diff options
Diffstat (limited to 'Documentation/kernel-hacking/locking.rst')
-rw-r--r-- | Documentation/kernel-hacking/locking.rst | 62 |
1 files changed, 34 insertions, 28 deletions
diff --git a/Documentation/kernel-hacking/locking.rst b/Documentation/kernel-hacking/locking.rst index 6ed806e6061b..dff0646a717b 100644 --- a/Documentation/kernel-hacking/locking.rst +++ b/Documentation/kernel-hacking/locking.rst @@ -94,16 +94,10 @@ primitives, but I'll pretend they don't exist. Locking in the Linux Kernel =========================== -If I could give you one piece of advice: never sleep with anyone crazier -than yourself. But if I had to give you advice on locking: **keep it -simple**. +If I could give you one piece of advice on locking: **keep it simple**. Be reluctant to introduce new locks. -Strangely enough, this last one is the exact reverse of my advice when -you **have** slept with someone crazier than yourself. And you should -think about getting a big dog. - Two Main Types of Kernel Locks: Spinlocks and Mutexes ----------------------------------------------------- @@ -118,11 +112,11 @@ spinlock, but you may block holding a mutex. If you can't lock a mutex, your task will suspend itself, and be woken up when the mutex is released. This means the CPU can do something else while you are waiting. There are many cases when you simply can't sleep (see -`What Functions Are Safe To Call From Interrupts? <#sleeping-things>`__), +`What Functions Are Safe To Call From Interrupts?`_), and so have to use a spinlock instead. Neither type of lock is recursive: see -`Deadlock: Simple and Advanced <#deadlock>`__. +`Deadlock: Simple and Advanced`_. Locks and Uniprocessor Kernels ------------------------------ @@ -179,7 +173,7 @@ perfect world). Note that you can also use spin_lock_irq() or spin_lock_irqsave() here, which stop hardware interrupts -as well: see `Hard IRQ Context <#hard-irq-context>`__. +as well: see `Hard IRQ Context`_. This works perfectly for UP as well: the spin lock vanishes, and this macro simply becomes local_bh_disable() @@ -230,7 +224,7 @@ The Same Softirq ~~~~~~~~~~~~~~~~ The same softirq can run on the other CPUs: you can use a per-CPU array -(see `Per-CPU Data <#per-cpu-data>`__) for better performance. If you're +(see `Per-CPU Data`_) for better performance. If you're going so far as to use a softirq, you probably care about scalable performance enough to justify the extra complexity. @@ -301,7 +295,7 @@ Pete Zaitcev gives the following summary: - If you are in a process context (any syscall) and want to lock other process out, use a mutex. You can take a mutex and sleep - (``copy_from_user*(`` or ``kmalloc(x,GFP_KERNEL)``). + (``copy_from_user()`` or ``kmalloc(x,GFP_KERNEL)``). - Otherwise (== data can be touched in an interrupt), use spin_lock_irqsave() and @@ -947,8 +941,7 @@ lock. A classic problem here is when you provide callbacks or hooks: if you call these with the lock held, you risk simple deadlock, or a deadly -embrace (who knows what the callback will do?). Remember, the other -programmers are out to get you, so don't do this. +embrace (who knows what the callback will do?). Overzealous Prevention Of Deadlocks ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ @@ -958,8 +951,6 @@ grabs a read lock, searches a list, fails to find what it wants, drops the read lock, grabs a write lock and inserts the object has a race condition. -If you don't see why, please stay the fuck away from my code. - Racing Timers: A Kernel Pastime ------------------------------- @@ -976,7 +967,7 @@ you might do the following:: while (list) { struct foo *next = list->next; - del_timer(&list->timer); + timer_delete(&list->timer); kfree(list); list = next; } @@ -990,7 +981,7 @@ the lock after we spin_unlock_bh(), and then try to free the element (which has already been freed!). This can be avoided by checking the result of -del_timer(): if it returns 1, the timer has been deleted. +timer_delete(): if it returns 1, the timer has been deleted. If 0, it means (in this case) that it is currently running, so we can do:: @@ -999,7 +990,7 @@ do:: while (list) { struct foo *next = list->next; - if (!del_timer(&list->timer)) { + if (!timer_delete(&list->timer)) { /* Give timer a chance to delete this */ spin_unlock_bh(&list_lock); goto retry; @@ -1014,9 +1005,12 @@ do:: Another common problem is deleting timers which restart themselves (by calling add_timer() at the end of their timer function). Because this is a fairly common case which is prone to races, you should -use del_timer_sync() (``include/linux/timer.h``) to -handle this case. It returns the number of times the timer had to be -deleted before we finally stopped it from adding itself back in. +use timer_delete_sync() (``include/linux/timer.h``) to handle this case. + +Before freeing a timer, timer_shutdown() or timer_shutdown_sync() should be +called which will keep it from being rearmed. Any subsequent attempt to +rearm the timer will be silently ignored by the core code. + Locking Speed ============= @@ -1283,11 +1277,11 @@ Manfred Spraul points out that you can still do this, even if the data is very occasionally accessed in user context or softirqs/tasklets. The irq handler doesn't use a lock, and all other accesses are done as so:: - spin_lock(&lock); + mutex_lock(&lock); disable_irq(irq); ... enable_irq(irq); - spin_unlock(&lock); + mutex_unlock(&lock); The disable_irq() prevents the irq handler from running (and waits for it to finish if it's currently running on other CPUs). @@ -1344,7 +1338,7 @@ lock. - kfree() -- add_timer() and del_timer() +- add_timer() and timer_delete() Mutex API reference =================== @@ -1358,7 +1352,19 @@ Mutex API reference Futex API reference =================== -.. kernel-doc:: kernel/futex.c +.. kernel-doc:: kernel/futex/core.c + :internal: + +.. kernel-doc:: kernel/futex/futex.h + :internal: + +.. kernel-doc:: kernel/futex/pi.c + :internal: + +.. kernel-doc:: kernel/futex/requeue.c + :internal: + +.. kernel-doc:: kernel/futex/waitwake.c :internal: Further reading @@ -1406,7 +1412,7 @@ bh half will be running at any time. Hardware Interrupt / Hardware IRQ - Hardware interrupt request. in_irq() returns true in a + Hardware interrupt request. in_hardirq() returns true in a hardware interrupt handler. Interrupt Context @@ -1418,7 +1424,7 @@ SMP (``CONFIG_SMP=y``). Software Interrupt / softirq - Software interrupt handler. in_irq() returns false; + Software interrupt handler. in_hardirq() returns false; in_softirq() returns true. Tasklets and softirqs both fall into the category of 'software interrupts'. |