aboutsummaryrefslogtreecommitdiffstatshomepage
path: root/Documentation/networking/device_drivers/intel/i40e.rst
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/networking/device_drivers/intel/i40e.rst')
-rw-r--r--Documentation/networking/device_drivers/intel/i40e.rst771
1 files changed, 0 insertions, 771 deletions
diff --git a/Documentation/networking/device_drivers/intel/i40e.rst b/Documentation/networking/device_drivers/intel/i40e.rst
deleted file mode 100644
index 8a9b18573688..000000000000
--- a/Documentation/networking/device_drivers/intel/i40e.rst
+++ /dev/null
@@ -1,771 +0,0 @@
-.. SPDX-License-Identifier: GPL-2.0+
-
-=================================================================
-Linux Base Driver for the Intel(R) Ethernet Controller 700 Series
-=================================================================
-
-Intel 40 Gigabit Linux driver.
-Copyright(c) 1999-2018 Intel Corporation.
-
-Contents
-========
-
-- Overview
-- Identifying Your Adapter
-- Intel(R) Ethernet Flow Director
-- Additional Configurations
-- Known Issues
-- Support
-
-
-Driver information can be obtained using ethtool, lspci, and ifconfig.
-Instructions on updating ethtool can be found in the section Additional
-Configurations later in this document.
-
-For questions related to hardware requirements, refer to the documentation
-supplied with your Intel adapter. All hardware requirements listed apply to use
-with Linux.
-
-
-Identifying Your Adapter
-========================
-The driver is compatible with devices based on the following:
-
- * Intel(R) Ethernet Controller X710
- * Intel(R) Ethernet Controller XL710
- * Intel(R) Ethernet Network Connection X722
- * Intel(R) Ethernet Controller XXV710
-
-For the best performance, make sure the latest NVM/FW is installed on your
-device.
-
-For information on how to identify your adapter, and for the latest NVM/FW
-images and Intel network drivers, refer to the Intel Support website:
-https://www.intel.com/support
-
-SFP+ and QSFP+ Devices
-----------------------
-For information about supported media, refer to this document:
-https://www.intel.com/content/dam/www/public/us/en/documents/release-notes/xl710-ethernet-controller-feature-matrix.pdf
-
-NOTE: Some adapters based on the Intel(R) Ethernet Controller 700 Series only
-support Intel Ethernet Optics modules. On these adapters, other modules are not
-supported and will not function. In all cases Intel recommends using Intel
-Ethernet Optics; other modules may function but are not validated by Intel.
-Contact Intel for supported media types.
-
-NOTE: For connections based on Intel(R) Ethernet Controller 700 Series, support
-is dependent on your system board. Please see your vendor for details.
-
-NOTE: In systems that do not have adequate airflow to cool the adapter and
-optical modules, you must use high temperature optical modules.
-
-Virtual Functions (VFs)
------------------------
-Use sysfs to enable VFs. For example::
-
- #echo $num_vf_enabled > /sys/class/net/$dev/device/sriov_numvfs #enable VFs
- #echo 0 > /sys/class/net/$dev/device/sriov_numvfs #disable VFs
-
-For example, the following instructions will configure PF eth0 and the first VF
-on VLAN 10::
-
- $ ip link set dev eth0 vf 0 vlan 10
-
-VLAN Tag Packet Steering
-------------------------
-Allows you to send all packets with a specific VLAN tag to a particular SR-IOV
-virtual function (VF). Further, this feature allows you to designate a
-particular VF as trusted, and allows that trusted VF to request selective
-promiscuous mode on the Physical Function (PF).
-
-To set a VF as trusted or untrusted, enter the following command in the
-Hypervisor::
-
- # ip link set dev eth0 vf 1 trust [on|off]
-
-Once the VF is designated as trusted, use the following commands in the VM to
-set the VF to promiscuous mode.
