diff options
Diffstat (limited to 'Documentation/mm/page_tables.rst')
-rw-r--r-- | Documentation/mm/page_tables.rst | 281 |
1 files changed, 281 insertions, 0 deletions
diff --git a/Documentation/mm/page_tables.rst b/Documentation/mm/page_tables.rst new file mode 100644 index 000000000000..e7c69cc32493 --- /dev/null +++ b/Documentation/mm/page_tables.rst @@ -0,0 +1,281 @@ +.. SPDX-License-Identifier: GPL-2.0 + +=========== +Page Tables +=========== + +Paged virtual memory was invented along with virtual memory as a concept in +1962 on the Ferranti Atlas Computer which was the first computer with paged +virtual memory. The feature migrated to newer computers and became a de facto +feature of all Unix-like systems as time went by. In 1985 the feature was +included in the Intel 80386, which was the CPU Linux 1.0 was developed on. + +Page tables map virtual addresses as seen by the CPU into physical addresses +as seen on the external memory bus. + +Linux defines page tables as a hierarchy which is currently five levels in +height. The architecture code for each supported architecture will then +map this to the restrictions of the hardware. + +The physical address corresponding to the virtual address is often referenced +by the underlying physical page frame. The **page frame number** or **pfn** +is the physical address of the page (as seen on the external memory bus) +divided by `PAGE_SIZE`. + +Physical memory address 0 will be *pfn 0* and the highest pfn will be +the last page of physical memory the external address bus of the CPU can +address. + +With a page granularity of 4KB and a address range of 32 bits, pfn 0 is at +address 0x00000000, pfn 1 is at address 0x00001000, pfn 2 is at 0x00002000 +and so on until we reach pfn 0xfffff at 0xfffff000. With 16KB pages pfs are +at 0x00004000, 0x00008000 ... 0xffffc000 and pfn goes from 0 to 0x3ffff. + +As you can see, with 4KB pages the page base address uses bits 12-31 of the +address, and this is why `PAGE_SHIFT` in this case is defined as 12 and +`PAGE_SIZE` is usually defined in terms of the page shift as `(1 << PAGE_SHIFT)` + +Over time a deeper hierarchy has been developed in response to increasing memory +sizes. When Linux was created, 4KB pages and a single page table called +`swapper_pg_dir` with 1024 entries was used, covering 4MB which coincided with +the fact that Torvald's first computer had 4MB of physical memory. Entries in +this single table were referred to as *PTE*:s - page table entries. + +The software page table hierarchy reflects the fact that page table hardware has +become hierarchical and that in turn is done to save page table memory and +speed up mapping. + +One could of course imagine a single, linear page table with enormous amounts +of entries, breaking down the whole memory into single pages. Such a page table +would be very sparse, because large portions of the virtual memory usually +remains unused. By using hierarchical page tables large holes in the virtual +address space does not waste valuable page table memory, because it will suffice +to mark large areas as unmapped at a higher level in the page table hierarchy. + +Additionally, on modern CPUs, a higher level page table entry can point directly +to a physical memory range, which allows mapping a contiguous range of several +megabytes or even gigabytes in a single high-level page table entry, taking +shortcuts in mapping virtual memory to physical memory: there is no need to +traverse deeper in the hierarchy when you find a large mapped range like this. + +The page table hierarchy has now developed into this:: + + +-----+ + | PGD | + +-----+ + | + | +-----+ + +-->| P4D | + +-----+ + | + | +-----+ + +-->| PUD | + +-----+ + | + | +-----+ + +-->| PMD | + +-----+ + | + | +-----+ + +-->| PTE | + +-----+ + + +Symbols on the different levels of the page table hierarchy have the following +meaning beginning from the bottom: + +- **pte**, `pte_t`, `pteval_t` = **Page Table Entry** - mentioned earlier. + The *pte* is an array of `PTRS_PER_PTE` elements of the `pteval_t` type, each + mapping a single page of virtual memory to a single page of physical memory. + The architecture defines the size and contents of `pteval_t`. + + A typical example is that the `pteval_t` is a 32- or 64-bit value with the + upper bits being a **pfn** (page frame number), and the lower bits being some + architecture-specific bits such as memory protection. + + The **entry** part of the name is a bit confusing because while in Linux 1.0 + this did refer to a single page table entry in the single top level page + table, it was retrofitted to be an array of mapping