical data - _________v_______________________________v_____________________v_______________ - ... | . | | . | | . | ... - ____|____.________|_____________|________.____|_____________|__.__________|____ - |-> cluster <-|-> cluster <-|-> cluster <-|-> cluster <-|-> cluster <-| - size size size size size - . . . . - . . . . - . . . . - _______._____________._____________._____________._____________________ - ... | | | | ... physical data - _______|_____________|_____________|_____________|_____________________ - |-> cluster <-|-> cluster <-|-> cluster <-| - size size size - -Currently each on-disk physical cluster can contain 4KB (un)compressed data -at most. For each logical cluster, there is a corresponding on-disk index to -describe its cluster type, physical cluster address, etc. - -See "struct z_erofs_vle_decompressed_index" in erofs_fs.h for more details. +Chunk-based files +----------------- +In order to support chunk-based data deduplication, a new inode data layout has +been supported since Linux v5.15: Files are split in equal-sized data chunks +with ``extents`` area of the inode metadata indicating how to get the chunk +data: these can be simply as a 4-byte block address array or in the 8-byte +chunk index form (see struct erofs_inode_chunk_index in erofs_fs.h for more +details.) + +By the way, chunk-based files are all uncompressed for now. + +Long extended attribute name prefixes +------------------------------------- +There are use cases where extended attributes with different values can have +only a few common prefixes (such as overlayfs xattrs). The predefined prefixes +work inefficiently in both image size and runtime performance in such cases. + +The long xattr name prefixes feature is introduced to address this issue. The +overall idea is that, apart from the existing predefined prefixes, the xattr +entry could also refer to user-specified long xattr name prefixes, e.g. +"trusted.overlay.". + +When referring to a long xattr name prefix, the highest bit (bit 7) of +erofs_xattr_entry.e_name_index is set, while the lower bits (bit 0-6) as a whole +represent the index of the referred long name prefix among all long name +prefixes. Therefore, only the trailing part of the name apart from the long +xattr name prefix is stored in erofs_xattr_entry.e_name, which could be empty if +the full xattr name matches exactly as its long xattr name prefix. + +All long xattr prefixes are stored one by one in the packed inode as long as +the packed inode is valid, or in the meta inode otherwise. The +xattr_prefix_count (of the on-disk superblock) indicates the total number of +long xattr name prefixes, while (xattr_prefix_start * 4) indicates the start +offset of long name prefixes in the packed/meta inode. Note that, long extended +attribute name prefixes are disabled if xattr_prefix_count is 0. + +Each long name prefix is stored in the format: ALIGN({__le16 len, data}, 4), +where len represents the total size of the data part. The data part is actually +represented by 'struct erofs_xattr_long_prefix', where base_index represents the +index of the predefined xattr name prefix, e.g. EROFS_XATTR_INDEX_TRUSTED for +"trusted.overlay." long name prefix, while the infix string keeps the string +after stripping the short prefix, e.g. "overlay." for the example above. + +Data compression +---------------- +EROFS implements fixed-sized output compression which generates fixed-sized +compressed data blocks from variable-sized input in contrast to other existing +fixed-sized input solutions. Relatively higher compression ratios can be gotten +by using fixed-sized output compression since nowadays popular data compression +algorithms are mostly LZ77-based and such fixed-sized output approach can be +benefited from the historical dictionary (aka. sliding window). + +In details, original (uncompressed) data is turned into several variable-sized +extents and in the meanwhile, compressed into physical clusters (pclusters). +In order to record each variable-sized extent, logical clusters (lclusters) are +introduced as the basic unit of compress indexes to indicate whether a new +extent is generated within the range (HEAD) or not (NONHEAD). Lclusters are now +fixed in block size, as illustrated below:: + + |<- variable-sized extent ->|<- VLE ->| + clusterofs clusterofs clusterofs + | | | + _________v_________________________________v_______________________v________ + ... | . | | . | | . ... + ____|____._________|______________|________.___ _|______________|__.________ + |-> lcluster <-|-> lcluster <-|-> lcluster <-|-> lcluster <-| + (HEAD) (NONHEAD) (HEAD) (NONHEAD) . + . CBLKCNT . . + . . . + . . . + _______._____________________________.______________._________________ + ... | | | | ... + _______|______________|______________|______________|_________________ + |-> big pcluster <-|-> pcluster <-| + +A physical cluster can be seen as a container of physical compressed blocks +which contains compressed data. Previously, only lcluster-sized (4KB) pclusters +were supported. After big pcluster feature is introduced (available since +Linux v5.13), pcluster can be a multiple of lcluster size. + +For each HEAD lcluster, clusterofs is recorded to indicate where a new extent +starts and blkaddr is used to seek the compressed data. For each NONHEAD +lcluster, delta0 and delta1 are available instead of blkaddr to indicate the +distance to its HEAD lcluster and the next HEAD lcluster. A PLAIN lcluster is +also a HEAD lcluster except that its data is uncompressed. See the comments +around "struct z_erofs_vle_decompressed_index" in erofs_fs.h for more details. + +If big pcluster is enabled, pcluster size in lclusters needs to be recorded as +well. Let the delta0 of the first NONHEAD lcluster store the compressed block +count with a special flag as a new called CBLKCNT NONHEAD lcluster. It's easy +to understand its delta0 is constantly 1, as illustrated below:: + + __________________________________________________________ + | HEAD | NONHEAD | NONHEAD | ... | NONHEAD | HEAD | HEAD | + |__:___|_(CBLKCNT)_|_________|_____|_________|__:___|____:_| + |<----- a big pcluster (with CBLKCNT) ------>|<-- -->| + a lcluster-sized pcluster (without CBLKCNT) ^ + +If another HEAD follows a HEAD lcluster, there is no room to record CBLKCNT, +but it's easy to know the size of such pcluster is 1 lcluster as well. + +Since Linux v6.1, each pcluster can be used for multiple variable-sized extents, +therefore it can be used for compressed data deduplication. |