-
-::
-
- For promiscuous all:
- #ip link set eth2 promisc on
- Where eth2 is a VF interface in the VM
-
- For promiscuous Multicast:
- #ip link set eth2 allmulticast on
- Where eth2 is a VF interface in the VM
-
-NOTE: By default, the ethtool priv-flag vf-true-promisc-support is set to
-"off",meaning that promiscuous mode for the VF will be limited. To set the
-promiscuous mode for the VF to true promiscuous and allow the VF to see all
-ingress traffic, use the following command::
-
- #ethtool -set-priv-flags p261p1 vf-true-promisc-support on
-
-The vf-true-promisc-support priv-flag does not enable promiscuous mode; rather,
-it designates which type of promiscuous mode (limited or true) you will get
-when you enable promiscuous mode using the ip link commands above. Note that
-this is a global setting that affects the entire device. However,the
-vf-true-promisc-support priv-flag is only exposed to the first PF of the
-device. The PF remains in limited promiscuous mode (unless it is in MFP mode)
-regardless of the vf-true-promisc-support setting.
-
-Now add a VLAN interface on the VF interface::
-
- #ip link add link eth2 name eth2.100 type vlan id 100
-
-Note that the order in which you set the VF to promiscuous mode and add the
-VLAN interface does not matter (you can do either first). The end result in
-this example is that the VF will get all traffic that is tagged with VLAN 100.
-
-Intel(R) Ethernet Flow Director
--------------------------------
-The Intel Ethernet Flow Director performs the following tasks:
-
-- Directs receive packets according to their flows to different queues.
-- Enables tight control on routing a flow in the platform.
-- Matches flows and CPU cores for flow affinity.
-- Supports multiple parameters for flexible flow classification and load
- balancing (in SFP mode only).
-
-NOTE: The Linux i40e driver supports the following flow types: IPv4, TCPv4, and
-UDPv4. For a given flow type, it supports valid combinations of IP addresses
-(source or destination) and UDP/TCP ports (source and destination). For
-example, you can supply only a source IP address, a source IP address and a
-destination port, or any combination of one or more of these four parameters.
-
-NOTE: The Linux i40e driver allows you to filter traffic based on a
-user-defined flexible two-byte pattern and offset by using the ethtool user-def
-and mask fields. Only L3 and L4 flow types are supported for user-defined
-flexible filters. For a given flow type, you must clear all Intel Ethernet Flow
-Director filters before changing the input set (for that flow type).
-
-To enable or disable the Intel Ethernet Flow Director::
-
- # ethtool -K ethX ntuple <on|off>
-
-When disabling ntuple filters, all the user programmed filters are flushed from
-the driver cache and hardware. All needed filters must be re-added when ntuple
-is re-enabled.
-
-To add a filter that directs packet to queue 2, use -U or -N switch::
-
- # ethtool -N ethX flow-type tcp4 src-ip 192.168.10.1 dst-ip \
- 192.168.10.2 src-port 2000 dst-port 2001 action 2 [loc 1]
-
-To set a filter using only the source and destination IP address::
-
- # ethtool -N ethX flow-type tcp4 src-ip 192.168.10.1 dst-ip \
- 192.168.10.2 action 2 [loc 1]
-
-To see the list of filters currently present::
-
- # ethtool <-u|-n> ethX
-
-Application Targeted Routing (ATR) Perfect Filters
---------------------------------------------------
-ATR is enabled by default when the kernel is in multiple transmit queue mode.
-An ATR Intel Ethernet Flow Director filter rule is added when a TCP-IP flow
-starts and is deleted when the flow ends. When a TCP-IP Intel Ethernet Flow
-Director rule is added from ethtool (Sideband filter), ATR is turned off by the
-driver. To re-enable ATR, the sideband can be disabled with the ethtool -K
-option. For example::
-
- ethtool –K [adapter] ntuple [off|on]
-
-If sideband is re-enabled after ATR is re-enabled, ATR remains enabled until a
-TCP-IP flow is added. When all TCP-IP sideband rules are deleted, ATR is
-automatically re-enabled.
-
-Packets that match the ATR rules are counted in fdir_atr_match stats in
-ethtool, which also can be used to verify whether ATR rules still exist.