elements when two-level + page tables were first introduced, so the *pte* is the lowermost page + *table*, not a page table *entry*. + +- **pmd**, `pmd_t`, `pmdval_t` = **Page Middle Directory**, the hierarchy right + above the *pte*, with `PTRS_PER_PMD` references to the *pte*:s. + +- **pud**, `pud_t`, `pudval_t` = **Page Upper Directory** was introduced after + the other levels to handle 4-level page tables. It is potentially unused, + or *folded* as we will discuss later. + +- **p4d**, `p4d_t`, `p4dval_t` = **Page Level 4 Directory** was introduced to + handle 5-level page tables after the *pud* was introduced. Now it was clear + that we needed to replace *pgd*, *pmd*, *pud* etc with a figure indicating the + directory level and that we cannot go on with ad hoc names any more. This + is only used on systems which actually have 5 levels of page tables, otherwise + it is folded. + +- **pgd**, `pgd_t`, `pgdval_t` = **Page Global Directory** - the Linux kernel + main page table handling the PGD for the kernel memory is still found in + `swapper_pg_dir`, but each userspace process in the system also has its own + memory context and thus its own *pgd*, found in `struct mm_struct` which + in turn is referenced to in each `struct task_struct`. So tasks have memory + context in the form of a `struct mm_struct` and this in turn has a + `struct pgt_t *pgd` pointer to the corresponding page global directory. + +To repeat: each level in the page table hierarchy is a *array of pointers*, so +the **pgd** contains `PTRS_PER_PGD` pointers to the next level below, **p4d** +contains `PTRS_PER_P4D` pointers to **pud** items and so on. The number of +pointers on each level is architecture-defined.:: + + PMD + --> +-----+ PTE + | ptr |-------> +-----+ + | ptr |- | ptr |-------> PAGE + | ptr | \ | ptr | + | ptr | \ ... + | ... | \ + | ptr | \ PTE + +-----+ +----> +-----+ + | ptr |-------> PAGE + | ptr | + ... + + +Page Table Folding +================== + +If the architecture does not use all the page table levels, they can be *folded* +which means skipped, and all operations performed on page tables will be +compile-time augmented to just skip a level when accessing the next lower +level. + +Page table handling code that wishes to be architecture-neutral, such as the +virtual memory manager, will need to be written so that it traverses all of the +currently five levels. This style should also be preferred for +architecture-specific code, so as to be robust to future changes. + + +MMU, TLB, and Page Faults +========================= + +The `Memory Management Unit (MMU)` is a hardware component that handles virtual +to physical address translations. It may use relatively small caches in hardware +called `Translation Lookaside Buffers (TLBs)` and `Page Walk Caches` to speed up +these translations. + +When CPU accesses a memory location, it provides a virtual address to the MMU, +which checks if there is the existing translation in the TLB or in the Page +Walk Caches (on architectures that support them). If no translation is found, +MMU uses the page walks to determine the physical address and create the map. + +The dirty bit for a page is set (i.e., turned on) when the page is written to. +Each page of memory has associated permission and dirty bits. The latter +indicate that the page has been modified since it was loaded into memory. + +If nothing prevents it, eventually the physical memory can be accessed and the +requested operation on the physical frame is performed. + +There are several reasons why the MMU can't find certain translations. It could +happen because the CPU is trying to access memory that the current task is not +permitted to, or because the data is not present into physical memory. + +When these conditions happen, the MMU triggers page faults, which are types of +exceptions that signal the CPU to pause the current execution and run a special +function to handle the mentioned exceptions. + +There are common and expected causes of page faults. These are triggered by +process management optimization techniques called "Lazy Allocation" and +"Copy-on-Write". Page faults may also happen when frames have been swapped out +to persistent storage (swap partition or file) and evicted from their physical +locations. + +These techniques improve memory efficiency, reduce latency, and minimize space +occupation. This document won't go deeper into the details of "Lazy Allocation" +and "Copy-on-Write" because these subjects are out of scope as they belong to +Process Address Management. + +Swapping differentiates itself from the other mentioned techniques because it's +undesirable since it's performed as a means to reduce memory under heavy +pressure. + +Swapping can't work for memory mapped by kernel logical addresses. These are a +subset of the kernel virtual space that directly maps a contiguous range of +physical memory. Given any logical address, its physical address is determined +with simple arithmetic on an offset. Accesses to logical addresses are fast +because they avoid the need for complex page table lookups at the expenses of +frames not being evictable and pageable out. + +If the kernel fails to make room for the data that must be present in the +physical frames, the kernel invokes the out-of-memory (OOM) killer to make room +by terminating lower priority processes until pressure reduces under a safe +threshold. + +Additionally, page faults may be also caused by code bugs or by maliciously +crafted addresses that the CPU is instructed to access. A thread of a process +could use instructions to address (non-shared) memory which does not belong to +its own address space, or could try to execute an instruction that want to write +to a read-only location. + +If the above-mentioned conditions happen in user-space, the kernel sends a +`Segmentation Fault` (SIGSEGV) signal to the current thread. That signal usually +causes the termination of the thread and of the process it belongs to. + +This document is going to simplify and show an high altitude view of how the +Linux kernel handles these page faults, creates tables and tables' entries, +check if memory is present and, if not, requests to load data from persistent +storage or from other devices, and updates the MMU and its caches. + +The first steps are architecture dependent. Most architectures jump to +`do_page_fault()`, whereas the x86 interrupt handler is defined by the +`DEFINE_IDTENTRY_RAW_ERRORCODE()` macro which calls `handle_page_fault()`. + +Whatever the routes, all architectures end up to the invocation of +`handle_mm_fault()` which, in turn, (likely) ends up calling +`__handle_mm_fault()` to carry out the actual work of allocating the page +tables. + +The unfortunate case of not being able to call `__handle_mm_fault()` means +that the virtual address is pointing to areas of physical memory which are not +permitted to be accessed (at least from the current context). This +condition resolves to the kernel sending the above-mentioned SIGSEGV signal +to the process and leads to the consequences already explained. + +`__handle_mm_fault()` carries out its work by calling several functions to +find the entry's offsets of the upper layers of the page tables and allocate +the tables that it may need. + +The functions that look for the offset have names like `*_offset()`, where the +"*" is for pgd, p4d, pud, pmd, pte; instead the functions to allocate the +corresponding tables, layer by layer, are called `*_alloc`, using the +above-mentioned convention to name them after the corresponding types of tables +in the hierarchy. + +The page table walk may end at one of the middle or upper layers (PMD, PUD). + +Linux supports larger page sizes than the usual 4KB (i.e., the so called +`huge pages`). When using these kinds of larger pages, higher level pages can +directly map them, with no need to use lower level page entries (PTE). Huge +pages contain large contiguous physical regions that usually span from 2MB to +1GB. They are respectively mapped by the PMD and PUD page entries. + +The huge pages bring with them several benefits like reduced TLB pressure, +reduced page table overhead, memory allocation efficiency, and performance +improvement for certain workloads. However, these benefits come with +trade-offs, like wasted memory and allocation challenges. + +At the very end of the walk with allocations, if it didn't return errors, +`__handle_mm_fault()` finally calls `handle_pte_fault()`, which via `do_fault()` +performs one of `do_read_fault()`, `do_cow_fault()`, `do_shared_fault()`. +"read", "cow", "shared" give hints about the reasons and the kind of fault it's +handling. + +The actual implementation of the workflow is very complex. Its design allows +Linux to handle page faults in a way that is tailored to the specific +characteristics of each architecture, while still sharing a common overall +structure. + +To conclude this high altitude view of how Linux handles page faults, let's +add that the page faults handler can be disabled and enabled respectively with +`pagefault_disable()` and `pagefault_enable()`. + +Several code path make use of the latter two functions because they need to +disable traps into the page faults handler, mostly to prevent deadlocks. |