aboutsummaryrefslogtreecommitdiffstatshomepage
path: root/Documentation/tee/op-tee.rst
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/tee/op-tee.rst')
-rw-r--r--Documentation/tee/op-tee.rst166
1 files changed, 166 insertions, 0 deletions
diff --git a/Documentation/tee/op-tee.rst b/Documentation/tee/op-tee.rst
new file mode 100644
index 000000000000..b0ac097d5547
--- /dev/null
+++ b/Documentation/tee/op-tee.rst
@@ -0,0 +1,166 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+====================================================
+OP-TEE (Open Portable Trusted Execution Environment)
+====================================================
+
+The OP-TEE driver handles OP-TEE [1] based TEEs. Currently it is only the ARM
+TrustZone based OP-TEE solution that is supported.
+
+Lowest level of communication with OP-TEE builds on ARM SMC Calling
+Convention (SMCCC) [2], which is the foundation for OP-TEE's SMC interface
+[3] used internally by the driver. Stacked on top of that is OP-TEE Message
+Protocol [4].
+
+OP-TEE SMC interface provides the basic functions required by SMCCC and some
+additional functions specific for OP-TEE. The most interesting functions are:
+
+- OPTEE_SMC_FUNCID_CALLS_UID (part of SMCCC) returns the version information
+ which is then returned by TEE_IOC_VERSION
+
+- OPTEE_SMC_CALL_GET_OS_UUID returns the particular OP-TEE implementation, used
+ to tell, for instance, a TrustZone OP-TEE apart from an OP-TEE running on a
+ separate secure co-processor.
+
+- OPTEE_SMC_CALL_WITH_ARG drives the OP-TEE message protocol
+
+- OPTEE_SMC_GET_SHM_CONFIG lets the driver and OP-TEE agree on which memory
+ range to used for shared memory between Linux and OP-TEE.
+
+The GlobalPlatform TEE Client API [5] is implemented on top of the generic
+TEE API.
+
+Picture of the relationship between the different components in the
+OP-TEE architecture::
+
+ User space Kernel Secure world
+ ~~~~~~~~~~ ~~~~~~ ~~~~~~~~~~~~
+ +--------+ +-------------+
+ | Client | | Trusted |
+ +--------+ | Application |
+ /\ +-------------+
+ || +----------+ /\
+ || |tee- | ||
+ || |supplicant| \/
+ || +----------+ +-------------+
+ \/ /\ | TEE Internal|
+ +-------+ || | API |
+ + TEE | || +--------+--------+ +-------------+
+ | Client| || | TEE | OP-TEE | | OP-TEE |
+ | API | \/ | subsys | driver | | Trusted OS |
+ +-------+----------------+----+-------+----+-----------+-------------+
+ | Generic TEE API | | OP-TEE MSG |
+ | IOCTL (TEE_IOC_*) | | SMCCC (OPTEE_SMC_CALL_*) |
+ +-----------------------------+ +------------------------------+
+
+RPC (Remote Procedure Call) are requests from secure world to kernel driver
+or tee-supplicant. An RPC is identified by a special range of SMCCC return
+values from OPTEE_SMC_CALL_WITH_ARG. RPC messages which are intended for the
+kernel are handled by the kernel driver. Other RPC messages will be forwarded to
+tee-supplicant without further involvement of the driver, except switching
+shared memory buffer representation.
+
+OP-TEE device enumeration
+-------------------------
+
+OP-TEE provides a pseudo Trusted Application: drivers/tee/optee/device.c in
+order to support device enumeration. In other words, OP-TEE driver invokes this
+application to retrieve a list of Trusted Applications which can be registered
+as devices on the TEE bus.
+
+OP-TEE notifications
+--------------------
+
+There are two kinds of notifications that secure world can use to make
+normal world aware of some event.
+
+1. Synchronous notifications delivered with ``OPTEE_RPC_CMD_NOTIFICATION``
+ using the ``OPTEE_RPC_NOTIFICATION_SEND`` parameter.