-
-Sideband Perfect Filters
-------------------------
-Sideband Perfect Filters are used to direct traffic that matches specified
-characteristics. They are enabled through ethtool's ntuple interface. To add a
-new filter use the following command::
-
- ethtool -U <device> flow-type <type> src-ip <ip> dst-ip <ip> src-port <port> \
- dst-port <port> action <queue>
-
-Where:
- <device> - the ethernet device to program
- <type> - can be ip4, tcp4, udp4, or sctp4
- <ip> - the ip address to match on
- <port> - the port number to match on
- <queue> - the queue to direct traffic towards (-1 discards matching traffic)
-
-Use the following command to display all of the active filters::
-
- ethtool -u <device>
-
-Use the following command to delete a filter::
-
- ethtool -U <device> delete <N>
-
-Where <N> is the filter id displayed when printing all the active filters, and
-may also have been specified using "loc <N>" when adding the filter.
-
-The following example matches TCP traffic sent from 192.168.0.1, port 5300,
-directed to 192.168.0.5, port 80, and sends it to queue 7::
-
- ethtool -U enp130s0 flow-type tcp4 src-ip 192.168.0.1 dst-ip 192.168.0.5 \
- src-port 5300 dst-port 80 action 7
-
-For each flow-type, the programmed filters must all have the same matching
-input set. For example, issuing the following two commands is acceptable::
-
- ethtool -U enp130s0 flow-type ip4 src-ip 192.168.0.1 src-port 5300 action 7
- ethtool -U enp130s0 flow-type ip4 src-ip 192.168.0.5 src-port 55 action 10
-
-Issuing the next two commands, however, is not acceptable, since the first
-specifies src-ip and the second specifies dst-ip::
-
- ethtool -U enp130s0 flow-type ip4 src-ip 192.168.0.1 src-port 5300 action 7
- ethtool -U enp130s0 flow-type ip4 dst-ip 192.168.0.5 src-port 55 action 10
-
-The second command will fail with an error. You may program multiple filters
-with the same fields, using different values, but, on one device, you may not
-program two tcp4 filters with different matching fields.
-
-Matching on a sub-portion of a field is not supported by the i40e driver, thus
-partial mask fields are not supported.
-
-The driver also supports matching user-defined data within the packet payload.
-This flexible data is specified using the "user-def" field of the ethtool
-command in the following way:
-
-+----------------------------+--------------------------+
-| 31 28 24 20 16 | 15 12 8 4 0 |
-+----------------------------+--------------------------+
-| offset into packet payload | 2 bytes of flexible data |
-+----------------------------+--------------------------+
-
-For example,
-
-::
-
- ... user-def 0x4FFFF ...
-
-tells the filter to look 4 bytes into the payload and match that value against
-0xFFFF. The offset is based on the beginning of the payload, and not the
-beginning of the packet. Thus
-
-::
-
- flow-type tcp4 ... user-def 0x8BEAF ...
-
-would match TCP/IPv4 packets which have the value 0xBEAF 8 bytes into the
-TCP/IPv4 payload.
-
-Note that ICMP headers are parsed as 4 bytes of header and 4 bytes of payload.
-Thus to match the first byte of the payload, you must actually add 4 bytes to
-the offset. Also note that ip4 filters match both ICMP frames as well as raw
-(unknown) ip4 frames, where the payload will be the L3 payload of the IP4 frame.
-
-The maximum offset is 64. The hardware will only read up to 64 bytes of data
-from the payload. The offset must be even because the flexible data is 2 bytes
-long and must be aligned to byte 0 of the packet payload.
-
-The user-defined flexible offset is also considered part of the input set and
-cannot be programmed separately for multiple filters of the same type. However,
-the flexible data is not part of the input set and multiple filters may use the
-same offset but match against different data.
-
-To create filters that direct traffic to a specific Virtual Function, use the
-"action" parameter. Specify the action as a 64 bit value, where the lower 32
-bits represents the queue number, while the next 8 bits represent which VF.
-Note that 0 is the PF, so the VF identifier is offset by 1. For example::
-
- ... action 0x800000002 ...
-
-specifies to direct traffic to Virtual Function 7 (8 minus 1) into queue 2 of
-that VF.