+2. Asynchronous notifications delivered with a combination of a non-secure
+ edge-triggered interrupt and a fast call from the non-secure interrupt
+ handler.
+
+Synchronous notifications are limited by depending on RPC for delivery,
+this is only usable when secure world is entered with a yielding call via
+``OPTEE_SMC_CALL_WITH_ARG``. This excludes such notifications from secure
+world interrupt handlers.
+
+An asynchronous notification is delivered via a non-secure edge-triggered
+interrupt to an interrupt handler registered in the OP-TEE driver. The
+actual notification value are retrieved with the fast call
+``OPTEE_SMC_GET_ASYNC_NOTIF_VALUE``. Note that one interrupt can represent
+multiple notifications.
+
+One notification value ``OPTEE_SMC_ASYNC_NOTIF_VALUE_DO_BOTTOM_HALF`` has a
+special meaning. When this value is received it means that normal world is
+supposed to make a yielding call ``OPTEE_MSG_CMD_DO_BOTTOM_HALF``. This
+call is done from the thread assisting the interrupt handler. This is a
+building block for OP-TEE OS in secure world to implement the top half and
+bottom half style of device drivers.
+
+OPTEE_INSECURE_LOAD_IMAGE Kconfig option
+----------------------------------------
+
+The OPTEE_INSECURE_LOAD_IMAGE Kconfig option enables the ability to load the
+BL32 OP-TEE image from the kernel after the kernel boots, rather than loading
+it from the firmware before the kernel boots. This also requires enabling the
+corresponding option in Trusted Firmware for Arm. The Trusted Firmware for Arm
+documentation [6] explains the security threat associated with enabling this as
+well as mitigations at the firmware and platform level.
+
+There are additional attack vectors/mitigations for the kernel that should be
+addressed when using this option.
+
+1. Boot chain security.
+
+ * Attack vector: Replace the OP-TEE OS image in the rootfs to gain control of
+ the system.
+
+ * Mitigation: There must be boot chain security that verifies the kernel and
+ rootfs, otherwise an attacker can modify the loaded OP-TEE binary by
+ modifying it in the rootfs.
+
+2. Alternate boot modes.
+
+ * Attack vector: Using an alternate boot mode (i.e. recovery mode), the
+ OP-TEE driver isn't loaded, leaving the SMC hole open.
+
+ * Mitigation: If there are alternate methods of booting the device, such as a
+ recovery mode, it should be ensured that the same mitigations are applied
+ in that mode.
+
+3. Attacks prior to SMC invocation.
+
+ * Attack vector: Code that is executed prior to issuing the SMC call to load
+ OP-TEE can be exploited to then load an alternate OS image.
+
+ * Mitigation: The OP-TEE driver must be loaded before any potential attack
+ vectors are opened up. This should include mounting of any modifiable
+ filesystems, opening of network ports or communicating with external
+ devices (e.g. USB).
+
+4. Blocking SMC call to load OP-TEE.
+
+ * Attack vector: Prevent the driver from being probed, so the SMC call to
+ load OP-TEE isn't executed when desired, leaving it open to being executed
+ later and loading a modified OS.
+
+ * Mitigation: It is recommended to build the OP-TEE driver as builtin driver
+ rather than as a module to prevent exploits that may cause the module to
+ not be loaded.
+
+References
+==========
+
+[1] https://github.com/OP-TEE/optee_os
+
+[2] http://infocenter.arm.com/help/topic/com.arm.doc.den0028a/index.html
+
+[3] drivers/tee/optee/optee_smc.h
+
+[4] drivers/tee/optee/optee_msg.h
+
+[5] http://www.globalplatform.org/specificationsdevice.asp look for
+ "TEE Client API Specification v1.0" and click download.
+
+[6] https://trustedfirmware-a.readthedocs.io/en/latest/threat_model/threat_model.html