-
-Note that these filters will not break internal routing rules, and will not
-route traffic that otherwise would not have been sent to the specified Virtual
-Function.
-
-Setting the link-down-on-close Private Flag
--------------------------------------------
-When the link-down-on-close private flag is set to "on", the port's link will
-go down when the interface is brought down using the ifconfig ethX down command.
-
-Use ethtool to view and set link-down-on-close, as follows::
-
- ethtool --show-priv-flags ethX
- ethtool --set-priv-flags ethX link-down-on-close [on|off]
-
-Viewing Link Messages
----------------------
-Link messages will not be displayed to the console if the distribution is
-restricting system messages. In order to see network driver link messages on
-your console, set dmesg to eight by entering the following::
-
- dmesg -n 8
-
-NOTE: This setting is not saved across reboots.
-
-Jumbo Frames
-------------
-Jumbo Frames support is enabled by changing the Maximum Transmission Unit (MTU)
-to a value larger than the default value of 1500.
-
-Use the ifconfig command to increase the MTU size. For example, enter the
-following where <x> is the interface number::
-
- ifconfig eth<x> mtu 9000 up
-
-Alternatively, you can use the ip command as follows::
-
- ip link set mtu 9000 dev eth<x>
- ip link set up dev eth<x>
-
-This setting is not saved across reboots. The setting change can be made
-permanent by adding 'MTU=9000' to the file::
-
- /etc/sysconfig/network-scripts/ifcfg-eth<x> // for RHEL
- /etc/sysconfig/network/<config_file> // for SLES
-
-NOTE: The maximum MTU setting for Jumbo Frames is 9702. This value coincides
-with the maximum Jumbo Frames size of 9728 bytes.
-
-NOTE: This driver will attempt to use multiple page sized buffers to receive
-each jumbo packet. This should help to avoid buffer starvation issues when
-allocating receive packets.
-
-ethtool
--------
-The driver utilizes the ethtool interface for driver configuration and
-diagnostics, as well as displaying statistical information. The latest ethtool
-version is required for this functionality. Download it at:
-https://www.kernel.org/pub/software/network/ethtool/
-
-Supported ethtool Commands and Options for Filtering
-----------------------------------------------------
--n --show-nfc
- Retrieves the receive network flow classification configurations.
-
-rx-flow-hash tcp4|udp4|ah4|esp4|sctp4|tcp6|udp6|ah6|esp6|sctp6
- Retrieves the hash options for the specified network traffic type.
-
--N --config-nfc
- Configures the receive network flow classification.
-
-rx-flow-hash tcp4|udp4|ah4|esp4|sctp4|tcp6|udp6|ah6|esp6|sctp6 m|v|t|s|d|f|n|r...
- Configures the hash options for the specified network traffic type.
-
-udp4 UDP over IPv4
-udp6 UDP over IPv6
-
-f Hash on bytes 0 and 1 of the Layer 4 header of the Rx packet.
-n Hash on bytes 2 and 3 of the Layer 4 header of the Rx packet.
-
-Speed and Duplex Configuration
-------------------------------
-In addressing speed and duplex configuration issues, you need to distinguish
-between copper-based adapters and fiber-based adapters.
-
-In the default mode, an Intel(R) Ethernet Network Adapter using copper
-connections will attempt to auto-negotiate with its link partner to determine
-the best setting. If the adapter cannot establish link with the link partner
-using auto-negotiation, you may need to manually configure the adapter and link
-partner to identical settings to establish link and pass packets. This should
-only be needed when attempting to link with an older switch that does not
-support auto-negotiation or one that has been forced to a specific speed or
-duplex mode. Your link partner must match the setting you choose. 1 Gbps speeds
-and higher cannot be forced. Use the autonegotiation advertising setting to
-manually set devices for 1 Gbps and higher.
-
-NOTE: You cannot set the speed for devices based on the Intel(R) Ethernet
-Network Adapter XXV710 based devices.
-
-Speed, duplex, and autonegotiation advertising are configured through the
-ethtool utility.
-
-Caution: Only experienced network administrators should force speed and duplex
-or change autonegotiation advertising manually. The settings at the switch must
-always match the adapter settings. Adapter performance may suffer or your
-adapter may not operate if you configure the adapter differently from your
-switch.
-
-An Intel(R) Ethernet Network Adapter using fiber-based connections, however,
-will not attempt to auto-negotiate with its link partner since those adapters
-operate only in full duplex and only at their native speed.
-
-NAPI
-----
-NAPI (Rx polling mode) is supported in the i40e driver.
-For more information on NAPI, see
-https://wiki.linuxfoundation.org/networking/napi
-
-Flow Control
-------------
-Ethernet Flow Control (IEEE 802.3x) can be configured with ethtool to enable
-receiving and transmitting pause frames for i40e. When transmit is enabled,
-pause frames are generated when the receive packet buffer crosses a predefined
-threshold. When receive is enabled, the transmit unit will halt for the time
-delay specified when a pause frame is received.
-
-NOTE: You must have a flow control capable link partner.
-
-Flow Control is on by default.
-
-Use ethtool to change the flow control settings.
-
-To enable or disable Rx or Tx Flow Control::
-
- ethtool -A eth? rx <on|off> tx <on|off>
-
-Note: This command only enables or disables Flow Control if auto-negotiation is
-disabled. If auto-negotiation is enabled, this command changes the parameters
-used for auto-negotiation with the link partner.
-
-To enable or disable auto-negotiation::
-
- ethtool -s eth? autoneg <on|off>
-
-Note: Flow Control auto-negotiation is part of link auto-negotiation. Depending
-on your device, you may not be able to change the auto-negotiation setting.
-
-RSS Hash Flow
--------------
-Allows you to set the hash bytes per flow type and any combination of one or
-more options for Receive Side Scaling (RSS) hash byte configuration.
-
-::
-
- # ethtool -N <dev> rx-flow-hash <type> <option>
-
-Where <type> is:
- tcp4 signifying TCP over IPv4
- udp4 signifying UDP over IPv4
- tcp6 signifying TCP over IPv6
- udp6 signifying UDP over IPv6
-And <option> is one or more of:
- s Hash on the IP source address of the Rx packet.
- d Hash on the IP destination address of the Rx packet.
- f Hash on bytes 0 and 1 of the Layer 4 header of the Rx packet.
- n Hash on bytes 2 and 3 of the Layer 4 header of the Rx packet.
-
-MAC and VLAN anti-spoofing feature
-----------------------------------
-When a malicious driver attempts to send a spoofed packet, it is dropped by the
-hardware and not transmitted.
-NOTE: This feature can be disabled for a specific Virtual Function (VF)::
-
- ip link set <pf dev> vf <vf id> spoofchk {off|on}
-
-IEEE 1588 Precision Time Protocol (PTP) Hardware Clock (PHC)
-------------------------------------------------------------
-Precision Time Protocol (PTP) is used to synchronize clocks in a computer
-network. PTP support varies among Intel devices that support this driver. Use
-"ethtool -T <netdev name>" to get a definitive list of PTP capabilities
-supported by the device.
-
-IEEE 802.1ad (QinQ) Support
----------------------------
-The IEEE 802.1ad standard, informally known as QinQ, allows for multiple VLAN
-IDs within a single Ethernet frame. VLAN IDs are sometimes referred to as
-"tags," and multiple VLAN IDs are thus referred to as a "tag stack." Tag stacks
-allow L2 tunneling and the ability to segregate traffic within a particular
-VLAN ID, among other uses.
-
-The following are examples of how to configure 802.1ad (QinQ)::
-
- ip link add link eth0 eth0.24 type vlan proto 802.1ad id 24
- ip link add link eth0.24 eth0.24.371 type vlan proto 802.1Q id 371
-
-Where "24" and "371" are example VLAN IDs.
-
-NOTES:
- Receive checksum offloads, cloud filters, and VLAN acceleration are not
- supported for 802.1ad (QinQ) packets.
-
-VXLAN and GENEVE Overlay HW Offloading
---------------------------------------
-Virtual Extensible LAN (VXLAN) allows you to extend an L2 network over an L3
-network, which may be useful in a virtualized or cloud environment. Some
-Intel(R) Ethernet Network devices perform VXLAN processing, offloading it from
-the operating system. This reduces CPU utilization.
-
-VXLAN offloading is controlled by the Tx and Rx checksum offload options
-provided by ethtool. That is, if Tx checksum offload is enabled, and the
-adapter has the capability, VXLAN offloading is also enabled.
-
-Support for VXLAN and GENEVE HW offloading is dependent on kernel support of
-the HW offloading features.
-
-Multiple Functions per Port
----------------------------
-Some adapters based on the Intel Ethernet Controller X710/XL710 support
-multiple functions on a single physical port. Configure these functions through
-the System Setup/BIOS.
-
-Minimum TX Bandwidth is the guaranteed minimum data transmission bandwidth, as
-a percentage of the full physical port link speed, that the partition will
-receive. The bandwidth the partition is awarded will never fall below the level
-you specify.
-
-The range for the minimum bandwidth values is:
-1 to ((100 minus # of partitions on the physical port) plus 1)
-For example, if a physical port has 4 partitions, the range would be:
-1 to ((100 - 4) + 1 = 97)
-
-The Maximum Bandwidth percentage represents the maximum transmit bandwidth
-allocated to the partition as a percentage of the full physical port link
-speed. The accepted range of values is 1-100. The value is used as a limiter,
-should you chose that any one particular function not be able to consume 100%
-of a port's bandwidth (should it be available). The sum of all the values for
-Maximum Bandwidth is not restricted, because no more than 100% of a port's
-bandwidth can ever be used.
-
-NOTE: X710/XXV710 devices fail to enable Max VFs (64) when Multiple Functions
-per Port (MFP) and SR-IOV are enabled. An error from i40e is logged that says
-"add vsi failed for VF N, aq_err 16". To workaround the issue, enable less than
-64 virtual functions (VFs).
-
-Data Center Bridging (DCB)
---------------------------
-DCB is a configuration Quality of Service implementation in hardware. It uses
-the VLAN priority tag (802.1p) to filter traffic. That means that there are 8
-different priorities that traffic can be filtered into. It also enables
-priority flow control (802.1Qbb) which can limit or eliminate the number of
-dropped packets during network stress. Bandwidth can be allocated to each of
-these priorities, which is enforced at the hardware level (802.1Qaz).
-
-Adapter firmware implements LLDP and DCBX protocol agents as per 802.1AB and
-802.1Qaz respectively. The firmware based DCBX agent runs in willing mode only
-and can accept settings from a DCBX capable peer. Software configuration of
-DCBX parameters via dcbtool/lldptool are not supported.
-
-NOTE: Firmware LLDP can be disabled by setting the private flag disable-fw-lldp.
-
-The i40e driver implements the DCB netlink interface layer to allow user-space
-to communicate with the driver and query DCB configuration for the port.
-
-NOTE:
-The kernel assumes that TC0 is available, and will disable Priority Flow
-Control (PFC) on the device if TC0 is not available. To fix this, ensure TC0 is
-enabled when setting up DCB on your switch.
-
-Interrupt Rate Limiting
------------------------
-:Valid Range: 0-235 (0=no limit)
-
-The Intel(R) Ethernet Controller XL710 family supports an interrupt rate
-limiting mechanism. The user can control, via ethtool, the number of
-microseconds between interrupts.
-
-Syntax::
-
- # ethtool -C ethX rx-usecs-high N
-
-The range of 0-235 microseconds provides an effective range of 4,310 to 250,000
-interrupts per second. The value of rx-usecs-high can be set independently of
-rx-usecs and tx-usecs in the same ethtool command, and is also independent of
-the adaptive interrupt moderation algorithm. The underlying hardware supports
-granularity in 4-microsecond intervals, so adjacent values may result in the
-same interrupt rate.
-
-One possible use case is the following::
-
- # ethtool -C ethX adaptive-rx off adaptive-tx off rx-usecs-high 20 rx-usecs \
- 5 tx-usecs 5
-
-The above command would disable adaptive interrupt moderation, and allow a
-maximum of 5 microseconds before indicating a receive or transmit was complete.
-However, instead of resulting in as many as 200,000 interrupts per second, it
-limits total interrupts per second to 50,000 via the rx-usecs-high parameter.
-
-Performance Optimization
-========================
-Driver defaults are meant to fit a wide variety of workloads, but if further
-optimization is required we recommend experimenting with the following settings.
-
-NOTE: For better performance when processing small (64B) frame sizes, try
-enabling Hyper threading in the BIOS in order to increase the number of logical
-cores in the system and subsequently increase the number of queues available to
-the adapter.
-
-Virtualized Environments
-------------------------
-1. Disable XPS on both ends by using the included virt_perf_default script
-or by running the following command as root::
-
- for file in `ls /sys/class/net/<ethX>/queues/tx-*/xps_cpus`;
- do echo 0 > $file; done
-
-2. Using the appropriate mechanism (vcpupin) in the vm, pin the cpu's to
-individual lcpu's, making sure to use a set of cpu's included in the
-device's local_cpulist: /sys/class/net/<ethX>/device/local_cpulist.
-
-3. Configure as many Rx/Tx queues in the VM as available. Do not rely on
-the default setting of 1.
-
-
-Non-virtualized Environments
-----------------------------
-Pin the adapter's IRQs to specific cores by disabling the irqbalance service
-and using the included set_irq_affinity script. Please see the script's help
-text for further options.
-
-- The following settings will distribute the IRQs across all the cores evenly::
-
- # scripts/set_irq_affinity -x all <interface1> , [ <interface2>, ... ]
-
-- The following settings will distribute the IRQs across all the cores that are
- local to the adapter (same NUMA node)::
-
- # scripts/set_irq_affinity -x local <interface1> ,[ <interface2>, ... ]
-
-For very CPU intensive workloads, we recommend pinning the IRQs to all cores.
-
-For IP Forwarding: Disable Adaptive ITR and lower Rx and Tx interrupts per
-queue using ethtool.
-
-- Setting rx-usecs and tx-usecs to 125 will limit interrupts to about 8000
- interrupts per second per queue.
-
-::
-
- # ethtool -C <interface> adaptive-rx off adaptive-tx off rx-usecs 125 \
- tx-usecs 125
-
-For lower CPU utilization: Disable Adaptive ITR and lower Rx and Tx interrupts
-per queue using ethtool.
-
-- Setting rx-usecs and tx-usecs to 250 will limit interrupts to about 4000
- interrupts per second per queue.
-
-::
-
- # ethtool -C <interface> adaptive-rx off adaptive-tx off rx-usecs 250 \
- tx-usecs 250
-
-For lower latency: Disable Adaptive ITR and ITR by setting Rx and Tx to 0 using
-ethtool.
-
-::
-
- # ethtool -C <interface> adaptive-rx off adaptive-tx off rx-usecs 0 \
- tx-usecs 0
-
-Application Device Queues (ADq)
--------------------------------
-Application Device Queues (ADq) allows you to dedicate one or more queues to a
-specific application. This can reduce latency for the specified application,
-and allow Tx traffic to be rate limited per application. Follow the steps below
-to set ADq.
-
-1. Create traffic classes (TCs). Maximum of 8 TCs can be created per interface.
-The shaper bw_rlimit parameter is optional.
-
-Example: Sets up two tcs, tc0 and tc1, with 16 queues each and max tx rate set
-to 1Gbit for tc0 and 3Gbit for tc1.
-
-::
-
- # tc qdisc add dev <interface> root mqprio num_tc 2 map 0 0 0 0 1 1 1 1
- queues 16@0 16@16 hw 1 mode channel shaper bw_rlimit min_rate 1Gbit 2Gbit
- max_rate 1Gbit 3Gbit
-
-map: priority mapping for up to 16 priorities to tcs (e.g. map 0 0 0 0 1 1 1 1
-sets priorities 0-3 to use tc0 and 4-7 to use tc1)
-
-queues: for each tc, <num queues>@<offset> (e.g. queues 16@0 16@16 assigns
-16 queues to tc0 at offset 0 and 16 queues to tc1 at offset 16. Max total
-number of queues for all tcs is 64 or number of cores, whichever is lower.)
-
-hw 1 mode channel: ‘channel’ with ‘hw’ set to 1 is a new new hardware
-offload mode in mqprio that makes full use of the mqprio options, the
-TCs, the queue configurations, and the QoS parameters.
-
-shaper bw_rlimit: for each tc, sets minimum and maximum bandwidth rates.
-Totals must be equal or less than port speed.
-
-For example: min_rate 1Gbit 3Gbit: Verify bandwidth limit using network
-monitoring tools such as ifstat or sar –n DEV [interval] [number of samples]
-
-2. Enable HW TC offload on interface::
-
- # ethtool -K <interface> hw-tc-offload on
-
-3. Apply TCs to ingress (RX) flow of interface::
-
- # tc qdisc add dev <interface> ingress
-
-NOTES:
- - Run all tc commands from the iproute2 <pathtoiproute2>/tc/ directory.
- - ADq is not compatible with cloud filters.
- - Setting up channels via ethtool (ethtool -L) is not supported when the
- TCs are configured using mqprio.
- - You must have iproute2 latest version
- - NVM version 6.01 or later is required.
- - ADq cannot be enabled when any the following features are enabled: Data
- Center Bridging (DCB), Multiple Functions per Port (MFP), or Sideband
- Filters.
- - If another driver (for example, DPDK) has set cloud filters, you cannot
- enable ADq.
- - Tunnel filters are not supported in ADq. If encapsulated packets do
- arrive in non-tunnel mode, filtering will be done on the inner headers.
- For example, for VXLAN traffic in non-tunnel mode, PCTYPE is identified
- as a VXLAN encapsulated packet, outer headers are ignored. Therefore,
- inner headers are matched.
- - If a TC filter on a PF matches traffic over a VF (on the PF), that
- traffic will be routed to the appropriate queue of the PF, and will
- not be passed on the VF. Such traffic will end up getting dropped higher
- up in the TCP/IP stack as it does not match PF address data.
- - If traffic matches multiple TC filters that point to different TCs,
- that traffic will be duplicated and sent to all matching TC queues.
- The hardware switch mirrors the packet to a VSI list when multiple
- filters are matched.
-
-
-Known Issues/Troubleshooting
-============================
-
-NOTE: 1 Gb devices based on the Intel(R) Ethernet Network Connection X722 do
-not support the following features:
-
- * Data Center Bridging (DCB)
- * QOS
- * VMQ
- * SR-IOV
- * Task Encapsulation offload (VXLAN, NVGRE)
- * Energy Efficient Ethernet (EEE)
- * Auto-media detect
-
-Unexpected Issues when the device driver and DPDK share a device
-----------------------------------------------------------------
-Unexpected issues may result when an i40e device is in multi driver mode and
-the kernel driver and DPDK driver are sharing the device. This is because
-access to the global NIC resources is not synchronized between multiple
-drivers. Any change to the global NIC configuration (writing to a global
-register, setting global configuration by AQ, or changing switch modes) will
-affect all ports and drivers on the device. Loading DPDK with the
-"multi-driver" module parameter may mitigate some of the issues.
-
-TC0 must be enabled when setting up DCB on a switch
----------------------------------------------------
-The kernel assumes that TC0 is available, and will disable Priority Flow
-Control (PFC) on the device if TC0 is not available. To fix this, ensure TC0 is
-enabled when setting up DCB on your switch.
-
-
-Support
-=======
-For general information, go to the Intel support website at:
-
-https://www.intel.com/support/
-
-or the Intel Wired Networking project hosted by Sourceforge at:
-
-https://sourceforge.net/projects/e1000
-
-If an issue is identified with the released source code on a supported kernel
-with a supported adapter, email the specific information related to the issue
-to e1000-devel@lists.sf.net.